blob: 0fd278699807bb870f744abc89553d751d865a5e [file] [log] [blame]
/*
* Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP
#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/g1CollectedHeap.hpp"
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/heapRegionManager.inline.hpp"
#include "gc_implementation/g1/heapRegionSet.inline.hpp"
#include "runtime/orderAccess.inline.hpp"
#include "utilities/taskqueue.hpp"
PLABStats* G1CollectedHeap::alloc_buffer_stats(InCSetState dest) {
switch (dest.value()) {
case InCSetState::Young:
return &_survivor_plab_stats;
case InCSetState::Old:
return &_old_plab_stats;
default:
ShouldNotReachHere();
return NULL; // Keep some compilers happy
}
}
size_t G1CollectedHeap::desired_plab_sz(InCSetState dest) {
size_t gclab_word_size = alloc_buffer_stats(dest)->desired_plab_sz();
// Prevent humongous PLAB sizes for two reasons:
// * PLABs are allocated using a similar paths as oops, but should
// never be in a humongous region
// * Allowing humongous PLABs needlessly churns the region free lists
return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
}
HeapWord* G1CollectedHeap::par_allocate_during_gc(InCSetState dest,
size_t word_size,
AllocationContext_t context) {
switch (dest.value()) {
case InCSetState::Young:
return survivor_attempt_allocation(word_size, context);
case InCSetState::Old:
return old_attempt_allocation(word_size, context);
default:
ShouldNotReachHere();
return NULL; // Keep some compilers happy
}
}
// Inline functions for G1CollectedHeap
inline AllocationContextStats& G1CollectedHeap::allocation_context_stats() {
return _allocation_context_stats;
}
// Return the region with the given index. It assumes the index is valid.
inline HeapRegion* G1CollectedHeap::region_at(uint index) const { return _hrm.at(index); }
inline uint G1CollectedHeap::addr_to_region(HeapWord* addr) const {
assert(is_in_reserved(addr),
err_msg("Cannot calculate region index for address "PTR_FORMAT" that is outside of the heap ["PTR_FORMAT", "PTR_FORMAT")",
p2i(addr), p2i(_reserved.start()), p2i(_reserved.end())));
return (uint)(pointer_delta(addr, _reserved.start(), sizeof(uint8_t)) >> HeapRegion::LogOfHRGrainBytes);
}
inline HeapWord* G1CollectedHeap::bottom_addr_for_region(uint index) const {
return _hrm.reserved().start() + index * HeapRegion::GrainWords;
}
template <class T>
inline HeapRegion* G1CollectedHeap::heap_region_containing_raw(const T addr) const {
assert(addr != NULL, "invariant");
assert(is_in_g1_reserved((const void*) addr),
err_msg("Address "PTR_FORMAT" is outside of the heap ranging from ["PTR_FORMAT" to "PTR_FORMAT")",
p2i((void*)addr), p2i(g1_reserved().start()), p2i(g1_reserved().end())));
return _hrm.addr_to_region((HeapWord*) addr);
}
template <class T>
inline HeapRegion* G1CollectedHeap::heap_region_containing(const T addr) const {
HeapRegion* hr = heap_region_containing_raw(addr);
if (hr->continuesHumongous()) {
return hr->humongous_start_region();
}
return hr;
}
inline void G1CollectedHeap::reset_gc_time_stamp() {
_gc_time_stamp = 0;
OrderAccess::fence();
// Clear the cached CSet starting regions and time stamps.
// Their validity is dependent on the GC timestamp.
clear_cset_start_regions();
}
inline void G1CollectedHeap::increment_gc_time_stamp() {
++_gc_time_stamp;
OrderAccess::fence();
}
inline void G1CollectedHeap::old_set_remove(HeapRegion* hr) {
_old_set.remove(hr);
}
inline bool G1CollectedHeap::obj_in_cs(oop obj) {
HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
return r != NULL && r->in_collection_set();
}
inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
uint* gc_count_before_ret,
uint* gclocker_retry_count_ret) {
assert_heap_not_locked_and_not_at_safepoint();
assert(!isHumongous(word_size), "attempt_allocation() should not "
"be called for humongous allocation requests");
AllocationContext_t context = AllocationContext::current();
HeapWord* result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
false /* bot_updates */);
if (result == NULL) {
result = attempt_allocation_slow(word_size,
context,
gc_count_before_ret,
gclocker_retry_count_ret);
}
assert_heap_not_locked();
if (result != NULL) {
dirty_young_block(result, word_size);
}
return result;
}
inline HeapWord* G1CollectedHeap::survivor_attempt_allocation(size_t word_size,
AllocationContext_t context) {
assert(!isHumongous(word_size),
"we should not be seeing humongous-size allocations in this path");
HeapWord* result = _allocator->survivor_gc_alloc_region(context)->attempt_allocation(word_size,
false /* bot_updates */);
if (result == NULL) {
MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
result = _allocator->survivor_gc_alloc_region(context)->attempt_allocation_locked(word_size,
false /* bot_updates */);
}
if (result != NULL) {
dirty_young_block(result, word_size);
}
return result;
}
inline HeapWord* G1CollectedHeap::old_attempt_allocation(size_t word_size,
AllocationContext_t context) {
assert(!isHumongous(word_size),
"we should not be seeing humongous-size allocations in this path");
HeapWord* result = _allocator->old_gc_alloc_region(context)->attempt_allocation(word_size,
true /* bot_updates */);
if (result == NULL) {
MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
result = _allocator->old_gc_alloc_region(context)->attempt_allocation_locked(word_size,
true /* bot_updates */);
}
return result;
}
// It dirties the cards that cover the block so that so that the post
// write barrier never queues anything when updating objects on this
// block. It is assumed (and in fact we assert) that the block
// belongs to a young region.
inline void
G1CollectedHeap::dirty_young_block(HeapWord* start, size_t word_size) {
assert_heap_not_locked();
// Assign the containing region to containing_hr so that we don't
// have to keep calling heap_region_containing_raw() in the
// asserts below.
DEBUG_ONLY(HeapRegion* containing_hr = heap_region_containing_raw(start);)
assert(word_size > 0, "pre-condition");
assert(containing_hr->is_in(start), "it should contain start");
assert(containing_hr->is_young(), "it should be young");
assert(!containing_hr->isHumongous(), "it should not be humongous");
HeapWord* end = start + word_size;
assert(containing_hr->is_in(end - 1), "it should also contain end - 1");
MemRegion mr(start, end);
g1_barrier_set()->g1_mark_as_young(mr);
}
inline RefToScanQueue* G1CollectedHeap::task_queue(int i) const {
return _task_queues->queue(i);
}
inline bool G1CollectedHeap::isMarkedPrev(oop obj) const {
return _cm->prevMarkBitMap()->isMarked((HeapWord *)obj);
}
inline bool G1CollectedHeap::isMarkedNext(oop obj) const {
return _cm->nextMarkBitMap()->isMarked((HeapWord *)obj);
}
// This is a fast test on whether a reference points into the
// collection set or not. Assume that the reference
// points into the heap.
inline bool G1CollectedHeap::is_in_cset(oop obj) {
bool ret = _in_cset_fast_test.is_in_cset((HeapWord*)obj);
// let's make sure the result is consistent with what the slower
// test returns
assert( ret || !obj_in_cs(obj), "sanity");
assert(!ret || obj_in_cs(obj), "sanity");
return ret;
}
bool G1CollectedHeap::is_in_cset_or_humongous(const oop obj) {
return _in_cset_fast_test.is_in_cset_or_humongous((HeapWord*)obj);
}
InCSetState G1CollectedHeap::in_cset_state(const oop obj) {
return _in_cset_fast_test.at((HeapWord*)obj);
}
void G1CollectedHeap::register_humongous_region_with_in_cset_fast_test(uint index) {
_in_cset_fast_test.set_humongous(index);
}
#ifndef PRODUCT
// Support for G1EvacuationFailureALot
inline bool
G1CollectedHeap::evacuation_failure_alot_for_gc_type(bool gcs_are_young,
bool during_initial_mark,
bool during_marking) {
bool res = false;
if (during_marking) {
res |= G1EvacuationFailureALotDuringConcMark;
}
if (during_initial_mark) {
res |= G1EvacuationFailureALotDuringInitialMark;
}
if (gcs_are_young) {
res |= G1EvacuationFailureALotDuringYoungGC;
} else {
// GCs are mixed
res |= G1EvacuationFailureALotDuringMixedGC;
}
return res;
}
inline void
G1CollectedHeap::set_evacuation_failure_alot_for_current_gc() {
if (G1EvacuationFailureALot) {
// Note we can't assert that _evacuation_failure_alot_for_current_gc
// is clear here. It may have been set during a previous GC but that GC
// did not copy enough objects (i.e. G1EvacuationFailureALotCount) to
// trigger an evacuation failure and clear the flags and and counts.
// Check if we have gone over the interval.
const size_t gc_num = total_collections();
const size_t elapsed_gcs = gc_num - _evacuation_failure_alot_gc_number;
_evacuation_failure_alot_for_current_gc = (elapsed_gcs >= G1EvacuationFailureALotInterval);
// Now check if G1EvacuationFailureALot is enabled for the current GC type.
const bool gcs_are_young = g1_policy()->gcs_are_young();
const bool during_im = g1_policy()->during_initial_mark_pause();
const bool during_marking = mark_in_progress();
_evacuation_failure_alot_for_current_gc &=
evacuation_failure_alot_for_gc_type(gcs_are_young,
during_im,
during_marking);
}
}
inline bool G1CollectedHeap::evacuation_should_fail() {
if (!G1EvacuationFailureALot || !_evacuation_failure_alot_for_current_gc) {
return false;
}
// G1EvacuationFailureALot is in effect for current GC
// Access to _evacuation_failure_alot_count is not atomic;
// the value does not have to be exact.
if (++_evacuation_failure_alot_count < G1EvacuationFailureALotCount) {
return false;
}
_evacuation_failure_alot_count = 0;
return true;
}
inline void G1CollectedHeap::reset_evacuation_should_fail() {
if (G1EvacuationFailureALot) {
_evacuation_failure_alot_gc_number = total_collections();
_evacuation_failure_alot_count = 0;
_evacuation_failure_alot_for_current_gc = false;
}
}
#endif // #ifndef PRODUCT
inline bool G1CollectedHeap::is_in_young(const oop obj) {
if (obj == NULL) {
return false;
}
return heap_region_containing(obj)->is_young();
}
// We don't need barriers for initializing stores to objects
// in the young gen: for the SATB pre-barrier, there is no
// pre-value that needs to be remembered; for the remembered-set
// update logging post-barrier, we don't maintain remembered set
// information for young gen objects.
inline bool G1CollectedHeap::can_elide_initializing_store_barrier(oop new_obj) {
return is_in_young(new_obj);
}
inline bool G1CollectedHeap::is_obj_dead(const oop obj) const {
if (obj == NULL) {
return false;
}
return is_obj_dead(obj, heap_region_containing(obj));
}
inline bool G1CollectedHeap::is_obj_ill(const oop obj) const {
if (obj == NULL) {
return false;
}
return is_obj_ill(obj, heap_region_containing(obj));
}
inline void G1CollectedHeap::set_humongous_reclaim_candidate(uint region, bool value) {
assert(_hrm.at(region)->startsHumongous(), "Must start a humongous object");
_humongous_reclaim_candidates.set_candidate(region, value);
}
inline bool G1CollectedHeap::is_humongous_reclaim_candidate(uint region) {
assert(_hrm.at(region)->startsHumongous(), "Must start a humongous object");
return _humongous_reclaim_candidates.is_candidate(region);
}
inline void G1CollectedHeap::set_humongous_is_live(oop obj) {
uint region = addr_to_region((HeapWord*)obj);
// Clear the flag in the humongous_reclaim_candidates table. Also
// reset the entry in the _in_cset_fast_test table so that subsequent references
// to the same humongous object do not go into the slow path again.
// This is racy, as multiple threads may at the same time enter here, but this
// is benign.
// During collection we only ever clear the "candidate" flag, and only ever clear the
// entry in the in_cset_fast_table.
// We only ever evaluate the contents of these tables (in the VM thread) after
// having synchronized the worker threads with the VM thread, or in the same
// thread (i.e. within the VM thread).
if (is_humongous_reclaim_candidate(region)) {
set_humongous_reclaim_candidate(region, false);
_in_cset_fast_test.clear_humongous(region);
}
}
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP