blob: bddf14b6fe508771f88a6ffda4a817f612d00190 [file] [log] [blame]
/*
* Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/shared/parGCAllocBuffer.hpp"
#include "memory/sharedHeap.hpp"
#include "oops/arrayOop.hpp"
#include "oops/oop.inline.hpp"
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
ParGCAllocBuffer::ParGCAllocBuffer(size_t desired_plab_sz_) :
_word_sz(desired_plab_sz_), _bottom(NULL), _top(NULL),
_end(NULL), _hard_end(NULL),
_retained(false), _retained_filler(),
_allocated(0), _wasted(0)
{
assert (min_size() > AlignmentReserve, "Inconsistency!");
// arrayOopDesc::header_size depends on command line initialization.
FillerHeaderSize = align_object_size(arrayOopDesc::header_size(T_INT));
AlignmentReserve = oopDesc::header_size() > MinObjAlignment ? FillerHeaderSize : 0;
}
size_t ParGCAllocBuffer::FillerHeaderSize;
// If the minimum object size is greater than MinObjAlignment, we can
// end up with a shard at the end of the buffer that's smaller than
// the smallest object. We can't allow that because the buffer must
// look like it's full of objects when we retire it, so we make
// sure we have enough space for a filler int array object.
size_t ParGCAllocBuffer::AlignmentReserve;
void ParGCAllocBuffer::retire(bool end_of_gc, bool retain) {
assert(!retain || end_of_gc, "Can only retain at GC end.");
if (_retained) {
// If the buffer had been retained shorten the previous filler object.
assert(_retained_filler.end() <= _top, "INVARIANT");
CollectedHeap::fill_with_object(_retained_filler);
// Wasted space book-keeping, otherwise (normally) done in invalidate()
_wasted += _retained_filler.word_size();
_retained = false;
}
assert(!end_of_gc || !_retained, "At this point, end_of_gc ==> !_retained.");
if (_top < _hard_end) {
CollectedHeap::fill_with_object(_top, _hard_end);
if (!retain) {
invalidate();
} else {
// Is there wasted space we'd like to retain for the next GC?
if (pointer_delta(_end, _top) > FillerHeaderSize) {
_retained = true;
_retained_filler = MemRegion(_top, FillerHeaderSize);
_top = _top + FillerHeaderSize;
} else {
invalidate();
}
}
}
}
void ParGCAllocBuffer::flush_stats(PLABStats* stats) {
assert(ResizePLAB, "Wasted work");
stats->add_allocated(_allocated);
stats->add_wasted(_wasted);
stats->add_unused(pointer_delta(_end, _top));
}
// Compute desired plab size and latch result for later
// use. This should be called once at the end of parallel
// scavenge; it clears the sensor accumulators.
void PLABStats::adjust_desired_plab_sz(uint no_of_gc_workers) {
assert(ResizePLAB, "Not set");
assert(is_object_aligned(max_size()) && min_size() <= max_size(),
"PLAB clipping computation may be incorrect");
if (_allocated == 0) {
assert(_unused == 0,
err_msg("Inconsistency in PLAB stats: "
"_allocated: "SIZE_FORMAT", "
"_wasted: "SIZE_FORMAT", "
"_unused: "SIZE_FORMAT", "
"_used : "SIZE_FORMAT,
_allocated, _wasted, _unused, _used));
_allocated = 1;
}
double wasted_frac = (double)_unused/(double)_allocated;
size_t target_refills = (size_t)((wasted_frac*TargetSurvivorRatio)/
TargetPLABWastePct);
if (target_refills == 0) {
target_refills = 1;
}
_used = _allocated - _wasted - _unused;
size_t plab_sz = _used/(target_refills*no_of_gc_workers);
if (PrintPLAB) gclog_or_tty->print(" (plab_sz = %d ", plab_sz);
// Take historical weighted average
_filter.sample(plab_sz);
// Clip from above and below, and align to object boundary
plab_sz = MAX2(min_size(), (size_t)_filter.average());
plab_sz = MIN2(max_size(), plab_sz);
plab_sz = align_object_size(plab_sz);
// Latch the result
if (PrintPLAB) gclog_or_tty->print(" desired_plab_sz = %d) ", plab_sz);
_desired_plab_sz = plab_sz;
// Now clear the accumulators for next round:
// note this needs to be fixed in the case where we
// are retaining across scavenges. FIX ME !!! XXX
_allocated = 0;
_wasted = 0;
_unused = 0;
}
#ifndef PRODUCT
void ParGCAllocBuffer::print() {
gclog_or_tty->print("parGCAllocBuffer: _bottom: %p _top: %p _end: %p _hard_end: %p"
"_retained: %c _retained_filler: [%p,%p)\n",
_bottom, _top, _end, _hard_end,
"FT"[_retained], _retained_filler.start(), _retained_filler.end());
}
#endif // !PRODUCT
const size_t ParGCAllocBufferWithBOT::ChunkSizeInWords =
MIN2(CardTableModRefBS::par_chunk_heapword_alignment(),
((size_t)Generation::GenGrain)/HeapWordSize);
const size_t ParGCAllocBufferWithBOT::ChunkSizeInBytes =
MIN2(CardTableModRefBS::par_chunk_heapword_alignment() * HeapWordSize,
(size_t)Generation::GenGrain);
ParGCAllocBufferWithBOT::ParGCAllocBufferWithBOT(size_t word_sz,
BlockOffsetSharedArray* bsa) :
ParGCAllocBuffer(word_sz),
_bsa(bsa),
_bt(bsa, MemRegion(_bottom, _hard_end)),
_true_end(_hard_end)
{}
// The buffer comes with its own BOT, with a shared (obviously) underlying
// BlockOffsetSharedArray. We manipulate this BOT in the normal way
// as we would for any contiguous space. However, on accasion we
// need to do some buffer surgery at the extremities before we
// start using the body of the buffer for allocations. Such surgery
// (as explained elsewhere) is to prevent allocation on a card that
// is in the process of being walked concurrently by another GC thread.
// When such surgery happens at a point that is far removed (to the
// right of the current allocation point, top), we use the "contig"
// parameter below to directly manipulate the shared array without
// modifying the _next_threshold state in the BOT.
void ParGCAllocBufferWithBOT::fill_region_with_block(MemRegion mr,
bool contig) {
CollectedHeap::fill_with_object(mr);
if (contig) {
_bt.alloc_block(mr.start(), mr.end());
} else {
_bt.BlockOffsetArray::alloc_block(mr.start(), mr.end());
}
}
HeapWord* ParGCAllocBufferWithBOT::allocate_slow(size_t word_sz) {
HeapWord* res = NULL;
if (_true_end > _hard_end) {
assert((HeapWord*)align_size_down(intptr_t(_hard_end),
ChunkSizeInBytes) == _hard_end,
"or else _true_end should be equal to _hard_end");
assert(_retained, "or else _true_end should be equal to _hard_end");
assert(_retained_filler.end() <= _top, "INVARIANT");
CollectedHeap::fill_with_object(_retained_filler);
if (_top < _hard_end) {
fill_region_with_block(MemRegion(_top, _hard_end), true);
}
HeapWord* next_hard_end = MIN2(_true_end, _hard_end + ChunkSizeInWords);
_retained_filler = MemRegion(_hard_end, FillerHeaderSize);
_bt.alloc_block(_retained_filler.start(), _retained_filler.word_size());
_top = _retained_filler.end();
_hard_end = next_hard_end;
_end = _hard_end - AlignmentReserve;
res = ParGCAllocBuffer::allocate(word_sz);
if (res != NULL) {
_bt.alloc_block(res, word_sz);
}
}
return res;
}
void
ParGCAllocBufferWithBOT::undo_allocation(HeapWord* obj, size_t word_sz) {
ParGCAllocBuffer::undo_allocation(obj, word_sz);
// This may back us up beyond the previous threshold, so reset.
_bt.set_region(MemRegion(_top, _hard_end));
_bt.initialize_threshold();
}
void ParGCAllocBufferWithBOT::retire(bool end_of_gc, bool retain) {
assert(!retain || end_of_gc, "Can only retain at GC end.");
if (_retained) {
// We're about to make the retained_filler into a block.
_bt.BlockOffsetArray::alloc_block(_retained_filler.start(),
_retained_filler.end());
}
// Reset _hard_end to _true_end (and update _end)
if (retain && _hard_end != NULL) {
assert(_hard_end <= _true_end, "Invariant.");
_hard_end = _true_end;
_end = MAX2(_top, _hard_end - AlignmentReserve);
assert(_end <= _hard_end, "Invariant.");
}
_true_end = _hard_end;
HeapWord* pre_top = _top;
ParGCAllocBuffer::retire(end_of_gc, retain);
// Now any old _retained_filler is cut back to size, the free part is
// filled with a filler object, and top is past the header of that
// object.
if (retain && _top < _end) {
assert(end_of_gc && retain, "Or else retain should be false.");
// If the lab does not start on a card boundary, we don't want to
// allocate onto that card, since that might lead to concurrent
// allocation and card scanning, which we don't support. So we fill
// the first card with a garbage object.
size_t first_card_index = _bsa->index_for(pre_top);
HeapWord* first_card_start = _bsa->address_for_index(first_card_index);
if (first_card_start < pre_top) {
HeapWord* second_card_start =
_bsa->inc_by_region_size(first_card_start);
// Ensure enough room to fill with the smallest block
second_card_start = MAX2(second_card_start, pre_top + AlignmentReserve);
// If the end is already in the first card, don't go beyond it!
// Or if the remainder is too small for a filler object, gobble it up.
if (_hard_end < second_card_start ||
pointer_delta(_hard_end, second_card_start) < AlignmentReserve) {
second_card_start = _hard_end;
}
if (pre_top < second_card_start) {
MemRegion first_card_suffix(pre_top, second_card_start);
fill_region_with_block(first_card_suffix, true);
}
pre_top = second_card_start;
_top = pre_top;
_end = MAX2(_top, _hard_end - AlignmentReserve);
}
// If the lab does not end on a card boundary, we don't want to
// allocate onto that card, since that might lead to concurrent
// allocation and card scanning, which we don't support. So we fill
// the last card with a garbage object.
size_t last_card_index = _bsa->index_for(_hard_end);
HeapWord* last_card_start = _bsa->address_for_index(last_card_index);
if (last_card_start < _hard_end) {
// Ensure enough room to fill with the smallest block
last_card_start = MIN2(last_card_start, _hard_end - AlignmentReserve);
// If the top is already in the last card, don't go back beyond it!
// Or if the remainder is too small for a filler object, gobble it up.
if (_top > last_card_start ||
pointer_delta(last_card_start, _top) < AlignmentReserve) {
last_card_start = _top;
}
if (last_card_start < _hard_end) {
MemRegion last_card_prefix(last_card_start, _hard_end);
fill_region_with_block(last_card_prefix, false);
}
_hard_end = last_card_start;
_end = MAX2(_top, _hard_end - AlignmentReserve);
_true_end = _hard_end;
assert(_end <= _hard_end, "Invariant.");
}
// At this point:
// 1) we had a filler object from the original top to hard_end.
// 2) We've filled in any partial cards at the front and back.
if (pre_top < _hard_end) {
// Now we can reset the _bt to do allocation in the given area.
MemRegion new_filler(pre_top, _hard_end);
fill_region_with_block(new_filler, false);
_top = pre_top + ParGCAllocBuffer::FillerHeaderSize;
// If there's no space left, don't retain.
if (_top >= _end) {
_retained = false;
invalidate();
return;
}
_retained_filler = MemRegion(pre_top, _top);
_bt.set_region(MemRegion(_top, _hard_end));
_bt.initialize_threshold();
assert(_bt.threshold() > _top, "initialize_threshold failed!");
// There may be other reasons for queries into the middle of the
// filler object. When such queries are done in parallel with
// allocation, bad things can happen, if the query involves object
// iteration. So we ensure that such queries do not involve object
// iteration, by putting another filler object on the boundaries of
// such queries. One such is the object spanning a parallel card
// chunk boundary.
// "chunk_boundary" is the address of the first chunk boundary less
// than "hard_end".
HeapWord* chunk_boundary =
(HeapWord*)align_size_down(intptr_t(_hard_end-1), ChunkSizeInBytes);
assert(chunk_boundary < _hard_end, "Or else above did not work.");
assert(pointer_delta(_true_end, chunk_boundary) >= AlignmentReserve,
"Consequence of last card handling above.");
if (_top <= chunk_boundary) {
assert(_true_end == _hard_end, "Invariant.");
while (_top <= chunk_boundary) {
assert(pointer_delta(_hard_end, chunk_boundary) >= AlignmentReserve,
"Consequence of last card handling above.");
_bt.BlockOffsetArray::alloc_block(chunk_boundary, _hard_end);
CollectedHeap::fill_with_object(chunk_boundary, _hard_end);
_hard_end = chunk_boundary;
chunk_boundary -= ChunkSizeInWords;
}
_end = _hard_end - AlignmentReserve;
assert(_top <= _end, "Invariant.");
// Now reset the initial filler chunk so it doesn't overlap with
// the one(s) inserted above.
MemRegion new_filler(pre_top, _hard_end);
fill_region_with_block(new_filler, false);
}
} else {
_retained = false;
invalidate();
}
} else {
assert(!end_of_gc ||
(!_retained && _true_end == _hard_end), "Checking.");
}
assert(_end <= _hard_end, "Invariant.");
assert(_top < _end || _top == _hard_end, "Invariant");
}