blob: 89a0d44a3589534aff49f3925c38bb8dc1aa3f7a [file] [log] [blame]
/*
* Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OPTO_ESCAPE_HPP
#define SHARE_VM_OPTO_ESCAPE_HPP
#include "opto/addnode.hpp"
#include "opto/node.hpp"
#include "utilities/growableArray.hpp"
//
// Adaptation for C2 of the escape analysis algorithm described in:
//
// [Choi99] Jong-Deok Shoi, Manish Gupta, Mauricio Seffano,
// Vugranam C. Sreedhar, Sam Midkiff,
// "Escape Analysis for Java", Procedings of ACM SIGPLAN
// OOPSLA Conference, November 1, 1999
//
// The flow-insensitive analysis described in the paper has been implemented.
//
// The analysis requires construction of a "connection graph" (CG) for
// the method being analyzed. The nodes of the connection graph are:
//
// - Java objects (JO)
// - Local variables (LV)
// - Fields of an object (OF), these also include array elements
//
// The CG contains 3 types of edges:
//
// - PointsTo (-P>) {LV, OF} to JO
// - Deferred (-D>) from {LV, OF} to {LV, OF}
// - Field (-F>) from JO to OF
//
// The following utility functions is used by the algorithm:
//
// PointsTo(n) - n is any CG node, it returns the set of JO that n could
// point to.
//
// The algorithm describes how to construct the connection graph
// in the following 4 cases:
//
// Case Edges Created
//
// (1) p = new T() LV -P> JO
// (2) p = q LV -D> LV
// (3) p.f = q JO -F> OF, OF -D> LV
// (4) p = q.f JO -F> OF, LV -D> OF
//
// In all these cases, p and q are local variables. For static field
// references, we can construct a local variable containing a reference
// to the static memory.
//
// C2 does not have local variables. However for the purposes of constructing
// the connection graph, the following IR nodes are treated as local variables:
// Phi (pointer values)
// LoadP, LoadN
// Proj#5 (value returned from callnodes including allocations)
// CheckCastPP, CastPP
//
// The LoadP, Proj and CheckCastPP behave like variables assigned to only once.
// Only a Phi can have multiple assignments. Each input to a Phi is treated
// as an assignment to it.
//
// The following node types are JavaObject:
//
// phantom_object (general globally escaped object)
// Allocate
// AllocateArray
// Parm (for incoming arguments)
// CastX2P ("unsafe" operations)
// CreateEx
// ConP
// LoadKlass
// ThreadLocal
// CallStaticJava (which returns Object)
//
// AddP nodes are fields.
//
// After building the graph, a pass is made over the nodes, deleting deferred
// nodes and copying the edges from the target of the deferred edge to the
// source. This results in a graph with no deferred edges, only:
//
// LV -P> JO
// OF -P> JO (the object whose oop is stored in the field)
// JO -F> OF
//
// Then, for each node which is GlobalEscape, anything it could point to
// is marked GlobalEscape. Finally, for any node marked ArgEscape, anything
// it could point to is marked ArgEscape.
//
class Compile;
class Node;
class CallNode;
class PhiNode;
class PhaseTransform;
class PointsToNode;
class Type;
class TypePtr;
class VectorSet;
class JavaObjectNode;
class LocalVarNode;
class FieldNode;
class ArraycopyNode;
class ConnectionGraph;
// ConnectionGraph nodes
class PointsToNode : public ResourceObj {
GrowableArray<PointsToNode*> _edges; // List of nodes this node points to
GrowableArray<PointsToNode*> _uses; // List of nodes which point to this node
const u1 _type; // NodeType
u1 _flags; // NodeFlags
u1 _escape; // EscapeState of object
u1 _fields_escape; // EscapeState of object's fields
Node* const _node; // Ideal node corresponding to this PointsTo node.
const int _idx; // Cached ideal node's _idx
const uint _pidx; // Index of this node
public:
typedef enum {
UnknownType = 0,
JavaObject = 1,
LocalVar = 2,
Field = 3,
Arraycopy = 4
} NodeType;
typedef enum {
UnknownEscape = 0,
NoEscape = 1, // An object does not escape method or thread and it is
// not passed to call. It could be replaced with scalar.
ArgEscape = 2, // An object does not escape method or thread but it is
// passed as argument to call or referenced by argument
// and it does not escape during call.
GlobalEscape = 3 // An object escapes the method or thread.
} EscapeState;
typedef enum {
ScalarReplaceable = 1, // Not escaped object could be replaced with scalar
PointsToUnknown = 2, // Has edge to phantom_object
ArraycopySrc = 4, // Has edge from Arraycopy node
ArraycopyDst = 8 // Has edge to Arraycopy node
} NodeFlags;
inline PointsToNode(ConnectionGraph* CG, Node* n, EscapeState es, NodeType type);
uint pidx() const { return _pidx; }
Node* ideal_node() const { return _node; }
int idx() const { return _idx; }
bool is_JavaObject() const { return _type == (u1)JavaObject; }
bool is_LocalVar() const { return _type == (u1)LocalVar; }
bool is_Field() const { return _type == (u1)Field; }
bool is_Arraycopy() const { return _type == (u1)Arraycopy; }
JavaObjectNode* as_JavaObject() { assert(is_JavaObject(),""); return (JavaObjectNode*)this; }
LocalVarNode* as_LocalVar() { assert(is_LocalVar(),""); return (LocalVarNode*)this; }
FieldNode* as_Field() { assert(is_Field(),""); return (FieldNode*)this; }
ArraycopyNode* as_Arraycopy() { assert(is_Arraycopy(),""); return (ArraycopyNode*)this; }
EscapeState escape_state() const { return (EscapeState)_escape; }
void set_escape_state(EscapeState state) { _escape = (u1)state; }
EscapeState fields_escape_state() const { return (EscapeState)_fields_escape; }
void set_fields_escape_state(EscapeState state) { _fields_escape = (u1)state; }
bool has_unknown_ptr() const { return (_flags & PointsToUnknown) != 0; }
void set_has_unknown_ptr() { _flags |= PointsToUnknown; }
bool arraycopy_src() const { return (_flags & ArraycopySrc) != 0; }
void set_arraycopy_src() { _flags |= ArraycopySrc; }
bool arraycopy_dst() const { return (_flags & ArraycopyDst) != 0; }
void set_arraycopy_dst() { _flags |= ArraycopyDst; }
bool scalar_replaceable() const { return (_flags & ScalarReplaceable) != 0;}
void set_scalar_replaceable(bool v) {
if (v)
_flags |= ScalarReplaceable;
else
_flags &= ~ScalarReplaceable;
}
int edge_count() const { return _edges.length(); }
PointsToNode* edge(int e) const { return _edges.at(e); }
bool add_edge(PointsToNode* edge) { return _edges.append_if_missing(edge); }
int use_count() const { return _uses.length(); }
PointsToNode* use(int e) const { return _uses.at(e); }
bool add_use(PointsToNode* use) { return _uses.append_if_missing(use); }
// Mark base edge use to distinguish from stored value edge.
bool add_base_use(FieldNode* use) { return _uses.append_if_missing((PointsToNode*)((intptr_t)use + 1)); }
static bool is_base_use(PointsToNode* use) { return (((intptr_t)use) & 1); }
static PointsToNode* get_use_node(PointsToNode* use) { return (PointsToNode*)(((intptr_t)use) & ~1); }
// Return true if this node points to specified node or nodes it points to.
bool points_to(JavaObjectNode* ptn) const;
// Return true if this node points only to non-escaping allocations.
bool non_escaping_allocation();
// Return true if one node points to an other.
bool meet(PointsToNode* ptn);
#ifndef PRODUCT
NodeType node_type() const { return (NodeType)_type;}
void dump(bool print_state=true) const;
#endif
};
class LocalVarNode: public PointsToNode {
public:
LocalVarNode(ConnectionGraph *CG, Node* n, EscapeState es):
PointsToNode(CG, n, es, LocalVar) {}
};
class JavaObjectNode: public PointsToNode {
public:
JavaObjectNode(ConnectionGraph *CG, Node* n, EscapeState es):
PointsToNode(CG, n, es, JavaObject) {
if (es > NoEscape)
set_scalar_replaceable(false);
}
};
class FieldNode: public PointsToNode {
GrowableArray<PointsToNode*> _bases; // List of JavaObject nodes which point to this node
const int _offset; // Field's offset.
const bool _is_oop; // Field points to object
bool _has_unknown_base; // Has phantom_object base
public:
FieldNode(ConnectionGraph *CG, Node* n, EscapeState es, int offs, bool is_oop):
PointsToNode(CG, n, es, Field),
_offset(offs), _is_oop(is_oop),
_has_unknown_base(false) {}
int offset() const { return _offset;}
bool is_oop() const { return _is_oop;}
bool has_unknown_base() const { return _has_unknown_base; }
void set_has_unknown_base() { _has_unknown_base = true; }
int base_count() const { return _bases.length(); }
PointsToNode* base(int e) const { return _bases.at(e); }
bool add_base(PointsToNode* base) { return _bases.append_if_missing(base); }
#ifdef ASSERT
// Return true if bases points to this java object.
bool has_base(JavaObjectNode* ptn) const;
#endif
};
class ArraycopyNode: public PointsToNode {
public:
ArraycopyNode(ConnectionGraph *CG, Node* n, EscapeState es):
PointsToNode(CG, n, es, Arraycopy) {}
};
// Iterators for PointsTo node's edges:
// for (EdgeIterator i(n); i.has_next(); i.next()) {
// PointsToNode* u = i.get();
class PointsToIterator: public StackObj {
protected:
const PointsToNode* node;
const int cnt;
int i;
public:
inline PointsToIterator(const PointsToNode* n, int cnt) : node(n), cnt(cnt), i(0) { }
inline bool has_next() const { return i < cnt; }
inline void next() { i++; }
PointsToNode* get() const { ShouldNotCallThis(); return NULL; }
};
class EdgeIterator: public PointsToIterator {
public:
inline EdgeIterator(const PointsToNode* n) : PointsToIterator(n, n->edge_count()) { }
inline PointsToNode* get() const { return node->edge(i); }
};
class UseIterator: public PointsToIterator {
public:
inline UseIterator(const PointsToNode* n) : PointsToIterator(n, n->use_count()) { }
inline PointsToNode* get() const { return node->use(i); }
};
class BaseIterator: public PointsToIterator {
public:
inline BaseIterator(const FieldNode* n) : PointsToIterator(n, n->base_count()) { }
inline PointsToNode* get() const { return ((PointsToNode*)node)->as_Field()->base(i); }
};
class ConnectionGraph: public ResourceObj {
friend class PointsToNode;
private:
GrowableArray<PointsToNode*> _nodes; // Map from ideal nodes to
// ConnectionGraph nodes.
GrowableArray<PointsToNode*> _worklist; // Nodes to be processed
VectorSet _in_worklist;
uint _next_pidx;
bool _collecting; // Indicates whether escape information
// is still being collected. If false,
// no new nodes will be processed.
bool _verify; // verify graph
JavaObjectNode* phantom_obj; // Unknown object
JavaObjectNode* null_obj;
Node* _pcmp_neq; // ConI(#CC_GT)
Node* _pcmp_eq; // ConI(#CC_EQ)
Compile* _compile; // Compile object for current compilation
PhaseIterGVN* _igvn; // Value numbering
Unique_Node_List ideal_nodes; // Used by CG construction and types splitting.
// Address of an element in _nodes. Used when the element is to be modified
PointsToNode* ptnode_adr(int idx) const {
// There should be no new ideal nodes during ConnectionGraph build,
// growableArray::at() will throw assert otherwise.
return _nodes.at(idx);
}
uint nodes_size() const { return _nodes.length(); }
uint next_pidx() { return _next_pidx++; }
// Add nodes to ConnectionGraph.
void add_local_var(Node* n, PointsToNode::EscapeState es);
void add_java_object(Node* n, PointsToNode::EscapeState es);
void add_field(Node* n, PointsToNode::EscapeState es, int offset);
void add_arraycopy(Node* n, PointsToNode::EscapeState es, PointsToNode* src, PointsToNode* dst);
// Compute the escape state for arguments to a call.
void process_call_arguments(CallNode *call);
// Add PointsToNode node corresponding to a call
void add_call_node(CallNode* call);
// Map ideal node to existing PointsTo node (usually phantom_object).
void map_ideal_node(Node *n, PointsToNode* ptn) {
assert(ptn != NULL, "only existing PointsTo node");
_nodes.at_put(n->_idx, ptn);
}
// Utility function for nodes that load an object
void add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist);
// Create PointsToNode node and add it to Connection Graph.
void add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist);
// Add final simple edges to graph.
void add_final_edges(Node *n);
// Finish Graph construction.
bool complete_connection_graph(GrowableArray<PointsToNode*>& ptnodes_worklist,
GrowableArray<JavaObjectNode*>& non_escaped_worklist,
GrowableArray<JavaObjectNode*>& java_objects_worklist,
GrowableArray<FieldNode*>& oop_fields_worklist);
#ifdef ASSERT
void verify_connection_graph(GrowableArray<PointsToNode*>& ptnodes_worklist,
GrowableArray<JavaObjectNode*>& non_escaped_worklist,
GrowableArray<JavaObjectNode*>& java_objects_worklist,
GrowableArray<Node*>& addp_worklist);
#endif
// Add all references to this JavaObject node.
int add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist);
// Put node on worklist if it is (or was) not there.
inline void add_to_worklist(PointsToNode* pt) {
PointsToNode* ptf = pt;
uint pidx_bias = 0;
if (PointsToNode::is_base_use(pt)) {
// Create a separate entry in _in_worklist for a marked base edge
// because _worklist may have an entry for a normal edge pointing
// to the same node. To separate them use _next_pidx as bias.
ptf = PointsToNode::get_use_node(pt)->as_Field();
pidx_bias = _next_pidx;
}
if (!_in_worklist.test_set(ptf->pidx() + pidx_bias)) {
_worklist.append(pt);
}
}
// Put on worklist all uses of this node.
inline void add_uses_to_worklist(PointsToNode* pt) {
for (UseIterator i(pt); i.has_next(); i.next()) {
add_to_worklist(i.get());
}
}
// Put on worklist all field's uses and related field nodes.
void add_field_uses_to_worklist(FieldNode* field);
// Put on worklist all related field nodes.
void add_fields_to_worklist(FieldNode* field, PointsToNode* base);
// Find fields which have unknown value.
int find_field_value(FieldNode* field);
// Find fields initializing values for allocations.
int find_init_values(JavaObjectNode* ptn, PointsToNode* init_val, PhaseTransform* phase);
// Set the escape state of an object and its fields.
void set_escape_state(PointsToNode* ptn, PointsToNode::EscapeState esc) {
// Don't change non-escaping state of NULL pointer.
if (ptn != null_obj) {
if (ptn->escape_state() < esc)
ptn->set_escape_state(esc);
if (ptn->fields_escape_state() < esc)
ptn->set_fields_escape_state(esc);
}
}
void set_fields_escape_state(PointsToNode* ptn, PointsToNode::EscapeState esc) {
// Don't change non-escaping state of NULL pointer.
if (ptn != null_obj) {
if (ptn->fields_escape_state() < esc)
ptn->set_fields_escape_state(esc);
}
}
// Propagate GlobalEscape and ArgEscape escape states to all nodes
// and check that we still have non-escaping java objects.
bool find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
GrowableArray<JavaObjectNode*>& non_escaped_worklist);
// Adjust scalar_replaceable state after Connection Graph is built.
void adjust_scalar_replaceable_state(JavaObjectNode* jobj);
// Optimize ideal graph.
void optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
GrowableArray<Node*>& storestore_worklist);
// Optimize objects compare.
Node* optimize_ptr_compare(Node* n);
// Returns unique corresponding java object or NULL.
JavaObjectNode* unique_java_object(Node *n);
// Add an edge of the specified type pointing to the specified target.
bool add_edge(PointsToNode* from, PointsToNode* to) {
assert(!from->is_Field() || from->as_Field()->is_oop(), "sanity");
if (to == phantom_obj) {
if (from->has_unknown_ptr()) {
return false; // already points to phantom_obj
}
from->set_has_unknown_ptr();
}
bool is_new = from->add_edge(to);
assert(to != phantom_obj || is_new, "sanity");
if (is_new) { // New edge?
assert(!_verify, "graph is incomplete");
is_new = to->add_use(from);
assert(is_new, "use should be also new");
}
return is_new;
}
// Add an edge from Field node to its base and back.
bool add_base(FieldNode* from, PointsToNode* to) {
assert(!to->is_Arraycopy(), "sanity");
if (to == phantom_obj) {
if (from->has_unknown_base()) {
return false; // already has phantom_obj base
}
from->set_has_unknown_base();
}
bool is_new = from->add_base(to);
assert(to != phantom_obj || is_new, "sanity");
if (is_new) { // New edge?
assert(!_verify, "graph is incomplete");
if (to == null_obj)
return is_new; // Don't add fields to NULL pointer.
if (to->is_JavaObject()) {
is_new = to->add_edge(from);
} else {
is_new = to->add_base_use(from);
}
assert(is_new, "use should be also new");
}
return is_new;
}
// Add LocalVar node and edge if possible
void add_local_var_and_edge(Node* n, PointsToNode::EscapeState es, Node* to,
Unique_Node_List *delayed_worklist) {
PointsToNode* ptn = ptnode_adr(to->_idx);
if (delayed_worklist != NULL) { // First iteration of CG construction
add_local_var(n, es);
if (ptn == NULL) {
delayed_worklist->push(n);
return; // Process it later.
}
} else {
assert(ptn != NULL, "node should be registered");
}
add_edge(ptnode_adr(n->_idx), ptn);
}
// Helper functions
bool is_oop_field(Node* n, int offset, bool* unsafe);
static Node* get_addp_base(Node *addp);
static Node* find_second_addp(Node* addp, Node* n);
// offset of a field reference
int address_offset(Node* adr, PhaseTransform *phase);
// Propagate unique types created for unescaped allocated objects
// through the graph
void split_unique_types(GrowableArray<Node *> &alloc_worklist);
// Helper methods for unique types split.
bool split_AddP(Node *addp, Node *base);
PhiNode *create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, bool &new_created);
PhiNode *split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist);
void move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis);
Node* find_inst_mem(Node* mem, int alias_idx,GrowableArray<PhiNode *> &orig_phi_worklist);
Node* step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop);
GrowableArray<MergeMemNode*> _mergemem_worklist; // List of all MergeMem nodes
Node_Array _node_map; // used for bookeeping during type splitting
// Used for the following purposes:
// Memory Phi - most recent unique Phi split out
// from this Phi
// MemNode - new memory input for this node
// ChecCastPP - allocation that this is a cast of
// allocation - CheckCastPP of the allocation
// manage entries in _node_map
void set_map(Node* from, Node* to) {
ideal_nodes.push(from);
_node_map.map(from->_idx, to);
}
Node* get_map(int idx) { return _node_map[idx]; }
PhiNode* get_map_phi(int idx) {
Node* phi = _node_map[idx];
return (phi == NULL) ? NULL : phi->as_Phi();
}
// Notify optimizer that a node has been modified
void record_for_optimizer(Node *n) {
_igvn->_worklist.push(n);
_igvn->add_users_to_worklist(n);
}
// Compute the escape information
bool compute_escape();
public:
ConnectionGraph(Compile *C, PhaseIterGVN *igvn);
// Check for non-escaping candidates
static bool has_candidates(Compile *C);
// Perform escape analysis
static void do_analysis(Compile *C, PhaseIterGVN *igvn);
bool not_global_escape(Node *n);
#ifndef PRODUCT
void dump(GrowableArray<PointsToNode*>& ptnodes_worklist);
#endif
};
inline PointsToNode::PointsToNode(ConnectionGraph *CG, Node* n, EscapeState es, NodeType type):
_edges(CG->_compile->comp_arena(), 2, 0, NULL),
_uses (CG->_compile->comp_arena(), 2, 0, NULL),
_node(n),
_idx(n->_idx),
_pidx(CG->next_pidx()),
_type((u1)type),
_escape((u1)es),
_fields_escape((u1)es),
_flags(ScalarReplaceable) {
assert(n != NULL && es != UnknownEscape, "sanity");
}
#endif // SHARE_VM_OPTO_ESCAPE_HPP