blob: cab865503fa71584b5c739c9ebf7103752cf8aa5 [file] [log] [blame]
/*
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/altHashing.hpp"
#include "classfile/classLoaderData.hpp"
#include "oops/symbol.hpp"
#include "runtime/atomic.inline.hpp"
#include "runtime/os.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
Symbol::Symbol(const u1* name, int length, int refcount) {
_refcount = refcount;
_length = length;
_identity_hash = os::random();
for (int i = 0; i < _length; i++) {
byte_at_put(i, name[i]);
}
}
void* Symbol::operator new(size_t sz, int len, TRAPS) throw() {
int alloc_size = size(len)*HeapWordSize;
address res = (address) AllocateHeap(alloc_size, mtSymbol);
return res;
}
void* Symbol::operator new(size_t sz, int len, Arena* arena, TRAPS) throw() {
int alloc_size = size(len)*HeapWordSize;
address res = (address)arena->Amalloc(alloc_size);
return res;
}
void* Symbol::operator new(size_t sz, int len, ClassLoaderData* loader_data, TRAPS) throw() {
address res;
int alloc_size = size(len)*HeapWordSize;
res = (address) Metaspace::allocate(loader_data, size(len), true,
MetaspaceObj::SymbolType, CHECK_NULL);
return res;
}
void Symbol::operator delete(void *p) {
assert(((Symbol*)p)->refcount() == 0, "should not call this");
FreeHeap(p);
}
// ------------------------------------------------------------------
// Symbol::equals
//
// Compares the symbol with a string of the given length.
bool Symbol::equals(const char* str, int len) const {
int l = utf8_length();
if (l != len) return false;
while (l-- > 0) {
if (str[l] != (char) byte_at(l))
return false;
}
assert(l == -1, "we should be at the beginning");
return true;
}
// ------------------------------------------------------------------
// Symbol::starts_with
//
// Tests if the symbol starts with the specified prefix of the given
// length.
bool Symbol::starts_with(const char* prefix, int len) const {
if (len > utf8_length()) return false;
while (len-- > 0) {
if (prefix[len] != (char) byte_at(len))
return false;
}
assert(len == -1, "we should be at the beginning");
return true;
}
// ------------------------------------------------------------------
// Symbol::index_of
//
// Finds if the given string is a substring of this symbol's utf8 bytes.
// Return -1 on failure. Otherwise return the first index where str occurs.
int Symbol::index_of_at(int i, const char* str, int len) const {
assert(i >= 0 && i <= utf8_length(), "oob");
if (len <= 0) return 0;
char first_char = str[0];
address bytes = (address) ((Symbol*)this)->base();
address limit = bytes + utf8_length() - len; // inclusive limit
address scan = bytes + i;
if (scan > limit)
return -1;
for (; scan <= limit; scan++) {
scan = (address) memchr(scan, first_char, (limit + 1 - scan));
if (scan == NULL)
return -1; // not found
assert(scan >= bytes+i && scan <= limit, "scan oob");
if (memcmp(scan, str, len) == 0)
return (int)(scan - bytes);
}
return -1;
}
char* Symbol::as_C_string(char* buf, int size) const {
if (size > 0) {
int len = MIN2(size - 1, utf8_length());
for (int i = 0; i < len; i++) {
buf[i] = byte_at(i);
}
buf[len] = '\0';
}
return buf;
}
char* Symbol::as_C_string() const {
int len = utf8_length();
char* str = NEW_RESOURCE_ARRAY(char, len + 1);
return as_C_string(str, len + 1);
}
char* Symbol::as_C_string_flexible_buffer(Thread* t,
char* buf, int size) const {
char* str;
int len = utf8_length();
int buf_len = len + 1;
if (size < buf_len) {
str = NEW_RESOURCE_ARRAY(char, buf_len);
} else {
str = buf;
}
return as_C_string(str, buf_len);
}
void Symbol::print_symbol_on(outputStream* st) const {
ResourceMark rm;
st = st ? st : tty;
st->print("%s", as_quoted_ascii());
}
char* Symbol::as_quoted_ascii() const {
const char *ptr = (const char *)&_body[0];
int quoted_length = UTF8::quoted_ascii_length(ptr, utf8_length());
char* result = NEW_RESOURCE_ARRAY(char, quoted_length + 1);
UTF8::as_quoted_ascii(ptr, utf8_length(), result, quoted_length + 1);
return result;
}
jchar* Symbol::as_unicode(int& length) const {
Symbol* this_ptr = (Symbol*)this;
length = UTF8::unicode_length((char*)this_ptr->bytes(), utf8_length());
jchar* result = NEW_RESOURCE_ARRAY(jchar, length);
if (length > 0) {
UTF8::convert_to_unicode((char*)this_ptr->bytes(), result, length);
}
return result;
}
const char* Symbol::as_klass_external_name(char* buf, int size) const {
if (size > 0) {
char* str = as_C_string(buf, size);
int length = (int)strlen(str);
// Turn all '/'s into '.'s (also for array klasses)
for (int index = 0; index < length; index++) {
if (str[index] == '/') {
str[index] = '.';
}
}
return str;
} else {
return buf;
}
}
const char* Symbol::as_klass_external_name() const {
char* str = as_C_string();
int length = (int)strlen(str);
// Turn all '/'s into '.'s (also for array klasses)
for (int index = 0; index < length; index++) {
if (str[index] == '/') {
str[index] = '.';
}
}
return str;
}
// Alternate hashing for unbalanced symbol tables.
unsigned int Symbol::new_hash(juint seed) {
ResourceMark rm;
// Use alternate hashing algorithm on this symbol.
return AltHashing::murmur3_32(seed, (const jbyte*)as_C_string(), utf8_length());
}
void Symbol::increment_refcount() {
// Only increment the refcount if positive. If negative either
// overflow has occurred or it is a permanent symbol in a read only
// shared archive.
if (_refcount >= 0) {
Atomic::inc(&_refcount);
NOT_PRODUCT(Atomic::inc(&_total_count);)
}
}
void Symbol::decrement_refcount() {
if (_refcount >= 0) {
Atomic::dec(&_refcount);
#ifdef ASSERT
if (_refcount < 0) {
print();
assert(false, "reference count underflow for symbol");
}
#endif
}
}
void Symbol::print_on(outputStream* st) const {
if (this == NULL) {
st->print_cr("NULL");
} else {
st->print("Symbol: '");
print_symbol_on(st);
st->print("'");
st->print(" count %d", refcount());
}
}
// The print_value functions are present in all builds, to support the
// disassembler and error reporting.
void Symbol::print_value_on(outputStream* st) const {
if (this == NULL) {
st->print("NULL");
} else {
st->print("'");
for (int i = 0; i < utf8_length(); i++) {
st->print("%c", byte_at(i));
}
st->print("'");
}
}
// SymbolTable prints this in its statistics
NOT_PRODUCT(int Symbol::_total_count = 0;)