blob: 4dda50361343bd4e01d1efaece3e9a7fc0750858 [file] [log] [blame]
/*
* Copyright (c) 2002, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
#include "gc_implementation/parallelScavenge/gcTaskThread.hpp"
#include "gc_implementation/shared/adaptiveSizePolicy.hpp"
#include "memory/allocation.hpp"
#include "memory/allocation.inline.hpp"
#include "runtime/mutex.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/orderAccess.inline.hpp"
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
//
// GCTask
//
const char* GCTask::Kind::to_string(kind value) {
const char* result = "unknown GCTask kind";
switch (value) {
default:
result = "unknown GCTask kind";
break;
case unknown_task:
result = "unknown task";
break;
case ordinary_task:
result = "ordinary task";
break;
case barrier_task:
result = "barrier task";
break;
case noop_task:
result = "noop task";
break;
case idle_task:
result = "idle task";
break;
}
return result;
};
GCTask::GCTask() :
_kind(Kind::ordinary_task),
_affinity(GCTaskManager::sentinel_worker()){
initialize();
}
GCTask::GCTask(Kind::kind kind) :
_kind(kind),
_affinity(GCTaskManager::sentinel_worker()) {
initialize();
}
GCTask::GCTask(uint affinity) :
_kind(Kind::ordinary_task),
_affinity(affinity) {
initialize();
}
GCTask::GCTask(Kind::kind kind, uint affinity) :
_kind(kind),
_affinity(affinity) {
initialize();
}
void GCTask::initialize() {
_older = NULL;
_newer = NULL;
}
void GCTask::destruct() {
assert(older() == NULL, "shouldn't have an older task");
assert(newer() == NULL, "shouldn't have a newer task");
// Nothing to do.
}
NOT_PRODUCT(
void GCTask::print(const char* message) const {
tty->print(INTPTR_FORMAT " <- " INTPTR_FORMAT "(%u) -> " INTPTR_FORMAT,
newer(), this, affinity(), older());
}
)
//
// GCTaskQueue
//
GCTaskQueue* GCTaskQueue::create() {
GCTaskQueue* result = new GCTaskQueue(false);
if (TraceGCTaskQueue) {
tty->print_cr("GCTaskQueue::create()"
" returns " INTPTR_FORMAT, result);
}
return result;
}
GCTaskQueue* GCTaskQueue::create_on_c_heap() {
GCTaskQueue* result = new(ResourceObj::C_HEAP, mtGC) GCTaskQueue(true);
if (TraceGCTaskQueue) {
tty->print_cr("GCTaskQueue::create_on_c_heap()"
" returns " INTPTR_FORMAT,
result);
}
return result;
}
GCTaskQueue::GCTaskQueue(bool on_c_heap) :
_is_c_heap_obj(on_c_heap) {
initialize();
if (TraceGCTaskQueue) {
tty->print_cr("[" INTPTR_FORMAT "]"
" GCTaskQueue::GCTaskQueue() constructor",
this);
}
}
void GCTaskQueue::destruct() {
// Nothing to do.
}
void GCTaskQueue::destroy(GCTaskQueue* that) {
if (TraceGCTaskQueue) {
tty->print_cr("[" INTPTR_FORMAT "]"
" GCTaskQueue::destroy()"
" is_c_heap_obj: %s",
that,
that->is_c_heap_obj() ? "true" : "false");
}
// That instance may have been allocated as a CHeapObj,
// in which case we have to free it explicitly.
if (that != NULL) {
that->destruct();
assert(that->is_empty(), "should be empty");
if (that->is_c_heap_obj()) {
FreeHeap(that);
}
}
}
void GCTaskQueue::initialize() {
set_insert_end(NULL);
set_remove_end(NULL);
set_length(0);
}
// Enqueue one task.
void GCTaskQueue::enqueue(GCTask* task) {
if (TraceGCTaskQueue) {
tty->print_cr("[" INTPTR_FORMAT "]"
" GCTaskQueue::enqueue(task: "
INTPTR_FORMAT ")",
this, task);
print("before:");
}
assert(task != NULL, "shouldn't have null task");
assert(task->older() == NULL, "shouldn't be on queue");
assert(task->newer() == NULL, "shouldn't be on queue");
task->set_newer(NULL);
task->set_older(insert_end());
if (is_empty()) {
set_remove_end(task);
} else {
insert_end()->set_newer(task);
}
set_insert_end(task);
increment_length();
verify_length();
if (TraceGCTaskQueue) {
print("after:");
}
}
// Enqueue a whole list of tasks. Empties the argument list.
void GCTaskQueue::enqueue(GCTaskQueue* list) {
if (TraceGCTaskQueue) {
tty->print_cr("[" INTPTR_FORMAT "]"
" GCTaskQueue::enqueue(list: "
INTPTR_FORMAT ")",
this, list);
print("before:");
list->print("list:");
}
if (list->is_empty()) {
// Enqueuing the empty list: nothing to do.
return;
}
uint list_length = list->length();
if (is_empty()) {
// Enqueuing to empty list: just acquire elements.
set_insert_end(list->insert_end());
set_remove_end(list->remove_end());
set_length(list_length);
} else {
// Prepend argument list to our queue.
list->remove_end()->set_older(insert_end());
insert_end()->set_newer(list->remove_end());
set_insert_end(list->insert_end());
set_length(length() + list_length);
// empty the argument list.
}
list->initialize();
if (TraceGCTaskQueue) {
print("after:");
list->print("list:");
}
verify_length();
}
// Dequeue one task.
GCTask* GCTaskQueue::dequeue() {
if (TraceGCTaskQueue) {
tty->print_cr("[" INTPTR_FORMAT "]"
" GCTaskQueue::dequeue()", this);
print("before:");
}
assert(!is_empty(), "shouldn't dequeue from empty list");
GCTask* result = remove();
assert(result != NULL, "shouldn't have NULL task");
if (TraceGCTaskQueue) {
tty->print_cr(" return: " INTPTR_FORMAT, result);
print("after:");
}
return result;
}
// Dequeue one task, preferring one with affinity.
GCTask* GCTaskQueue::dequeue(uint affinity) {
if (TraceGCTaskQueue) {
tty->print_cr("[" INTPTR_FORMAT "]"
" GCTaskQueue::dequeue(%u)", this, affinity);
print("before:");
}
assert(!is_empty(), "shouldn't dequeue from empty list");
// Look down to the next barrier for a task with this affinity.
GCTask* result = NULL;
for (GCTask* element = remove_end();
element != NULL;
element = element->newer()) {
if (element->is_barrier_task()) {
// Don't consider barrier tasks, nor past them.
result = NULL;
break;
}
if (element->affinity() == affinity) {
result = remove(element);
break;
}
}
// If we didn't find anything with affinity, just take the next task.
if (result == NULL) {
result = remove();
}
if (TraceGCTaskQueue) {
tty->print_cr(" return: " INTPTR_FORMAT, result);
print("after:");
}
return result;
}
GCTask* GCTaskQueue::remove() {
// Dequeue from remove end.
GCTask* result = remove_end();
assert(result != NULL, "shouldn't have null task");
assert(result->older() == NULL, "not the remove_end");
set_remove_end(result->newer());
if (remove_end() == NULL) {
assert(insert_end() == result, "not a singleton");
set_insert_end(NULL);
} else {
remove_end()->set_older(NULL);
}
result->set_newer(NULL);
decrement_length();
assert(result->newer() == NULL, "shouldn't be on queue");
assert(result->older() == NULL, "shouldn't be on queue");
verify_length();
return result;
}
GCTask* GCTaskQueue::remove(GCTask* task) {
// This is slightly more work, and has slightly fewer asserts
// than removing from the remove end.
assert(task != NULL, "shouldn't have null task");
GCTask* result = task;
if (result->newer() != NULL) {
result->newer()->set_older(result->older());
} else {
assert(insert_end() == result, "not youngest");
set_insert_end(result->older());
}
if (result->older() != NULL) {
result->older()->set_newer(result->newer());
} else {
assert(remove_end() == result, "not oldest");
set_remove_end(result->newer());
}
result->set_newer(NULL);
result->set_older(NULL);
decrement_length();
verify_length();
return result;
}
NOT_PRODUCT(
// Count the elements in the queue and verify the length against
// that count.
void GCTaskQueue::verify_length() const {
uint count = 0;
for (GCTask* element = insert_end();
element != NULL;
element = element->older()) {
count++;
}
assert(count == length(), "Length does not match queue");
}
void GCTaskQueue::print(const char* message) const {
tty->print_cr("[" INTPTR_FORMAT "] GCTaskQueue:"
" insert_end: " INTPTR_FORMAT
" remove_end: " INTPTR_FORMAT
" length: %d"
" %s",
this, insert_end(), remove_end(), length(), message);
uint count = 0;
for (GCTask* element = insert_end();
element != NULL;
element = element->older()) {
element->print(" ");
count++;
tty->cr();
}
tty->print("Total tasks: %d", count);
}
)
//
// SynchronizedGCTaskQueue
//
SynchronizedGCTaskQueue::SynchronizedGCTaskQueue(GCTaskQueue* queue_arg,
Monitor * lock_arg) :
_unsynchronized_queue(queue_arg),
_lock(lock_arg) {
assert(unsynchronized_queue() != NULL, "null queue");
assert(lock() != NULL, "null lock");
}
SynchronizedGCTaskQueue::~SynchronizedGCTaskQueue() {
// Nothing to do.
}
//
// GCTaskManager
//
GCTaskManager::GCTaskManager(uint workers) :
_workers(workers),
_active_workers(0),
_idle_workers(0),
_ndc(NULL) {
initialize();
}
GCTaskManager::GCTaskManager(uint workers, NotifyDoneClosure* ndc) :
_workers(workers),
_active_workers(0),
_idle_workers(0),
_ndc(ndc) {
initialize();
}
void GCTaskManager::initialize() {
if (TraceGCTaskManager) {
tty->print_cr("GCTaskManager::initialize: workers: %u", workers());
}
assert(workers() != 0, "no workers");
_monitor = new Monitor(Mutex::barrier, // rank
"GCTaskManager monitor", // name
Mutex::_allow_vm_block_flag); // allow_vm_block
// The queue for the GCTaskManager must be a CHeapObj.
GCTaskQueue* unsynchronized_queue = GCTaskQueue::create_on_c_heap();
_queue = SynchronizedGCTaskQueue::create(unsynchronized_queue, lock());
_noop_task = NoopGCTask::create_on_c_heap();
_idle_inactive_task = WaitForBarrierGCTask::create_on_c_heap();
_resource_flag = NEW_C_HEAP_ARRAY(bool, workers(), mtGC);
{
// Set up worker threads.
// Distribute the workers among the available processors,
// unless we were told not to, or if the os doesn't want to.
uint* processor_assignment = NEW_C_HEAP_ARRAY(uint, workers(), mtGC);
if (!BindGCTaskThreadsToCPUs ||
!os::distribute_processes(workers(), processor_assignment)) {
for (uint a = 0; a < workers(); a += 1) {
processor_assignment[a] = sentinel_worker();
}
}
_thread = NEW_C_HEAP_ARRAY(GCTaskThread*, workers(), mtGC);
for (uint t = 0; t < workers(); t += 1) {
set_thread(t, GCTaskThread::create(this, t, processor_assignment[t]));
}
if (TraceGCTaskThread) {
tty->print("GCTaskManager::initialize: distribution:");
for (uint t = 0; t < workers(); t += 1) {
tty->print(" %u", processor_assignment[t]);
}
tty->cr();
}
FREE_C_HEAP_ARRAY(uint, processor_assignment, mtGC);
}
reset_busy_workers();
set_unblocked();
for (uint w = 0; w < workers(); w += 1) {
set_resource_flag(w, false);
}
reset_delivered_tasks();
reset_completed_tasks();
reset_noop_tasks();
reset_barriers();
reset_emptied_queue();
for (uint s = 0; s < workers(); s += 1) {
thread(s)->start();
}
}
GCTaskManager::~GCTaskManager() {
assert(busy_workers() == 0, "still have busy workers");
assert(queue()->is_empty(), "still have queued work");
NoopGCTask::destroy(_noop_task);
_noop_task = NULL;
WaitForBarrierGCTask::destroy(_idle_inactive_task);
_idle_inactive_task = NULL;
if (_thread != NULL) {
for (uint i = 0; i < workers(); i += 1) {
GCTaskThread::destroy(thread(i));
set_thread(i, NULL);
}
FREE_C_HEAP_ARRAY(GCTaskThread*, _thread, mtGC);
_thread = NULL;
}
if (_resource_flag != NULL) {
FREE_C_HEAP_ARRAY(bool, _resource_flag, mtGC);
_resource_flag = NULL;
}
if (queue() != NULL) {
GCTaskQueue* unsynchronized_queue = queue()->unsynchronized_queue();
GCTaskQueue::destroy(unsynchronized_queue);
SynchronizedGCTaskQueue::destroy(queue());
_queue = NULL;
}
if (monitor() != NULL) {
delete monitor();
_monitor = NULL;
}
}
void GCTaskManager::set_active_gang() {
_active_workers =
AdaptiveSizePolicy::calc_active_workers(workers(),
active_workers(),
Threads::number_of_non_daemon_threads());
assert(!all_workers_active() || active_workers() == ParallelGCThreads,
err_msg("all_workers_active() is incorrect: "
"active %d ParallelGCThreads %d", active_workers(),
ParallelGCThreads));
if (TraceDynamicGCThreads) {
gclog_or_tty->print_cr("GCTaskManager::set_active_gang(): "
"all_workers_active() %d workers %d "
"active %d ParallelGCThreads %d ",
all_workers_active(), workers(), active_workers(),
ParallelGCThreads);
}
}
// Create IdleGCTasks for inactive workers.
// Creates tasks in a ResourceArea and assumes
// an appropriate ResourceMark.
void GCTaskManager::task_idle_workers() {
{
int more_inactive_workers = 0;
{
// Stop any idle tasks from exiting their IdleGCTask's
// and get the count for additional IdleGCTask's under
// the GCTaskManager's monitor so that the "more_inactive_workers"
// count is correct.
MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
_idle_inactive_task->set_should_wait(true);
// active_workers are a number being requested. idle_workers
// are the number currently idle. If all the workers are being
// requested to be active but some are already idle, reduce
// the number of active_workers to be consistent with the
// number of idle_workers. The idle_workers are stuck in
// idle tasks and will no longer be release (since a new GC
// is starting). Try later to release enough idle_workers
// to allow the desired number of active_workers.
more_inactive_workers =
workers() - active_workers() - idle_workers();
if (more_inactive_workers < 0) {
int reduced_active_workers = active_workers() + more_inactive_workers;
set_active_workers(reduced_active_workers);
more_inactive_workers = 0;
}
if (TraceDynamicGCThreads) {
gclog_or_tty->print_cr("JT: %d workers %d active %d "
"idle %d more %d",
Threads::number_of_non_daemon_threads(),
workers(),
active_workers(),
idle_workers(),
more_inactive_workers);
}
}
GCTaskQueue* q = GCTaskQueue::create();
for(uint i = 0; i < (uint) more_inactive_workers; i++) {
q->enqueue(IdleGCTask::create_on_c_heap());
increment_idle_workers();
}
assert(workers() == active_workers() + idle_workers(),
"total workers should equal active + inactive");
add_list(q);
// GCTaskQueue* q was created in a ResourceArea so a
// destroy() call is not needed.
}
}
void GCTaskManager::release_idle_workers() {
{
MutexLockerEx ml(monitor(),
Mutex::_no_safepoint_check_flag);
_idle_inactive_task->set_should_wait(false);
monitor()->notify_all();
// Release monitor
}
}
void GCTaskManager::print_task_time_stamps() {
for(uint i=0; i<ParallelGCThreads; i++) {
GCTaskThread* t = thread(i);
t->print_task_time_stamps();
}
}
void GCTaskManager::print_threads_on(outputStream* st) {
uint num_thr = workers();
for (uint i = 0; i < num_thr; i++) {
thread(i)->print_on(st);
st->cr();
}
}
void GCTaskManager::threads_do(ThreadClosure* tc) {
assert(tc != NULL, "Null ThreadClosure");
uint num_thr = workers();
for (uint i = 0; i < num_thr; i++) {
tc->do_thread(thread(i));
}
}
GCTaskThread* GCTaskManager::thread(uint which) {
assert(which < workers(), "index out of bounds");
assert(_thread[which] != NULL, "shouldn't have null thread");
return _thread[which];
}
void GCTaskManager::set_thread(uint which, GCTaskThread* value) {
assert(which < workers(), "index out of bounds");
assert(value != NULL, "shouldn't have null thread");
_thread[which] = value;
}
void GCTaskManager::add_task(GCTask* task) {
assert(task != NULL, "shouldn't have null task");
MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
if (TraceGCTaskManager) {
tty->print_cr("GCTaskManager::add_task(" INTPTR_FORMAT " [%s])",
task, GCTask::Kind::to_string(task->kind()));
}
queue()->enqueue(task);
// Notify with the lock held to avoid missed notifies.
if (TraceGCTaskManager) {
tty->print_cr(" GCTaskManager::add_task (%s)->notify_all",
monitor()->name());
}
(void) monitor()->notify_all();
// Release monitor().
}
void GCTaskManager::add_list(GCTaskQueue* list) {
assert(list != NULL, "shouldn't have null task");
MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
if (TraceGCTaskManager) {
tty->print_cr("GCTaskManager::add_list(%u)", list->length());
}
queue()->enqueue(list);
// Notify with the lock held to avoid missed notifies.
if (TraceGCTaskManager) {
tty->print_cr(" GCTaskManager::add_list (%s)->notify_all",
monitor()->name());
}
(void) monitor()->notify_all();
// Release monitor().
}
// GC workers wait in get_task() for new work to be added
// to the GCTaskManager's queue. When new work is added,
// a notify is sent to the waiting GC workers which then
// compete to get tasks. If a GC worker wakes up and there
// is no work on the queue, it is given a noop_task to execute
// and then loops to find more work.
GCTask* GCTaskManager::get_task(uint which) {
GCTask* result = NULL;
// Grab the queue lock.
MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
// Wait while the queue is block or
// there is nothing to do, except maybe release resources.
while (is_blocked() ||
(queue()->is_empty() && !should_release_resources(which))) {
if (TraceGCTaskManager) {
tty->print_cr("GCTaskManager::get_task(%u)"
" blocked: %s"
" empty: %s"
" release: %s",
which,
is_blocked() ? "true" : "false",
queue()->is_empty() ? "true" : "false",
should_release_resources(which) ? "true" : "false");
tty->print_cr(" => (%s)->wait()",
monitor()->name());
}
monitor()->wait(Mutex::_no_safepoint_check_flag, 0);
}
// We've reacquired the queue lock here.
// Figure out which condition caused us to exit the loop above.
if (!queue()->is_empty()) {
if (UseGCTaskAffinity) {
result = queue()->dequeue(which);
} else {
result = queue()->dequeue();
}
if (result->is_barrier_task()) {
assert(which != sentinel_worker(),
"blocker shouldn't be bogus");
set_blocking_worker(which);
}
} else {
// The queue is empty, but we were woken up.
// Just hand back a Noop task,
// in case someone wanted us to release resources, or whatever.
result = noop_task();
increment_noop_tasks();
}
assert(result != NULL, "shouldn't have null task");
if (TraceGCTaskManager) {
tty->print_cr("GCTaskManager::get_task(%u) => " INTPTR_FORMAT " [%s]",
which, result, GCTask::Kind::to_string(result->kind()));
tty->print_cr(" %s", result->name());
}
if (!result->is_idle_task()) {
increment_busy_workers();
increment_delivered_tasks();
}
return result;
// Release monitor().
}
void GCTaskManager::note_completion(uint which) {
MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
if (TraceGCTaskManager) {
tty->print_cr("GCTaskManager::note_completion(%u)", which);
}
// If we are blocked, check if the completing thread is the blocker.
if (blocking_worker() == which) {
assert(blocking_worker() != sentinel_worker(),
"blocker shouldn't be bogus");
increment_barriers();
set_unblocked();
}
increment_completed_tasks();
uint active = decrement_busy_workers();
if ((active == 0) && (queue()->is_empty())) {
increment_emptied_queue();
if (TraceGCTaskManager) {
tty->print_cr(" GCTaskManager::note_completion(%u) done", which);
}
// Notify client that we are done.
NotifyDoneClosure* ndc = notify_done_closure();
if (ndc != NULL) {
ndc->notify(this);
}
}
if (TraceGCTaskManager) {
tty->print_cr(" GCTaskManager::note_completion(%u) (%s)->notify_all",
which, monitor()->name());
tty->print_cr(" "
" blocked: %s"
" empty: %s"
" release: %s",
is_blocked() ? "true" : "false",
queue()->is_empty() ? "true" : "false",
should_release_resources(which) ? "true" : "false");
tty->print_cr(" "
" delivered: %u"
" completed: %u"
" barriers: %u"
" emptied: %u",
delivered_tasks(),
completed_tasks(),
barriers(),
emptied_queue());
}
// Tell everyone that a task has completed.
(void) monitor()->notify_all();
// Release monitor().
}
uint GCTaskManager::increment_busy_workers() {
assert(queue()->own_lock(), "don't own the lock");
_busy_workers += 1;
return _busy_workers;
}
uint GCTaskManager::decrement_busy_workers() {
assert(queue()->own_lock(), "don't own the lock");
assert(_busy_workers > 0, "About to make a mistake");
_busy_workers -= 1;
return _busy_workers;
}
void GCTaskManager::release_all_resources() {
// If you want this to be done atomically, do it in a BarrierGCTask.
for (uint i = 0; i < workers(); i += 1) {
set_resource_flag(i, true);
}
}
bool GCTaskManager::should_release_resources(uint which) {
// This can be done without a lock because each thread reads one element.
return resource_flag(which);
}
void GCTaskManager::note_release(uint which) {
// This can be done without a lock because each thread writes one element.
set_resource_flag(which, false);
}
// "list" contains tasks that are ready to execute. Those
// tasks are added to the GCTaskManager's queue of tasks and
// then the GC workers are notified that there is new work to
// do.
//
// Typically different types of tasks can be added to the "list".
// For example in PSScavenge OldToYoungRootsTask, SerialOldToYoungRootsTask,
// ScavengeRootsTask, and StealTask tasks are all added to the list
// and then the GC workers are notified of new work. The tasks are
// handed out in the order in which they are added to the list
// (although execution is not necessarily in that order). As long
// as any tasks are running the GCTaskManager will wait for execution
// to complete. GC workers that execute a stealing task remain in
// the stealing task until all stealing tasks have completed. The load
// balancing afforded by the stealing tasks work best if the stealing
// tasks are added last to the list.
void GCTaskManager::execute_and_wait(GCTaskQueue* list) {
WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
list->enqueue(fin);
// The barrier task will be read by one of the GC
// workers once it is added to the list of tasks.
// Be sure that is globally visible before the
// GC worker reads it (which is after the task is added
// to the list of tasks below).
OrderAccess::storestore();
add_list(list);
fin->wait_for(true /* reset */);
// We have to release the barrier tasks!
WaitForBarrierGCTask::destroy(fin);
}
bool GCTaskManager::resource_flag(uint which) {
assert(which < workers(), "index out of bounds");
return _resource_flag[which];
}
void GCTaskManager::set_resource_flag(uint which, bool value) {
assert(which < workers(), "index out of bounds");
_resource_flag[which] = value;
}
//
// NoopGCTask
//
NoopGCTask* NoopGCTask::create() {
NoopGCTask* result = new NoopGCTask(false);
return result;
}
NoopGCTask* NoopGCTask::create_on_c_heap() {
NoopGCTask* result = new(ResourceObj::C_HEAP, mtGC) NoopGCTask(true);
return result;
}
void NoopGCTask::destroy(NoopGCTask* that) {
if (that != NULL) {
that->destruct();
if (that->is_c_heap_obj()) {
FreeHeap(that);
}
}
}
void NoopGCTask::destruct() {
// This has to know it's superclass structure, just like the constructor.
this->GCTask::destruct();
// Nothing else to do.
}
//
// IdleGCTask
//
IdleGCTask* IdleGCTask::create() {
IdleGCTask* result = new IdleGCTask(false);
assert(UseDynamicNumberOfGCThreads,
"Should only be used with dynamic GC thread");
return result;
}
IdleGCTask* IdleGCTask::create_on_c_heap() {
IdleGCTask* result = new(ResourceObj::C_HEAP, mtGC) IdleGCTask(true);
assert(UseDynamicNumberOfGCThreads,
"Should only be used with dynamic GC thread");
return result;
}
void IdleGCTask::do_it(GCTaskManager* manager, uint which) {
WaitForBarrierGCTask* wait_for_task = manager->idle_inactive_task();
if (TraceGCTaskManager) {
tty->print_cr("[" INTPTR_FORMAT "]"
" IdleGCTask:::do_it()"
" should_wait: %s",
this, wait_for_task->should_wait() ? "true" : "false");
}
MutexLockerEx ml(manager->monitor(), Mutex::_no_safepoint_check_flag);
if (TraceDynamicGCThreads) {
gclog_or_tty->print_cr("--- idle %d", which);
}
// Increment has to be done when the idle tasks are created.
// manager->increment_idle_workers();
manager->monitor()->notify_all();
while (wait_for_task->should_wait()) {
if (TraceGCTaskManager) {
tty->print_cr("[" INTPTR_FORMAT "]"
" IdleGCTask::do_it()"
" [" INTPTR_FORMAT "] (%s)->wait()",
this, manager->monitor(), manager->monitor()->name());
}
manager->monitor()->wait(Mutex::_no_safepoint_check_flag, 0);
}
manager->decrement_idle_workers();
if (TraceDynamicGCThreads) {
gclog_or_tty->print_cr("--- release %d", which);
}
if (TraceGCTaskManager) {
tty->print_cr("[" INTPTR_FORMAT "]"
" IdleGCTask::do_it() returns"
" should_wait: %s",
this, wait_for_task->should_wait() ? "true" : "false");
}
// Release monitor().
}
void IdleGCTask::destroy(IdleGCTask* that) {
if (that != NULL) {
that->destruct();
if (that->is_c_heap_obj()) {
FreeHeap(that);
}
}
}
void IdleGCTask::destruct() {
// This has to know it's superclass structure, just like the constructor.
this->GCTask::destruct();
// Nothing else to do.
}
//
// BarrierGCTask
//
void BarrierGCTask::do_it(GCTaskManager* manager, uint which) {
// Wait for this to be the only busy worker.
// ??? I thought of having a StackObj class
// whose constructor would grab the lock and come to the barrier,
// and whose destructor would release the lock,
// but that seems like too much mechanism for two lines of code.
MutexLockerEx ml(manager->lock(), Mutex::_no_safepoint_check_flag);
do_it_internal(manager, which);
// Release manager->lock().
}
void BarrierGCTask::do_it_internal(GCTaskManager* manager, uint which) {
// Wait for this to be the only busy worker.
assert(manager->monitor()->owned_by_self(), "don't own the lock");
assert(manager->is_blocked(), "manager isn't blocked");
while (manager->busy_workers() > 1) {
if (TraceGCTaskManager) {
tty->print_cr("BarrierGCTask::do_it(%u) waiting on %u workers",
which, manager->busy_workers());
}
manager->monitor()->wait(Mutex::_no_safepoint_check_flag, 0);
}
}
void BarrierGCTask::destruct() {
this->GCTask::destruct();
// Nothing else to do.
}
//
// ReleasingBarrierGCTask
//
void ReleasingBarrierGCTask::do_it(GCTaskManager* manager, uint which) {
MutexLockerEx ml(manager->lock(), Mutex::_no_safepoint_check_flag);
do_it_internal(manager, which);
manager->release_all_resources();
// Release manager->lock().
}
void ReleasingBarrierGCTask::destruct() {
this->BarrierGCTask::destruct();
// Nothing else to do.
}
//
// NotifyingBarrierGCTask
//
void NotifyingBarrierGCTask::do_it(GCTaskManager* manager, uint which) {
MutexLockerEx ml(manager->lock(), Mutex::_no_safepoint_check_flag);
do_it_internal(manager, which);
NotifyDoneClosure* ndc = notify_done_closure();
if (ndc != NULL) {
ndc->notify(manager);
}
// Release manager->lock().
}
void NotifyingBarrierGCTask::destruct() {
this->BarrierGCTask::destruct();
// Nothing else to do.
}
//
// WaitForBarrierGCTask
//
WaitForBarrierGCTask* WaitForBarrierGCTask::create() {
WaitForBarrierGCTask* result = new WaitForBarrierGCTask(false);
return result;
}
WaitForBarrierGCTask* WaitForBarrierGCTask::create_on_c_heap() {
WaitForBarrierGCTask* result =
new (ResourceObj::C_HEAP, mtGC) WaitForBarrierGCTask(true);
return result;
}
WaitForBarrierGCTask::WaitForBarrierGCTask(bool on_c_heap) :
_is_c_heap_obj(on_c_heap) {
_monitor = MonitorSupply::reserve();
set_should_wait(true);
if (TraceGCTaskManager) {
tty->print_cr("[" INTPTR_FORMAT "]"
" WaitForBarrierGCTask::WaitForBarrierGCTask()"
" monitor: " INTPTR_FORMAT,
this, monitor());
}
}
void WaitForBarrierGCTask::destroy(WaitForBarrierGCTask* that) {
if (that != NULL) {
if (TraceGCTaskManager) {
tty->print_cr("[" INTPTR_FORMAT "]"
" WaitForBarrierGCTask::destroy()"
" is_c_heap_obj: %s"
" monitor: " INTPTR_FORMAT,
that,
that->is_c_heap_obj() ? "true" : "false",
that->monitor());
}
that->destruct();
if (that->is_c_heap_obj()) {
FreeHeap(that);
}
}
}
void WaitForBarrierGCTask::destruct() {
assert(monitor() != NULL, "monitor should not be NULL");
if (TraceGCTaskManager) {
tty->print_cr("[" INTPTR_FORMAT "]"
" WaitForBarrierGCTask::destruct()"
" monitor: " INTPTR_FORMAT,
this, monitor());
}
this->BarrierGCTask::destruct();
// Clean up that should be in the destructor,
// except that ResourceMarks don't call destructors.
if (monitor() != NULL) {
MonitorSupply::release(monitor());
}
_monitor = (Monitor*) 0xDEAD000F;
}
void WaitForBarrierGCTask::do_it(GCTaskManager* manager, uint which) {
if (TraceGCTaskManager) {
tty->print_cr("[" INTPTR_FORMAT "]"
" WaitForBarrierGCTask::do_it() waiting for idle"
" monitor: " INTPTR_FORMAT,
this, monitor());
}
{
// First, wait for the barrier to arrive.
MutexLockerEx ml(manager->lock(), Mutex::_no_safepoint_check_flag);
do_it_internal(manager, which);
// Release manager->lock().
}
{
// Then notify the waiter.
MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
set_should_wait(false);
// Waiter doesn't miss the notify in the wait_for method
// since it checks the flag after grabbing the monitor.
if (TraceGCTaskManager) {
tty->print_cr("[" INTPTR_FORMAT "]"
" WaitForBarrierGCTask::do_it()"
" [" INTPTR_FORMAT "] (%s)->notify_all()",
this, monitor(), monitor()->name());
}
monitor()->notify_all();
// Release monitor().
}
}
void WaitForBarrierGCTask::wait_for(bool reset) {
if (TraceGCTaskManager) {
tty->print_cr("[" INTPTR_FORMAT "]"
" WaitForBarrierGCTask::wait_for()"
" should_wait: %s",
this, should_wait() ? "true" : "false");
}
{
// Grab the lock and check again.
MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
while (should_wait()) {
if (TraceGCTaskManager) {
tty->print_cr("[" INTPTR_FORMAT "]"
" WaitForBarrierGCTask::wait_for()"
" [" INTPTR_FORMAT "] (%s)->wait()",
this, monitor(), monitor()->name());
}
monitor()->wait(Mutex::_no_safepoint_check_flag, 0);
}
// Reset the flag in case someone reuses this task.
if (reset) {
set_should_wait(true);
}
if (TraceGCTaskManager) {
tty->print_cr("[" INTPTR_FORMAT "]"
" WaitForBarrierGCTask::wait_for() returns"
" should_wait: %s",
this, should_wait() ? "true" : "false");
}
// Release monitor().
}
}
Mutex* MonitorSupply::_lock = NULL;
GrowableArray<Monitor*>* MonitorSupply::_freelist = NULL;
Monitor* MonitorSupply::reserve() {
Monitor* result = NULL;
// Lazy initialization: possible race.
if (lock() == NULL) {
_lock = new Mutex(Mutex::barrier, // rank
"MonitorSupply mutex", // name
Mutex::_allow_vm_block_flag); // allow_vm_block
}
{
MutexLockerEx ml(lock());
// Lazy initialization.
if (freelist() == NULL) {
_freelist =
new(ResourceObj::C_HEAP, mtGC) GrowableArray<Monitor*>(ParallelGCThreads,
true);
}
if (! freelist()->is_empty()) {
result = freelist()->pop();
} else {
result = new Monitor(Mutex::barrier, // rank
"MonitorSupply monitor", // name
Mutex::_allow_vm_block_flag); // allow_vm_block
}
guarantee(result != NULL, "shouldn't return NULL");
assert(!result->is_locked(), "shouldn't be locked");
// release lock().
}
return result;
}
void MonitorSupply::release(Monitor* instance) {
assert(instance != NULL, "shouldn't release NULL");
assert(!instance->is_locked(), "shouldn't be locked");
{
MutexLockerEx ml(lock());
freelist()->push(instance);
// release lock().
}
}