blob: 84d234f9dc0f65fa1c78dfebaf460deb2c98d105 [file] [log] [blame]
/*
* Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
#include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
#include "gc_implementation/parNew/asParNewGeneration.hpp"
#include "gc_implementation/parNew/parNewGeneration.hpp"
#include "gc_implementation/shared/markSweep.inline.hpp"
#include "gc_implementation/shared/spaceDecorator.hpp"
#include "memory/defNewGeneration.inline.hpp"
#include "memory/referencePolicy.hpp"
#include "oops/markOop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
ASParNewGeneration::ASParNewGeneration(ReservedSpace rs,
size_t initial_byte_size,
size_t min_byte_size,
int level) :
ParNewGeneration(rs, initial_byte_size, level),
_min_gen_size(min_byte_size) {}
const char* ASParNewGeneration::name() const {
return "adaptive size par new generation";
}
void ASParNewGeneration::adjust_desired_tenuring_threshold() {
assert(UseAdaptiveSizePolicy,
"Should only be used with UseAdaptiveSizePolicy");
}
void ASParNewGeneration::resize(size_t eden_size, size_t survivor_size) {
// Resize the generation if needed. If the generation resize
// reports false, do not attempt to resize the spaces.
if (resize_generation(eden_size, survivor_size)) {
// Then we lay out the spaces inside the generation
resize_spaces(eden_size, survivor_size);
space_invariants();
if (PrintAdaptiveSizePolicy && Verbose) {
gclog_or_tty->print_cr("Young generation size: "
"desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT
" used: " SIZE_FORMAT " capacity: " SIZE_FORMAT
" gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
eden_size, survivor_size, used(), capacity(),
max_gen_size(), min_gen_size());
}
}
}
size_t ASParNewGeneration::available_to_min_gen() {
assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
return virtual_space()->committed_size() - min_gen_size();
}
// This method assumes that from-space has live data and that
// any shrinkage of the young gen is limited by location of
// from-space.
size_t ASParNewGeneration::available_to_live() const {
#undef SHRINKS_AT_END_OF_EDEN
#ifdef SHRINKS_AT_END_OF_EDEN
size_t delta_in_survivor = 0;
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
const size_t space_alignment = heap->intra_heap_alignment();
const size_t gen_alignment = heap->object_heap_alignment();
MutableSpace* space_shrinking = NULL;
if (from_space()->end() > to_space()->end()) {
space_shrinking = from_space();
} else {
space_shrinking = to_space();
}
// Include any space that is committed but not included in
// the survivor spaces.
assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(),
"Survivor space beyond high end");
size_t unused_committed = pointer_delta(virtual_space()->high(),
space_shrinking->end(), sizeof(char));
if (space_shrinking->is_empty()) {
// Don't let the space shrink to 0
assert(space_shrinking->capacity_in_bytes() >= space_alignment,
"Space is too small");
delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment;
} else {
delta_in_survivor = pointer_delta(space_shrinking->end(),
space_shrinking->top(),
sizeof(char));
}
size_t delta_in_bytes = unused_committed + delta_in_survivor;
delta_in_bytes = align_size_down(delta_in_bytes, gen_alignment);
return delta_in_bytes;
#else
// The only space available for shrinking is in to-space if it
// is above from-space.
if (to()->bottom() > from()->bottom()) {
const size_t alignment = os::vm_page_size();
if (to()->capacity() < alignment) {
return 0;
} else {
return to()->capacity() - alignment;
}
} else {
return 0;
}
#endif
}
// Return the number of bytes available for resizing down the young
// generation. This is the minimum of
// input "bytes"
// bytes to the minimum young gen size
// bytes to the size currently being used + some small extra
size_t ASParNewGeneration::limit_gen_shrink (size_t bytes) {
// Allow shrinkage into the current eden but keep eden large enough
// to maintain the minimum young gen size
bytes = MIN3(bytes, available_to_min_gen(), available_to_live());
return align_size_down(bytes, os::vm_page_size());
}
// Note that the the alignment used is the OS page size as
// opposed to an alignment associated with the virtual space
// (as is done in the ASPSYoungGen/ASPSOldGen)
bool ASParNewGeneration::resize_generation(size_t eden_size,
size_t survivor_size) {
const size_t alignment = os::vm_page_size();
size_t orig_size = virtual_space()->committed_size();
bool size_changed = false;
// There used to be this guarantee there.
// guarantee ((eden_size + 2*survivor_size) <= _max_gen_size, "incorrect input arguments");
// Code below forces this requirement. In addition the desired eden
// size and disired survivor sizes are desired goals and may
// exceed the total generation size.
assert(min_gen_size() <= orig_size && orig_size <= max_gen_size(),
"just checking");
// Adjust new generation size
const size_t eden_plus_survivors =
align_size_up(eden_size + 2 * survivor_size, alignment);
size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_gen_size()),
min_gen_size());
assert(desired_size <= max_gen_size(), "just checking");
if (desired_size > orig_size) {
// Grow the generation
size_t change = desired_size - orig_size;
assert(change % alignment == 0, "just checking");
if (expand(change)) {
return false; // Error if we fail to resize!
}
size_changed = true;
} else if (desired_size < orig_size) {
size_t desired_change = orig_size - desired_size;
assert(desired_change % alignment == 0, "just checking");
desired_change = limit_gen_shrink(desired_change);
if (desired_change > 0) {
virtual_space()->shrink_by(desired_change);
reset_survivors_after_shrink();
size_changed = true;
}
} else {
if (Verbose && PrintGC) {
if (orig_size == max_gen_size()) {
gclog_or_tty->print_cr("ASParNew generation size at maximum: "
SIZE_FORMAT "K", orig_size/K);
} else if (orig_size == min_gen_size()) {
gclog_or_tty->print_cr("ASParNew generation size at minium: "
SIZE_FORMAT "K", orig_size/K);
}
}
}
if (size_changed) {
MemRegion cmr((HeapWord*)virtual_space()->low(),
(HeapWord*)virtual_space()->high());
GenCollectedHeap::heap()->barrier_set()->resize_covered_region(cmr);
if (Verbose && PrintGC) {
size_t current_size = virtual_space()->committed_size();
gclog_or_tty->print_cr("ASParNew generation size changed: "
SIZE_FORMAT "K->" SIZE_FORMAT "K",
orig_size/K, current_size/K);
}
}
guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
virtual_space()->committed_size() == max_gen_size(), "Sanity");
return true;
}
void ASParNewGeneration::reset_survivors_after_shrink() {
GenCollectedHeap* gch = GenCollectedHeap::heap();
HeapWord* new_end = (HeapWord*)virtual_space()->high();
if (from()->end() > to()->end()) {
assert(new_end >= from()->end(), "Shrinking past from-space");
} else {
assert(new_end >= to()->bottom(), "Shrink was too large");
// Was there a shrink of the survivor space?
if (new_end < to()->end()) {
MemRegion mr(to()->bottom(), new_end);
to()->initialize(mr,
SpaceDecorator::DontClear,
SpaceDecorator::DontMangle);
}
}
}
void ASParNewGeneration::resize_spaces(size_t requested_eden_size,
size_t requested_survivor_size) {
assert(UseAdaptiveSizePolicy, "sanity check");
assert(requested_eden_size > 0 && requested_survivor_size > 0,
"just checking");
CollectedHeap* heap = Universe::heap();
assert(heap->kind() == CollectedHeap::GenCollectedHeap, "Sanity");
// We require eden and to space to be empty
if ((!eden()->is_empty()) || (!to()->is_empty())) {
return;
}
size_t cur_eden_size = eden()->capacity();
if (PrintAdaptiveSizePolicy && Verbose) {
gclog_or_tty->print_cr("ASParNew::resize_spaces(requested_eden_size: "
SIZE_FORMAT
", requested_survivor_size: " SIZE_FORMAT ")",
requested_eden_size, requested_survivor_size);
gclog_or_tty->print_cr(" eden: [" PTR_FORMAT ".." PTR_FORMAT ") "
SIZE_FORMAT,
p2i(eden()->bottom()),
p2i(eden()->end()),
pointer_delta(eden()->end(),
eden()->bottom(),
sizeof(char)));
gclog_or_tty->print_cr(" from: [" PTR_FORMAT ".." PTR_FORMAT ") "
SIZE_FORMAT,
p2i(from()->bottom()),
p2i(from()->end()),
pointer_delta(from()->end(),
from()->bottom(),
sizeof(char)));
gclog_or_tty->print_cr(" to: [" PTR_FORMAT ".." PTR_FORMAT ") "
SIZE_FORMAT,
p2i(to()->bottom()),
p2i(to()->end()),
pointer_delta( to()->end(),
to()->bottom(),
sizeof(char)));
}
// There's nothing to do if the new sizes are the same as the current
if (requested_survivor_size == to()->capacity() &&
requested_survivor_size == from()->capacity() &&
requested_eden_size == eden()->capacity()) {
if (PrintAdaptiveSizePolicy && Verbose) {
gclog_or_tty->print_cr(" capacities are the right sizes, returning");
}
return;
}
char* eden_start = (char*)eden()->bottom();
char* eden_end = (char*)eden()->end();
char* from_start = (char*)from()->bottom();
char* from_end = (char*)from()->end();
char* to_start = (char*)to()->bottom();
char* to_end = (char*)to()->end();
const size_t alignment = os::vm_page_size();
const bool maintain_minimum =
(requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();
// Check whether from space is below to space
if (from_start < to_start) {
// Eden, from, to
if (PrintAdaptiveSizePolicy && Verbose) {
gclog_or_tty->print_cr(" Eden, from, to:");
}
// Set eden
// "requested_eden_size" is a goal for the size of eden
// and may not be attainable. "eden_size" below is
// calculated based on the location of from-space and
// the goal for the size of eden. from-space is
// fixed in place because it contains live data.
// The calculation is done this way to avoid 32bit
// overflow (i.e., eden_start + requested_eden_size
// may too large for representation in 32bits).
size_t eden_size;
if (maintain_minimum) {
// Only make eden larger than the requested size if
// the minimum size of the generation has to be maintained.
// This could be done in general but policy at a higher
// level is determining a requested size for eden and that
// should be honored unless there is a fundamental reason.
eden_size = pointer_delta(from_start,
eden_start,
sizeof(char));
} else {
eden_size = MIN2(requested_eden_size,
pointer_delta(from_start, eden_start, sizeof(char)));
}
eden_size = align_size_down(eden_size, alignment);
eden_end = eden_start + eden_size;
assert(eden_end >= eden_start, "addition overflowed");
// To may resize into from space as long as it is clear of live data.
// From space must remain page aligned, though, so we need to do some
// extra calculations.
// First calculate an optimal to-space
to_end = (char*)virtual_space()->high();
to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
sizeof(char));
// Does the optimal to-space overlap from-space?
if (to_start < (char*)from()->end()) {
// Calculate the minimum offset possible for from_end
size_t from_size = pointer_delta(from()->top(), from_start, sizeof(char));
// Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
if (from_size == 0) {
from_size = alignment;
} else {
from_size = align_size_up(from_size, alignment);
}
from_end = from_start + from_size;
assert(from_end > from_start, "addition overflow or from_size problem");
guarantee(from_end <= (char*)from()->end(), "from_end moved to the right");
// Now update to_start with the new from_end
to_start = MAX2(from_end, to_start);
} else {
// If shrinking, move to-space down to abut the end of from-space
// so that shrinking will move to-space down. If not shrinking
// to-space is moving up to allow for growth on the next expansion.
if (requested_eden_size <= cur_eden_size) {
to_start = from_end;
if (to_start + requested_survivor_size > to_start) {
to_end = to_start + requested_survivor_size;
}
}
// else leave to_end pointing to the high end of the virtual space.
}
guarantee(to_start != to_end, "to space is zero sized");
if (PrintAdaptiveSizePolicy && Verbose) {
gclog_or_tty->print_cr(" [eden_start .. eden_end): "
"[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
p2i(eden_start),
p2i(eden_end),
pointer_delta(eden_end, eden_start, sizeof(char)));
gclog_or_tty->print_cr(" [from_start .. from_end): "
"[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
p2i(from_start),
p2i(from_end),
pointer_delta(from_end, from_start, sizeof(char)));
gclog_or_tty->print_cr(" [ to_start .. to_end): "
"[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
p2i(to_start),
p2i(to_end),
pointer_delta( to_end, to_start, sizeof(char)));
}
} else {
// Eden, to, from
if (PrintAdaptiveSizePolicy && Verbose) {
gclog_or_tty->print_cr(" Eden, to, from:");
}
// Calculate the to-space boundaries based on
// the start of from-space.
to_end = from_start;
to_start = (char*)pointer_delta(from_start,
(char*)requested_survivor_size,
sizeof(char));
// Calculate the ideal eden boundaries.
// eden_end is already at the bottom of the generation
assert(eden_start == virtual_space()->low(),
"Eden is not starting at the low end of the virtual space");
if (eden_start + requested_eden_size >= eden_start) {
eden_end = eden_start + requested_eden_size;
} else {
eden_end = to_start;
}
// Does eden intrude into to-space? to-space
// gets priority but eden is not allowed to shrink
// to 0.
if (eden_end > to_start) {
eden_end = to_start;
}
// Don't let eden shrink down to 0 or less.
eden_end = MAX2(eden_end, eden_start + alignment);
assert(eden_start + alignment >= eden_start, "Overflow");
size_t eden_size;
if (maintain_minimum) {
// Use all the space available.
eden_end = MAX2(eden_end, to_start);
eden_size = pointer_delta(eden_end, eden_start, sizeof(char));
eden_size = MIN2(eden_size, cur_eden_size);
} else {
eden_size = pointer_delta(eden_end, eden_start, sizeof(char));
}
eden_size = align_size_down(eden_size, alignment);
assert(maintain_minimum || eden_size <= requested_eden_size,
"Eden size is too large");
assert(eden_size >= alignment, "Eden size is too small");
eden_end = eden_start + eden_size;
// Move to-space down to eden.
if (requested_eden_size < cur_eden_size) {
to_start = eden_end;
if (to_start + requested_survivor_size > to_start) {
to_end = MIN2(from_start, to_start + requested_survivor_size);
} else {
to_end = from_start;
}
}
// eden_end may have moved so again make sure
// the to-space and eden don't overlap.
to_start = MAX2(eden_end, to_start);
// from-space
size_t from_used = from()->used();
if (requested_survivor_size > from_used) {
if (from_start + requested_survivor_size >= from_start) {
from_end = from_start + requested_survivor_size;
}
if (from_end > virtual_space()->high()) {
from_end = virtual_space()->high();
}
}
assert(to_start >= eden_end, "to-space should be above eden");
if (PrintAdaptiveSizePolicy && Verbose) {
gclog_or_tty->print_cr(" [eden_start .. eden_end): "
"[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
p2i(eden_start),
p2i(eden_end),
pointer_delta(eden_end, eden_start, sizeof(char)));
gclog_or_tty->print_cr(" [ to_start .. to_end): "
"[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
p2i(to_start),
p2i(to_end),
pointer_delta( to_end, to_start, sizeof(char)));
gclog_or_tty->print_cr(" [from_start .. from_end): "
"[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
p2i(from_start),
p2i(from_end),
pointer_delta(from_end, from_start, sizeof(char)));
}
}
guarantee((HeapWord*)from_start <= from()->bottom(),
"from start moved to the right");
guarantee((HeapWord*)from_end >= from()->top(),
"from end moved into live data");
assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
assert(is_object_aligned((intptr_t)from_start), "checking alignment");
assert(is_object_aligned((intptr_t)to_start), "checking alignment");
MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end);
MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);
// Let's make sure the call to initialize doesn't reset "top"!
HeapWord* old_from_top = from()->top();
// For PrintAdaptiveSizePolicy block below
size_t old_from = from()->capacity();
size_t old_to = to()->capacity();
// If not clearing the spaces, do some checking to verify that
// the spaces are already mangled.
// Must check mangling before the spaces are reshaped. Otherwise,
// the bottom or end of one space may have moved into another
// a failure of the check may not correctly indicate which space
// is not properly mangled.
if (ZapUnusedHeapArea) {
HeapWord* limit = (HeapWord*) virtual_space()->high();
eden()->check_mangled_unused_area(limit);
from()->check_mangled_unused_area(limit);
to()->check_mangled_unused_area(limit);
}
// The call to initialize NULL's the next compaction space
eden()->initialize(edenMR,
SpaceDecorator::Clear,
SpaceDecorator::DontMangle);
eden()->set_next_compaction_space(from());
to()->initialize(toMR ,
SpaceDecorator::Clear,
SpaceDecorator::DontMangle);
from()->initialize(fromMR,
SpaceDecorator::DontClear,
SpaceDecorator::DontMangle);
assert(from()->top() == old_from_top, "from top changed!");
if (PrintAdaptiveSizePolicy) {
GenCollectedHeap* gch = GenCollectedHeap::heap();
assert(gch->kind() == CollectedHeap::GenCollectedHeap, "Sanity");
gclog_or_tty->print("AdaptiveSizePolicy::survivor space sizes: "
"collection: %d "
"(" SIZE_FORMAT ", " SIZE_FORMAT ") -> "
"(" SIZE_FORMAT ", " SIZE_FORMAT ") ",
gch->total_collections(),
old_from, old_to,
from()->capacity(),
to()->capacity());
gclog_or_tty->cr();
}
}
void ASParNewGeneration::compute_new_size() {
GenCollectedHeap* gch = GenCollectedHeap::heap();
assert(gch->kind() == CollectedHeap::GenCollectedHeap,
"not a CMS generational heap");
CMSAdaptiveSizePolicy* size_policy =
(CMSAdaptiveSizePolicy*)gch->gen_policy()->size_policy();
assert(size_policy->is_gc_cms_adaptive_size_policy(),
"Wrong type of size policy");
size_t survived = from()->used();
if (!survivor_overflow()) {
// Keep running averages on how much survived
size_policy->avg_survived()->sample(survived);
} else {
size_t promoted =
(size_t) next_gen()->gc_stats()->avg_promoted()->last_sample();
assert(promoted < gch->capacity(), "Conversion problem?");
size_t survived_guess = survived + promoted;
size_policy->avg_survived()->sample(survived_guess);
}
size_t survivor_limit = max_survivor_size();
_tenuring_threshold =
size_policy->compute_survivor_space_size_and_threshold(
_survivor_overflow,
_tenuring_threshold,
survivor_limit);
size_policy->avg_young_live()->sample(used());
size_policy->avg_eden_live()->sample(eden()->used());
size_policy->compute_eden_space_size(eden()->capacity(), max_gen_size());
resize(size_policy->calculated_eden_size_in_bytes(),
size_policy->calculated_survivor_size_in_bytes());
if (UsePerfData) {
CMSGCAdaptivePolicyCounters* counters =
(CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
assert(counters->kind() ==
GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
"Wrong kind of counters");
counters->update_tenuring_threshold(_tenuring_threshold);
counters->update_survivor_overflowed(_survivor_overflow);
counters->update_young_capacity(capacity());
}
}
#ifndef PRODUCT
// Changes from PSYoungGen version
// value of "alignment"
void ASParNewGeneration::space_invariants() {
const size_t alignment = os::vm_page_size();
// Currently, our eden size cannot shrink to zero
guarantee(eden()->capacity() >= alignment, "eden too small");
guarantee(from()->capacity() >= alignment, "from too small");
guarantee(to()->capacity() >= alignment, "to too small");
// Relationship of spaces to each other
char* eden_start = (char*)eden()->bottom();
char* eden_end = (char*)eden()->end();
char* from_start = (char*)from()->bottom();
char* from_end = (char*)from()->end();
char* to_start = (char*)to()->bottom();
char* to_end = (char*)to()->end();
guarantee(eden_start >= virtual_space()->low(), "eden bottom");
guarantee(eden_start < eden_end, "eden space consistency");
guarantee(from_start < from_end, "from space consistency");
guarantee(to_start < to_end, "to space consistency");
// Check whether from space is below to space
if (from_start < to_start) {
// Eden, from, to
guarantee(eden_end <= from_start, "eden/from boundary");
guarantee(from_end <= to_start, "from/to boundary");
guarantee(to_end <= virtual_space()->high(), "to end");
} else {
// Eden, to, from
guarantee(eden_end <= to_start, "eden/to boundary");
guarantee(to_end <= from_start, "to/from boundary");
guarantee(from_end <= virtual_space()->high(), "from end");
}
// More checks that the virtual space is consistent with the spaces
assert(virtual_space()->committed_size() >=
(eden()->capacity() +
to()->capacity() +
from()->capacity()), "Committed size is inconsistent");
assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
"Space invariant");
char* eden_top = (char*)eden()->top();
char* from_top = (char*)from()->top();
char* to_top = (char*)to()->top();
assert(eden_top <= virtual_space()->high(), "eden top");
assert(from_top <= virtual_space()->high(), "from top");
assert(to_top <= virtual_space()->high(), "to top");
}
#endif