blob: 21c22762f83db3547f4d84a7128cb02c6df57042 [file] [log] [blame]
/*
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OPTO_CONNODE_HPP
#define SHARE_VM_OPTO_CONNODE_HPP
#include "opto/node.hpp"
#include "opto/opcodes.hpp"
#include "opto/type.hpp"
class PhaseTransform;
class MachNode;
//------------------------------ConNode----------------------------------------
// Simple constants
class ConNode : public TypeNode {
public:
ConNode( const Type *t ) : TypeNode(t->remove_speculative(),1) {
init_req(0, (Node*)Compile::current()->root());
init_flags(Flag_is_Con);
}
virtual int Opcode() const;
virtual uint hash() const;
virtual const RegMask &out_RegMask() const { return RegMask::Empty; }
virtual const RegMask &in_RegMask(uint) const { return RegMask::Empty; }
// Polymorphic factory method:
static ConNode* make( Compile* C, const Type *t );
};
//------------------------------ConINode---------------------------------------
// Simple integer constants
class ConINode : public ConNode {
public:
ConINode( const TypeInt *t ) : ConNode(t) {}
virtual int Opcode() const;
// Factory method:
static ConINode* make( Compile* C, int con ) {
return new (C) ConINode( TypeInt::make(con) );
}
};
//------------------------------ConPNode---------------------------------------
// Simple pointer constants
class ConPNode : public ConNode {
public:
ConPNode( const TypePtr *t ) : ConNode(t) {}
virtual int Opcode() const;
// Factory methods:
static ConPNode* make( Compile *C ,address con ) {
if (con == NULL)
return new (C) ConPNode( TypePtr::NULL_PTR ) ;
else
return new (C) ConPNode( TypeRawPtr::make(con) );
}
};
//------------------------------ConNNode--------------------------------------
// Simple narrow oop constants
class ConNNode : public ConNode {
public:
ConNNode( const TypeNarrowOop *t ) : ConNode(t) {}
virtual int Opcode() const;
};
//------------------------------ConNKlassNode---------------------------------
// Simple narrow klass constants
class ConNKlassNode : public ConNode {
public:
ConNKlassNode( const TypeNarrowKlass *t ) : ConNode(t) {}
virtual int Opcode() const;
};
//------------------------------ConLNode---------------------------------------
// Simple long constants
class ConLNode : public ConNode {
public:
ConLNode( const TypeLong *t ) : ConNode(t) {}
virtual int Opcode() const;
// Factory method:
static ConLNode* make( Compile *C ,jlong con ) {
return new (C) ConLNode( TypeLong::make(con) );
}
};
//------------------------------ConFNode---------------------------------------
// Simple float constants
class ConFNode : public ConNode {
public:
ConFNode( const TypeF *t ) : ConNode(t) {}
virtual int Opcode() const;
// Factory method:
static ConFNode* make( Compile *C, float con ) {
return new (C) ConFNode( TypeF::make(con) );
}
};
//------------------------------ConDNode---------------------------------------
// Simple double constants
class ConDNode : public ConNode {
public:
ConDNode( const TypeD *t ) : ConNode(t) {}
virtual int Opcode() const;
// Factory method:
static ConDNode* make( Compile *C, double con ) {
return new (C) ConDNode( TypeD::make(con) );
}
};
//------------------------------BinaryNode-------------------------------------
// Place holder for the 2 conditional inputs to a CMove. CMove needs 4
// inputs: the Bool (for the lt/gt/eq/ne bits), the flags (result of some
// compare), and the 2 values to select between. The Matcher requires a
// binary tree so we break it down like this:
// (CMove (Binary bol cmp) (Binary src1 src2))
class BinaryNode : public Node {
public:
BinaryNode( Node *n1, Node *n2 ) : Node(0,n1,n2) { }
virtual int Opcode() const;
virtual uint ideal_reg() const { return 0; }
};
//------------------------------CMoveNode--------------------------------------
// Conditional move
class CMoveNode : public TypeNode {
public:
enum { Control, // When is it safe to do this cmove?
Condition, // Condition controlling the cmove
IfFalse, // Value if condition is false
IfTrue }; // Value if condition is true
CMoveNode( Node *bol, Node *left, Node *right, const Type *t ) : TypeNode(t,4)
{
init_class_id(Class_CMove);
// all inputs are nullified in Node::Node(int)
// init_req(Control,NULL);
init_req(Condition,bol);
init_req(IfFalse,left);
init_req(IfTrue,right);
}
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Identity( PhaseTransform *phase );
static CMoveNode *make( Compile *C, Node *c, Node *bol, Node *left, Node *right, const Type *t );
// Helper function to spot cmove graph shapes
static Node *is_cmove_id( PhaseTransform *phase, Node *cmp, Node *t, Node *f, BoolNode *b );
};
//------------------------------CMoveDNode-------------------------------------
class CMoveDNode : public CMoveNode {
public:
CMoveDNode( Node *bol, Node *left, Node *right, const Type* t) : CMoveNode(bol,left,right,t){}
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
};
//------------------------------CMoveFNode-------------------------------------
class CMoveFNode : public CMoveNode {
public:
CMoveFNode( Node *bol, Node *left, Node *right, const Type* t ) : CMoveNode(bol,left,right,t) {}
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
};
//------------------------------CMoveINode-------------------------------------
class CMoveINode : public CMoveNode {
public:
CMoveINode( Node *bol, Node *left, Node *right, const TypeInt *ti ) : CMoveNode(bol,left,right,ti){}
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
};
//------------------------------CMoveLNode-------------------------------------
class CMoveLNode : public CMoveNode {
public:
CMoveLNode(Node *bol, Node *left, Node *right, const TypeLong *tl ) : CMoveNode(bol,left,right,tl){}
virtual int Opcode() const;
};
//------------------------------CMovePNode-------------------------------------
class CMovePNode : public CMoveNode {
public:
CMovePNode( Node *c, Node *bol, Node *left, Node *right, const TypePtr* t ) : CMoveNode(bol,left,right,t) { init_req(Control,c); }
virtual int Opcode() const;
};
//------------------------------CMoveNNode-------------------------------------
class CMoveNNode : public CMoveNode {
public:
CMoveNNode( Node *c, Node *bol, Node *left, Node *right, const Type* t ) : CMoveNode(bol,left,right,t) { init_req(Control,c); }
virtual int Opcode() const;
};
//------------------------------ConstraintCastNode-----------------------------
// cast to a different range
class ConstraintCastNode: public TypeNode {
public:
ConstraintCastNode (Node *n, const Type *t ): TypeNode(t,2) {
init_class_id(Class_ConstraintCast);
init_req(1, n);
}
virtual Node *Identity( PhaseTransform *phase );
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual int Opcode() const;
virtual uint ideal_reg() const = 0;
virtual Node *Ideal_DU_postCCP( PhaseCCP * );
};
//------------------------------CastIINode-------------------------------------
// cast integer to integer (different range)
class CastIINode: public ConstraintCastNode {
private:
// Can this node be removed post CCP or does it carry a required dependency?
const bool _carry_dependency;
// Is this node dependent on a range check?
const bool _range_check_dependency;
protected:
virtual uint cmp( const Node &n ) const;
virtual uint size_of() const;
public:
CastIINode(Node *n, const Type *t, bool carry_dependency = false, bool range_check_dependency = false)
: ConstraintCastNode(n,t), _carry_dependency(carry_dependency), _range_check_dependency(range_check_dependency) {
init_class_id(Class_CastII);
}
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegI; }
virtual Node *Identity( PhaseTransform *phase );
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Ideal_DU_postCCP( PhaseCCP * );
const bool has_range_check() {
#ifdef _LP64
return _range_check_dependency;
#else
assert(!_range_check_dependency, "Should not have range check dependency");
return false;
#endif
}
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;
#endif
};
//------------------------------CastPPNode-------------------------------------
// cast pointer to pointer (different type)
class CastPPNode: public ConstraintCastNode {
public:
CastPPNode (Node *n, const Type *t ): ConstraintCastNode(n, t) {}
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegP; }
virtual Node *Ideal_DU_postCCP( PhaseCCP * );
};
//------------------------------CheckCastPPNode--------------------------------
// for _checkcast, cast pointer to pointer (different type), without JOIN,
class CheckCastPPNode: public TypeNode {
public:
CheckCastPPNode( Node *c, Node *n, const Type *t ) : TypeNode(t,2) {
init_class_id(Class_CheckCastPP);
init_req(0, c);
init_req(1, n);
}
virtual Node *Identity( PhaseTransform *phase );
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegP; }
// No longer remove CheckCast after CCP as it gives me a place to hang
// the proper address type - which is required to compute anti-deps.
//virtual Node *Ideal_DU_postCCP( PhaseCCP * );
};
//------------------------------EncodeNarrowPtr--------------------------------
class EncodeNarrowPtrNode : public TypeNode {
protected:
EncodeNarrowPtrNode(Node* value, const Type* type):
TypeNode(type, 2) {
init_class_id(Class_EncodeNarrowPtr);
init_req(0, NULL);
init_req(1, value);
}
public:
virtual uint ideal_reg() const { return Op_RegN; }
virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
};
//------------------------------EncodeP--------------------------------
// Encodes an oop pointers into its compressed form
// Takes an extra argument which is the real heap base as a long which
// may be useful for code generation in the backend.
class EncodePNode : public EncodeNarrowPtrNode {
public:
EncodePNode(Node* value, const Type* type):
EncodeNarrowPtrNode(value, type) {
init_class_id(Class_EncodeP);
}
virtual int Opcode() const;
virtual Node *Identity( PhaseTransform *phase );
virtual const Type *Value( PhaseTransform *phase ) const;
};
//------------------------------EncodePKlass--------------------------------
// Encodes a klass pointer into its compressed form
// Takes an extra argument which is the real heap base as a long which
// may be useful for code generation in the backend.
class EncodePKlassNode : public EncodeNarrowPtrNode {
public:
EncodePKlassNode(Node* value, const Type* type):
EncodeNarrowPtrNode(value, type) {
init_class_id(Class_EncodePKlass);
}
virtual int Opcode() const;
virtual Node *Identity( PhaseTransform *phase );
virtual const Type *Value( PhaseTransform *phase ) const;
};
//------------------------------DecodeNarrowPtr--------------------------------
class DecodeNarrowPtrNode : public TypeNode {
protected:
DecodeNarrowPtrNode(Node* value, const Type* type):
TypeNode(type, 2) {
init_class_id(Class_DecodeNarrowPtr);
init_req(0, NULL);
init_req(1, value);
}
public:
virtual uint ideal_reg() const { return Op_RegP; }
};
//------------------------------DecodeN--------------------------------
// Converts a narrow oop into a real oop ptr.
// Takes an extra argument which is the real heap base as a long which
// may be useful for code generation in the backend.
class DecodeNNode : public DecodeNarrowPtrNode {
public:
DecodeNNode(Node* value, const Type* type):
DecodeNarrowPtrNode(value, type) {
init_class_id(Class_DecodeN);
}
virtual int Opcode() const;
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Identity( PhaseTransform *phase );
};
//------------------------------DecodeNKlass--------------------------------
// Converts a narrow klass pointer into a real klass ptr.
// Takes an extra argument which is the real heap base as a long which
// may be useful for code generation in the backend.
class DecodeNKlassNode : public DecodeNarrowPtrNode {
public:
DecodeNKlassNode(Node* value, const Type* type):
DecodeNarrowPtrNode(value, type) {
init_class_id(Class_DecodeNKlass);
}
virtual int Opcode() const;
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Identity( PhaseTransform *phase );
};
//------------------------------Conv2BNode-------------------------------------
// Convert int/pointer to a Boolean. Map zero to zero, all else to 1.
class Conv2BNode : public Node {
public:
Conv2BNode( Node *i ) : Node(0,i) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return TypeInt::BOOL; }
virtual Node *Identity( PhaseTransform *phase );
virtual const Type *Value( PhaseTransform *phase ) const;
virtual uint ideal_reg() const { return Op_RegI; }
};
// The conversions operations are all Alpha sorted. Please keep it that way!
//------------------------------ConvD2FNode------------------------------------
// Convert double to float
class ConvD2FNode : public Node {
public:
ConvD2FNode( Node *in1 ) : Node(0,in1) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return Type::FLOAT; }
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Identity( PhaseTransform *phase );
virtual uint ideal_reg() const { return Op_RegF; }
};
//------------------------------ConvD2INode------------------------------------
// Convert Double to Integer
class ConvD2INode : public Node {
public:
ConvD2INode( Node *in1 ) : Node(0,in1) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return TypeInt::INT; }
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Identity( PhaseTransform *phase );
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------ConvD2LNode------------------------------------
// Convert Double to Long
class ConvD2LNode : public Node {
public:
ConvD2LNode( Node *dbl ) : Node(0,dbl) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return TypeLong::LONG; }
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Identity( PhaseTransform *phase );
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual uint ideal_reg() const { return Op_RegL; }
};
//------------------------------ConvF2DNode------------------------------------
// Convert Float to a Double.
class ConvF2DNode : public Node {
public:
ConvF2DNode( Node *in1 ) : Node(0,in1) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return Type::DOUBLE; }
virtual const Type *Value( PhaseTransform *phase ) const;
virtual uint ideal_reg() const { return Op_RegD; }
};
//------------------------------ConvF2INode------------------------------------
// Convert float to integer
class ConvF2INode : public Node {
public:
ConvF2INode( Node *in1 ) : Node(0,in1) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return TypeInt::INT; }
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Identity( PhaseTransform *phase );
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------ConvF2LNode------------------------------------
// Convert float to long
class ConvF2LNode : public Node {
public:
ConvF2LNode( Node *in1 ) : Node(0,in1) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return TypeLong::LONG; }
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Identity( PhaseTransform *phase );
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual uint ideal_reg() const { return Op_RegL; }
};
//------------------------------ConvI2DNode------------------------------------
// Convert Integer to Double
class ConvI2DNode : public Node {
public:
ConvI2DNode( Node *in1 ) : Node(0,in1) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return Type::DOUBLE; }
virtual const Type *Value( PhaseTransform *phase ) const;
virtual uint ideal_reg() const { return Op_RegD; }
};
//------------------------------ConvI2FNode------------------------------------
// Convert Integer to Float
class ConvI2FNode : public Node {
public:
ConvI2FNode( Node *in1 ) : Node(0,in1) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return Type::FLOAT; }
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Identity( PhaseTransform *phase );
virtual uint ideal_reg() const { return Op_RegF; }
};
//------------------------------ConvI2LNode------------------------------------
// Convert integer to long
class ConvI2LNode : public TypeNode {
public:
ConvI2LNode(Node *in1, const TypeLong* t = TypeLong::INT)
: TypeNode(t, 2)
{ init_req(1, in1); }
virtual int Opcode() const;
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual uint ideal_reg() const { return Op_RegL; }
};
//------------------------------ConvL2DNode------------------------------------
// Convert Long to Double
class ConvL2DNode : public Node {
public:
ConvL2DNode( Node *in1 ) : Node(0,in1) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return Type::DOUBLE; }
virtual const Type *Value( PhaseTransform *phase ) const;
virtual uint ideal_reg() const { return Op_RegD; }
};
//------------------------------ConvL2FNode------------------------------------
// Convert Long to Float
class ConvL2FNode : public Node {
public:
ConvL2FNode( Node *in1 ) : Node(0,in1) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return Type::FLOAT; }
virtual const Type *Value( PhaseTransform *phase ) const;
virtual uint ideal_reg() const { return Op_RegF; }
};
//------------------------------ConvL2INode------------------------------------
// Convert long to integer
class ConvL2INode : public Node {
public:
ConvL2INode( Node *in1 ) : Node(0,in1) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return TypeInt::INT; }
virtual Node *Identity( PhaseTransform *phase );
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------CastX2PNode-------------------------------------
// convert a machine-pointer-sized integer to a raw pointer
class CastX2PNode : public Node {
public:
CastX2PNode( Node *n ) : Node(NULL, n) {}
virtual int Opcode() const;
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual Node *Identity( PhaseTransform *phase );
virtual uint ideal_reg() const { return Op_RegP; }
virtual const Type *bottom_type() const { return TypeRawPtr::BOTTOM; }
};
//------------------------------CastP2XNode-------------------------------------
// Used in both 32-bit and 64-bit land.
// Used for card-marks and unsafe pointer math.
class CastP2XNode : public Node {
public:
CastP2XNode( Node *ctrl, Node *n ) : Node(ctrl, n) {}
virtual int Opcode() const;
virtual const Type *Value( PhaseTransform *phase ) const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual Node *Identity( PhaseTransform *phase );
virtual uint ideal_reg() const { return Op_RegX; }
virtual const Type *bottom_type() const { return TypeX_X; }
// Return false to keep node from moving away from an associated card mark.
virtual bool depends_only_on_test() const { return false; }
};
//------------------------------ThreadLocalNode--------------------------------
// Ideal Node which returns the base of ThreadLocalStorage.
class ThreadLocalNode : public Node {
public:
ThreadLocalNode( ) : Node((Node*)Compile::current()->root()) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return TypeRawPtr::BOTTOM;}
virtual uint ideal_reg() const { return Op_RegP; }
};
//------------------------------LoadReturnPCNode-------------------------------
class LoadReturnPCNode: public Node {
public:
LoadReturnPCNode(Node *c) : Node(c) { }
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegP; }
};
//-----------------------------RoundFloatNode----------------------------------
class RoundFloatNode: public Node {
public:
RoundFloatNode(Node* c, Node *in1): Node(c, in1) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return Type::FLOAT; }
virtual uint ideal_reg() const { return Op_RegF; }
virtual Node *Identity( PhaseTransform *phase );
virtual const Type *Value( PhaseTransform *phase ) const;
};
//-----------------------------RoundDoubleNode---------------------------------
class RoundDoubleNode: public Node {
public:
RoundDoubleNode(Node* c, Node *in1): Node(c, in1) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return Type::DOUBLE; }
virtual uint ideal_reg() const { return Op_RegD; }
virtual Node *Identity( PhaseTransform *phase );
virtual const Type *Value( PhaseTransform *phase ) const;
};
//------------------------------Opaque1Node------------------------------------
// A node to prevent unwanted optimizations. Allows constant folding.
// Stops value-numbering, Ideal calls or Identity functions.
class Opaque1Node : public Node {
virtual uint hash() const ; // { return NO_HASH; }
virtual uint cmp( const Node &n ) const;
public:
Opaque1Node( Compile* C, Node *n ) : Node(0,n) {
// Put it on the Macro nodes list to removed during macro nodes expansion.
init_flags(Flag_is_macro);
C->add_macro_node(this);
}
// Special version for the pre-loop to hold the original loop limit
// which is consumed by range check elimination.
Opaque1Node( Compile* C, Node *n, Node* orig_limit ) : Node(0,n,orig_limit) {
// Put it on the Macro nodes list to removed during macro nodes expansion.
init_flags(Flag_is_macro);
C->add_macro_node(this);
}
Node* original_loop_limit() { return req()==3 ? in(2) : NULL; }
virtual int Opcode() const;
virtual const Type *bottom_type() const { return TypeInt::INT; }
virtual Node *Identity( PhaseTransform *phase );
};
//------------------------------Opaque2Node------------------------------------
// A node to prevent unwanted optimizations. Allows constant folding. Stops
// value-numbering, most Ideal calls or Identity functions. This Node is
// specifically designed to prevent the pre-increment value of a loop trip
// counter from being live out of the bottom of the loop (hence causing the
// pre- and post-increment values both being live and thus requiring an extra
// temp register and an extra move). If we "accidentally" optimize through
// this kind of a Node, we'll get slightly pessimal, but correct, code. Thus
// it's OK to be slightly sloppy on optimizations here.
class Opaque2Node : public Node {
virtual uint hash() const ; // { return NO_HASH; }
virtual uint cmp( const Node &n ) const;
public:
Opaque2Node( Compile* C, Node *n ) : Node(0,n) {
// Put it on the Macro nodes list to removed during macro nodes expansion.
init_flags(Flag_is_macro);
C->add_macro_node(this);
}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return TypeInt::INT; }
};
//------------------------------Opaque3Node------------------------------------
// A node to prevent unwanted optimizations. Will be optimized only during
// macro nodes expansion.
class Opaque3Node : public Opaque2Node {
int _opt; // what optimization it was used for
public:
enum { RTM_OPT };
Opaque3Node(Compile* C, Node *n, int opt) : Opaque2Node(C, n), _opt(opt) {}
virtual int Opcode() const;
bool rtm_opt() const { return (_opt == RTM_OPT); }
};
//------------------------------ProfileBooleanNode-------------------------------
// A node represents value profile for a boolean during parsing.
// Once parsing is over, the node goes away (during IGVN).
// It is used to override branch frequencies from MDO (see has_injected_profile in parse2.cpp).
class ProfileBooleanNode : public Node {
uint _false_cnt;
uint _true_cnt;
bool _consumed;
bool _delay_removal;
virtual uint hash() const ; // { return NO_HASH; }
virtual uint cmp( const Node &n ) const;
public:
ProfileBooleanNode(Node *n, uint false_cnt, uint true_cnt) : Node(0, n),
_false_cnt(false_cnt), _true_cnt(true_cnt), _delay_removal(true), _consumed(false) {}
uint false_count() const { return _false_cnt; }
uint true_count() const { return _true_cnt; }
void consume() { _consumed = true; }
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual Node *Identity(PhaseTransform *phase);
virtual const Type *bottom_type() const { return TypeInt::BOOL; }
};
//----------------------PartialSubtypeCheckNode--------------------------------
// The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
// array for an instance of the superklass. Set a hidden internal cache on a
// hit (cache is checked with exposed code in gen_subtype_check()). Return
// not zero for a miss or zero for a hit.
class PartialSubtypeCheckNode : public Node {
public:
PartialSubtypeCheckNode(Node* c, Node* sub, Node* super) : Node(c,sub,super) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return TypeRawPtr::BOTTOM; }
virtual uint ideal_reg() const { return Op_RegP; }
};
//
class MoveI2FNode : public Node {
public:
MoveI2FNode( Node *value ) : Node(0,value) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return Type::FLOAT; }
virtual uint ideal_reg() const { return Op_RegF; }
virtual const Type* Value( PhaseTransform *phase ) const;
};
class MoveL2DNode : public Node {
public:
MoveL2DNode( Node *value ) : Node(0,value) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return Type::DOUBLE; }
virtual uint ideal_reg() const { return Op_RegD; }
virtual const Type* Value( PhaseTransform *phase ) const;
};
class MoveF2INode : public Node {
public:
MoveF2INode( Node *value ) : Node(0,value) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return TypeInt::INT; }
virtual uint ideal_reg() const { return Op_RegI; }
virtual const Type* Value( PhaseTransform *phase ) const;
};
class MoveD2LNode : public Node {
public:
MoveD2LNode( Node *value ) : Node(0,value) {}
virtual int Opcode() const;
virtual const Type *bottom_type() const { return TypeLong::LONG; }
virtual uint ideal_reg() const { return Op_RegL; }
virtual const Type* Value( PhaseTransform *phase ) const;
};
//---------- CountBitsNode -----------------------------------------------------
class CountBitsNode : public Node {
public:
CountBitsNode(Node* in1) : Node(0, in1) {}
const Type* bottom_type() const { return TypeInt::INT; }
virtual uint ideal_reg() const { return Op_RegI; }
};
//---------- CountLeadingZerosINode --------------------------------------------
// Count leading zeros (0-bit count starting from MSB) of an integer.
class CountLeadingZerosINode : public CountBitsNode {
public:
CountLeadingZerosINode(Node* in1) : CountBitsNode(in1) {}
virtual int Opcode() const;
virtual const Type* Value(PhaseTransform* phase) const;
};
//---------- CountLeadingZerosLNode --------------------------------------------
// Count leading zeros (0-bit count starting from MSB) of a long.
class CountLeadingZerosLNode : public CountBitsNode {
public:
CountLeadingZerosLNode(Node* in1) : CountBitsNode(in1) {}
virtual int Opcode() const;
virtual const Type* Value(PhaseTransform* phase) const;
};
//---------- CountTrailingZerosINode -------------------------------------------
// Count trailing zeros (0-bit count starting from LSB) of an integer.
class CountTrailingZerosINode : public CountBitsNode {
public:
CountTrailingZerosINode(Node* in1) : CountBitsNode(in1) {}
virtual int Opcode() const;
virtual const Type* Value(PhaseTransform* phase) const;
};
//---------- CountTrailingZerosLNode -------------------------------------------
// Count trailing zeros (0-bit count starting from LSB) of a long.
class CountTrailingZerosLNode : public CountBitsNode {
public:
CountTrailingZerosLNode(Node* in1) : CountBitsNode(in1) {}
virtual int Opcode() const;
virtual const Type* Value(PhaseTransform* phase) const;
};
//---------- PopCountINode -----------------------------------------------------
// Population count (bit count) of an integer.
class PopCountINode : public CountBitsNode {
public:
PopCountINode(Node* in1) : CountBitsNode(in1) {}
virtual int Opcode() const;
};
//---------- PopCountLNode -----------------------------------------------------
// Population count (bit count) of a long.
class PopCountLNode : public CountBitsNode {
public:
PopCountLNode(Node* in1) : CountBitsNode(in1) {}
virtual int Opcode() const;
};
#endif // SHARE_VM_OPTO_CONNODE_HPP