blob: 5173ff94ece5ea422d84d5d41af90e2965cbf65e [file] [log] [blame]
/*
* Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP
#define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP
#include "gc_implementation/parallelScavenge/generationSizer.hpp"
#include "gc_implementation/parallelScavenge/objectStartArray.hpp"
#include "gc_implementation/parallelScavenge/psGCAdaptivePolicyCounters.hpp"
#include "gc_implementation/parallelScavenge/psOldGen.hpp"
#include "gc_implementation/parallelScavenge/psYoungGen.hpp"
#include "gc_implementation/shared/gcPolicyCounters.hpp"
#include "gc_implementation/shared/gcWhen.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "memory/collectorPolicy.hpp"
#include "utilities/ostream.hpp"
class AdjoiningGenerations;
class GCHeapSummary;
class GCTaskManager;
class PSAdaptiveSizePolicy;
class PSHeapSummary;
class ParallelScavengeHeap : public CollectedHeap {
friend class VMStructs;
private:
static PSYoungGen* _young_gen;
static PSOldGen* _old_gen;
// Sizing policy for entire heap
static PSAdaptiveSizePolicy* _size_policy;
static PSGCAdaptivePolicyCounters* _gc_policy_counters;
static ParallelScavengeHeap* _psh;
GenerationSizer* _collector_policy;
// Collection of generations that are adjacent in the
// space reserved for the heap.
AdjoiningGenerations* _gens;
unsigned int _death_march_count;
// The task manager
static GCTaskManager* _gc_task_manager;
void trace_heap(GCWhen::Type when, GCTracer* tracer);
protected:
static inline size_t total_invocations();
HeapWord* allocate_new_tlab(size_t size);
inline bool should_alloc_in_eden(size_t size) const;
inline void death_march_check(HeapWord* const result, size_t size);
HeapWord* mem_allocate_old_gen(size_t size);
public:
ParallelScavengeHeap() : CollectedHeap(), _death_march_count(0) { }
// For use by VM operations
enum CollectionType {
Scavenge,
MarkSweep
};
ParallelScavengeHeap::Name kind() const {
return CollectedHeap::ParallelScavengeHeap;
}
virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) _collector_policy; }
static PSYoungGen* young_gen() { return _young_gen; }
static PSOldGen* old_gen() { return _old_gen; }
virtual PSAdaptiveSizePolicy* size_policy() { return _size_policy; }
static PSGCAdaptivePolicyCounters* gc_policy_counters() { return _gc_policy_counters; }
static ParallelScavengeHeap* heap();
static GCTaskManager* const gc_task_manager() { return _gc_task_manager; }
AdjoiningGenerations* gens() { return _gens; }
// Returns JNI_OK on success
virtual jint initialize();
void post_initialize();
void update_counters();
// The alignment used for the various areas
size_t space_alignment() { return _collector_policy->space_alignment(); }
size_t generation_alignment() { return _collector_policy->gen_alignment(); }
// Return the (conservative) maximum heap alignment
static size_t conservative_max_heap_alignment() {
return CollectorPolicy::compute_heap_alignment();
}
size_t capacity() const;
size_t used() const;
// Return "true" if all generations have reached the
// maximal committed limit that they can reach, without a garbage
// collection.
virtual bool is_maximal_no_gc() const;
// Return true if the reference points to an object that
// can be moved in a partial collection. For currently implemented
// generational collectors that means during a collection of
// the young gen.
virtual bool is_scavengable(const void* addr);
// Does this heap support heap inspection? (+PrintClassHistogram)
bool supports_heap_inspection() const { return true; }
size_t max_capacity() const;
// Whether p is in the allocated part of the heap
bool is_in(const void* p) const;
bool is_in_reserved(const void* p) const;
#ifdef ASSERT
virtual bool is_in_partial_collection(const void *p);
#endif
bool is_in_young(oop p); // reserved part
bool is_in_old(oop p); // reserved part
// Memory allocation. "gc_time_limit_was_exceeded" will
// be set to true if the adaptive size policy determine that
// an excessive amount of time is being spent doing collections
// and caused a NULL to be returned. If a NULL is not returned,
// "gc_time_limit_was_exceeded" has an undefined meaning.
HeapWord* mem_allocate(size_t size, bool* gc_overhead_limit_was_exceeded);
// Allocation attempt(s) during a safepoint. It should never be called
// to allocate a new TLAB as this allocation might be satisfied out
// of the old generation.
HeapWord* failed_mem_allocate(size_t size);
// Support for System.gc()
void collect(GCCause::Cause cause);
// These also should be called by the vm thread at a safepoint (e.g., from a
// VM operation).
//
// The first collects the young generation only, unless the scavenge fails; it
// will then attempt a full gc. The second collects the entire heap; if
// maximum_compaction is true, it will compact everything and clear all soft
// references.
inline void invoke_scavenge();
// Perform a full collection
virtual void do_full_collection(bool clear_all_soft_refs);
bool supports_inline_contig_alloc() const { return !UseNUMA; }
HeapWord** top_addr() const { return !UseNUMA ? young_gen()->top_addr() : (HeapWord**)-1; }
HeapWord** end_addr() const { return !UseNUMA ? young_gen()->end_addr() : (HeapWord**)-1; }
void ensure_parsability(bool retire_tlabs);
void accumulate_statistics_all_tlabs();
void resize_all_tlabs();
bool supports_tlab_allocation() const { return true; }
size_t tlab_capacity(Thread* thr) const;
size_t tlab_used(Thread* thr) const;
size_t unsafe_max_tlab_alloc(Thread* thr) const;
// Can a compiler initialize a new object without store barriers?
// This permission only extends from the creation of a new object
// via a TLAB up to the first subsequent safepoint.
virtual bool can_elide_tlab_store_barriers() const {
return true;
}
virtual bool card_mark_must_follow_store() const {
return false;
}
// Return true if we don't we need a store barrier for
// initializing stores to an object at this address.
virtual bool can_elide_initializing_store_barrier(oop new_obj);
void oop_iterate(ExtendedOopClosure* cl);
void object_iterate(ObjectClosure* cl);
void safe_object_iterate(ObjectClosure* cl) { object_iterate(cl); }
HeapWord* block_start(const void* addr) const;
size_t block_size(const HeapWord* addr) const;
bool block_is_obj(const HeapWord* addr) const;
jlong millis_since_last_gc();
void prepare_for_verify();
PSHeapSummary create_ps_heap_summary();
virtual void print_on(outputStream* st) const;
virtual void print_on_error(outputStream* st) const;
virtual void print_gc_threads_on(outputStream* st) const;
virtual void gc_threads_do(ThreadClosure* tc) const;
virtual void print_tracing_info() const;
void verify(bool silent, VerifyOption option /* ignored */);
void print_heap_change(size_t prev_used);
// Resize the young generation. The reserved space for the
// generation may be expanded in preparation for the resize.
void resize_young_gen(size_t eden_size, size_t survivor_size);
// Resize the old generation. The reserved space for the
// generation may be expanded in preparation for the resize.
void resize_old_gen(size_t desired_free_space);
// Save the tops of the spaces in all generations
void record_gen_tops_before_GC() PRODUCT_RETURN;
// Mangle the unused parts of all spaces in the heap
void gen_mangle_unused_area() PRODUCT_RETURN;
// Call these in sequential code around the processing of strong roots.
class ParStrongRootsScope : public MarkingCodeBlobClosure::MarkScope {
public:
ParStrongRootsScope();
~ParStrongRootsScope();
};
};
#endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP