blob: 12d0d450bfc5003d94f1cc4fb577fc034ac186a9 [file] [log] [blame]
/*
* Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
#include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
#include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
#include "gc_implementation/parallelScavenge/psOldGen.hpp"
#include "gc_implementation/shared/spaceDecorator.hpp"
#include "memory/cardTableModRefBS.hpp"
#include "memory/gcLocker.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/java.hpp"
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
inline const char* PSOldGen::select_name() {
return UseParallelOldGC ? "ParOldGen" : "PSOldGen";
}
PSOldGen::PSOldGen(ReservedSpace rs, size_t alignment,
size_t initial_size, size_t min_size, size_t max_size,
const char* perf_data_name, int level):
_name(select_name()), _init_gen_size(initial_size), _min_gen_size(min_size),
_max_gen_size(max_size)
{
initialize(rs, alignment, perf_data_name, level);
}
PSOldGen::PSOldGen(size_t initial_size,
size_t min_size, size_t max_size,
const char* perf_data_name, int level):
_name(select_name()), _init_gen_size(initial_size), _min_gen_size(min_size),
_max_gen_size(max_size)
{}
void PSOldGen::initialize(ReservedSpace rs, size_t alignment,
const char* perf_data_name, int level) {
initialize_virtual_space(rs, alignment);
initialize_work(perf_data_name, level);
// The old gen can grow to gen_size_limit(). _reserve reflects only
// the current maximum that can be committed.
assert(_reserved.byte_size() <= gen_size_limit(), "Consistency check");
initialize_performance_counters(perf_data_name, level);
}
void PSOldGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {
_virtual_space = new PSVirtualSpace(rs, alignment);
if (!_virtual_space->expand_by(_init_gen_size)) {
vm_exit_during_initialization("Could not reserve enough space for "
"object heap");
}
}
void PSOldGen::initialize_work(const char* perf_data_name, int level) {
//
// Basic memory initialization
//
MemRegion limit_reserved((HeapWord*)virtual_space()->low_boundary(),
heap_word_size(_max_gen_size));
assert(limit_reserved.byte_size() == _max_gen_size,
"word vs bytes confusion");
//
// Object start stuff
//
start_array()->initialize(limit_reserved);
_reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
(HeapWord*)virtual_space()->high_boundary());
//
// Card table stuff
//
MemRegion cmr((HeapWord*)virtual_space()->low(),
(HeapWord*)virtual_space()->high());
if (ZapUnusedHeapArea) {
// Mangle newly committed space immediately rather than
// waiting for the initialization of the space even though
// mangling is related to spaces. Doing it here eliminates
// the need to carry along information that a complete mangling
// (bottom to end) needs to be done.
SpaceMangler::mangle_region(cmr);
}
Universe::heap()->barrier_set()->resize_covered_region(cmr);
CardTableModRefBS* _ct = (CardTableModRefBS*)Universe::heap()->barrier_set();
assert (_ct->kind() == BarrierSet::CardTableModRef, "Sanity");
// Verify that the start and end of this generation is the start of a card.
// If this wasn't true, a single card could span more than one generation,
// which would cause problems when we commit/uncommit memory, and when we
// clear and dirty cards.
guarantee(_ct->is_card_aligned(_reserved.start()), "generation must be card aligned");
if (_reserved.end() != Universe::heap()->reserved_region().end()) {
// Don't check at the very end of the heap as we'll assert that we're probing off
// the end if we try.
guarantee(_ct->is_card_aligned(_reserved.end()), "generation must be card aligned");
}
//
// ObjectSpace stuff
//
_object_space = new MutableSpace(virtual_space()->alignment());
if (_object_space == NULL)
vm_exit_during_initialization("Could not allocate an old gen space");
object_space()->initialize(cmr,
SpaceDecorator::Clear,
SpaceDecorator::Mangle);
_object_mark_sweep = new PSMarkSweepDecorator(_object_space, start_array(), MarkSweepDeadRatio);
if (_object_mark_sweep == NULL)
vm_exit_during_initialization("Could not complete allocation of old generation");
// Update the start_array
start_array()->set_covered_region(cmr);
}
void PSOldGen::initialize_performance_counters(const char* perf_data_name, int level) {
// Generation Counters, generation 'level', 1 subspace
_gen_counters = new PSGenerationCounters(perf_data_name, level, 1,
virtual_space());
_space_counters = new SpaceCounters(perf_data_name, 0,
virtual_space()->reserved_size(),
_object_space, _gen_counters);
}
// Assume that the generation has been allocated if its
// reserved size is not 0.
bool PSOldGen::is_allocated() {
return virtual_space()->reserved_size() != 0;
}
void PSOldGen::precompact() {
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
// Reset start array first.
start_array()->reset();
object_mark_sweep()->precompact();
// Now compact the young gen
heap->young_gen()->precompact();
}
void PSOldGen::adjust_pointers() {
object_mark_sweep()->adjust_pointers();
}
void PSOldGen::compact() {
object_mark_sweep()->compact(ZapUnusedHeapArea);
}
size_t PSOldGen::contiguous_available() const {
return object_space()->free_in_bytes() + virtual_space()->uncommitted_size();
}
// Allocation. We report all successful allocations to the size policy
// Note that the perm gen does not use this method, and should not!
HeapWord* PSOldGen::allocate(size_t word_size) {
assert_locked_or_safepoint(Heap_lock);
HeapWord* res = allocate_noexpand(word_size);
if (res == NULL) {
res = expand_and_allocate(word_size);
}
// Allocations in the old generation need to be reported
if (res != NULL) {
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
heap->size_policy()->tenured_allocation(word_size);
}
return res;
}
HeapWord* PSOldGen::expand_and_allocate(size_t word_size) {
expand(word_size*HeapWordSize);
if (GCExpandToAllocateDelayMillis > 0) {
os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
}
return allocate_noexpand(word_size);
}
HeapWord* PSOldGen::expand_and_cas_allocate(size_t word_size) {
expand(word_size*HeapWordSize);
if (GCExpandToAllocateDelayMillis > 0) {
os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
}
return cas_allocate_noexpand(word_size);
}
void PSOldGen::expand(size_t bytes) {
if (bytes == 0) {
return;
}
MutexLocker x(ExpandHeap_lock);
const size_t alignment = virtual_space()->alignment();
size_t aligned_bytes = align_size_up(bytes, alignment);
size_t aligned_expand_bytes = align_size_up(MinHeapDeltaBytes, alignment);
if (UseNUMA) {
// With NUMA we use round-robin page allocation for the old gen. Expand by at least
// providing a page per lgroup. Alignment is larger or equal to the page size.
aligned_expand_bytes = MAX2(aligned_expand_bytes, alignment * os::numa_get_groups_num());
}
if (aligned_bytes == 0){
// The alignment caused the number of bytes to wrap. An expand_by(0) will
// return true with the implication that and expansion was done when it
// was not. A call to expand implies a best effort to expand by "bytes"
// but not a guarantee. Align down to give a best effort. This is likely
// the most that the generation can expand since it has some capacity to
// start with.
aligned_bytes = align_size_down(bytes, alignment);
}
bool success = false;
if (aligned_expand_bytes > aligned_bytes) {
success = expand_by(aligned_expand_bytes);
}
if (!success) {
success = expand_by(aligned_bytes);
}
if (!success) {
success = expand_to_reserved();
}
if (PrintGC && Verbose) {
if (success && GC_locker::is_active_and_needs_gc()) {
gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
}
}
}
bool PSOldGen::expand_by(size_t bytes) {
assert_lock_strong(ExpandHeap_lock);
assert_locked_or_safepoint(Heap_lock);
if (bytes == 0) {
return true; // That's what virtual_space()->expand_by(0) would return
}
bool result = virtual_space()->expand_by(bytes);
if (result) {
if (ZapUnusedHeapArea) {
// We need to mangle the newly expanded area. The memregion spans
// end -> new_end, we assume that top -> end is already mangled.
// Do the mangling before post_resize() is called because
// the space is available for allocation after post_resize();
HeapWord* const virtual_space_high = (HeapWord*) virtual_space()->high();
assert(object_space()->end() < virtual_space_high,
"Should be true before post_resize()");
MemRegion mangle_region(object_space()->end(), virtual_space_high);
// Note that the object space has not yet been updated to
// coincede with the new underlying virtual space.
SpaceMangler::mangle_region(mangle_region);
}
post_resize();
if (UsePerfData) {
_space_counters->update_capacity();
_gen_counters->update_all();
}
}
if (result && Verbose && PrintGC) {
size_t new_mem_size = virtual_space()->committed_size();
size_t old_mem_size = new_mem_size - bytes;
gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by "
SIZE_FORMAT "K to "
SIZE_FORMAT "K",
name(), old_mem_size/K, bytes/K, new_mem_size/K);
}
return result;
}
bool PSOldGen::expand_to_reserved() {
assert_lock_strong(ExpandHeap_lock);
assert_locked_or_safepoint(Heap_lock);
bool result = true;
const size_t remaining_bytes = virtual_space()->uncommitted_size();
if (remaining_bytes > 0) {
result = expand_by(remaining_bytes);
DEBUG_ONLY(if (!result) warning("grow to reserve failed"));
}
return result;
}
void PSOldGen::shrink(size_t bytes) {
assert_lock_strong(ExpandHeap_lock);
assert_locked_or_safepoint(Heap_lock);
size_t size = align_size_down(bytes, virtual_space()->alignment());
if (size > 0) {
assert_lock_strong(ExpandHeap_lock);
virtual_space()->shrink_by(bytes);
post_resize();
if (Verbose && PrintGC) {
size_t new_mem_size = virtual_space()->committed_size();
size_t old_mem_size = new_mem_size + bytes;
gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by "
SIZE_FORMAT "K to "
SIZE_FORMAT "K",
name(), old_mem_size/K, bytes/K, new_mem_size/K);
}
}
}
void PSOldGen::resize(size_t desired_free_space) {
const size_t alignment = virtual_space()->alignment();
const size_t size_before = virtual_space()->committed_size();
size_t new_size = used_in_bytes() + desired_free_space;
if (new_size < used_in_bytes()) {
// Overflowed the addition.
new_size = gen_size_limit();
}
// Adjust according to our min and max
new_size = MAX2(MIN2(new_size, gen_size_limit()), min_gen_size());
assert(gen_size_limit() >= reserved().byte_size(), "max new size problem?");
new_size = align_size_up(new_size, alignment);
const size_t current_size = capacity_in_bytes();
if (PrintAdaptiveSizePolicy && Verbose) {
gclog_or_tty->print_cr("AdaptiveSizePolicy::old generation size: "
"desired free: " SIZE_FORMAT " used: " SIZE_FORMAT
" new size: " SIZE_FORMAT " current size " SIZE_FORMAT
" gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
desired_free_space, used_in_bytes(), new_size, current_size,
gen_size_limit(), min_gen_size());
}
if (new_size == current_size) {
// No change requested
return;
}
if (new_size > current_size) {
size_t change_bytes = new_size - current_size;
expand(change_bytes);
} else {
size_t change_bytes = current_size - new_size;
// shrink doesn't grab this lock, expand does. Is that right?
MutexLocker x(ExpandHeap_lock);
shrink(change_bytes);
}
if (PrintAdaptiveSizePolicy) {
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
gclog_or_tty->print_cr("AdaptiveSizePolicy::old generation size: "
"collection: %d "
"(" SIZE_FORMAT ") -> (" SIZE_FORMAT ") ",
heap->total_collections(),
size_before, virtual_space()->committed_size());
}
}
// NOTE! We need to be careful about resizing. During a GC, multiple
// allocators may be active during heap expansion. If we allow the
// heap resizing to become visible before we have correctly resized
// all heap related data structures, we may cause program failures.
void PSOldGen::post_resize() {
// First construct a memregion representing the new size
MemRegion new_memregion((HeapWord*)virtual_space()->low(),
(HeapWord*)virtual_space()->high());
size_t new_word_size = new_memregion.word_size();
start_array()->set_covered_region(new_memregion);
Universe::heap()->barrier_set()->resize_covered_region(new_memregion);
// ALWAYS do this last!!
object_space()->initialize(new_memregion,
SpaceDecorator::DontClear,
SpaceDecorator::DontMangle);
assert(new_word_size == heap_word_size(object_space()->capacity_in_bytes()),
"Sanity");
}
size_t PSOldGen::gen_size_limit() {
return _max_gen_size;
}
void PSOldGen::reset_after_change() {
ShouldNotReachHere();
return;
}
size_t PSOldGen::available_for_expansion() {
ShouldNotReachHere();
return 0;
}
size_t PSOldGen::available_for_contraction() {
ShouldNotReachHere();
return 0;
}
void PSOldGen::print() const { print_on(tty);}
void PSOldGen::print_on(outputStream* st) const {
st->print(" %-15s", name());
if (PrintGCDetails && Verbose) {
st->print(" total " SIZE_FORMAT ", used " SIZE_FORMAT,
capacity_in_bytes(), used_in_bytes());
} else {
st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
capacity_in_bytes()/K, used_in_bytes()/K);
}
st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
virtual_space()->low_boundary(),
virtual_space()->high(),
virtual_space()->high_boundary());
st->print(" object"); object_space()->print_on(st);
}
void PSOldGen::print_used_change(size_t prev_used) const {
gclog_or_tty->print(" [%s:", name());
gclog_or_tty->print(" " SIZE_FORMAT "K"
"->" SIZE_FORMAT "K"
"(" SIZE_FORMAT "K)",
prev_used / K, used_in_bytes() / K,
capacity_in_bytes() / K);
gclog_or_tty->print("]");
}
void PSOldGen::update_counters() {
if (UsePerfData) {
_space_counters->update_all();
_gen_counters->update_all();
}
}
#ifndef PRODUCT
void PSOldGen::space_invariants() {
assert(object_space()->end() == (HeapWord*) virtual_space()->high(),
"Space invariant");
assert(object_space()->bottom() == (HeapWord*) virtual_space()->low(),
"Space invariant");
assert(virtual_space()->low_boundary() <= virtual_space()->low(),
"Space invariant");
assert(virtual_space()->high_boundary() >= virtual_space()->high(),
"Space invariant");
assert(virtual_space()->low_boundary() == (char*) _reserved.start(),
"Space invariant");
assert(virtual_space()->high_boundary() == (char*) _reserved.end(),
"Space invariant");
assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
"Space invariant");
}
#endif
void PSOldGen::verify() {
object_space()->verify();
}
class VerifyObjectStartArrayClosure : public ObjectClosure {
PSOldGen* _gen;
ObjectStartArray* _start_array;
public:
VerifyObjectStartArrayClosure(PSOldGen* gen, ObjectStartArray* start_array) :
_gen(gen), _start_array(start_array) { }
virtual void do_object(oop obj) {
HeapWord* test_addr = (HeapWord*)obj + 1;
guarantee(_start_array->object_start(test_addr) == (HeapWord*)obj, "ObjectStartArray cannot find start of object");
guarantee(_start_array->is_block_allocated((HeapWord*)obj), "ObjectStartArray missing block allocation");
}
};
void PSOldGen::verify_object_start_array() {
VerifyObjectStartArrayClosure check( this, &_start_array );
object_iterate(&check);
}
#ifndef PRODUCT
void PSOldGen::record_spaces_top() {
assert(ZapUnusedHeapArea, "Not mangling unused space");
object_space()->set_top_for_allocations();
}
#endif