blob: 7269068f630ef6c7d52771caf158e27e7b19ff67 [file] [log] [blame]
/*
* Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP
#include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
#include "gc_implementation/concurrentMarkSweep/promotionInfo.hpp"
#include "memory/binaryTreeDictionary.hpp"
#include "memory/blockOffsetTable.inline.hpp"
#include "memory/freeList.hpp"
#include "memory/space.hpp"
// Classes in support of keeping track of promotions into a non-Contiguous
// space, in this case a CompactibleFreeListSpace.
// Forward declarations
class CompactibleFreeListSpace;
class BlkClosure;
class BlkClosureCareful;
class FreeChunk;
class UpwardsObjectClosure;
class ObjectClosureCareful;
class Klass;
class LinearAllocBlock VALUE_OBJ_CLASS_SPEC {
public:
LinearAllocBlock() : _ptr(0), _word_size(0), _refillSize(0),
_allocation_size_limit(0) {}
void set(HeapWord* ptr, size_t word_size, size_t refill_size,
size_t allocation_size_limit) {
_ptr = ptr;
_word_size = word_size;
_refillSize = refill_size;
_allocation_size_limit = allocation_size_limit;
}
HeapWord* _ptr;
size_t _word_size;
size_t _refillSize;
size_t _allocation_size_limit; // largest size that will be allocated
void print_on(outputStream* st) const;
};
// Concrete subclass of CompactibleSpace that implements
// a free list space, such as used in the concurrent mark sweep
// generation.
class CompactibleFreeListSpace: public CompactibleSpace {
friend class VMStructs;
friend class ConcurrentMarkSweepGeneration;
friend class ASConcurrentMarkSweepGeneration;
friend class CMSCollector;
// Local alloc buffer for promotion into this space.
friend class CFLS_LAB;
// "Size" of chunks of work (executed during parallel remark phases
// of CMS collection); this probably belongs in CMSCollector, although
// it's cached here because it's used in
// initialize_sequential_subtasks_for_rescan() which modifies
// par_seq_tasks which also lives in Space. XXX
const size_t _rescan_task_size;
const size_t _marking_task_size;
// Yet another sequential tasks done structure. This supports
// CMS GC, where we have threads dynamically
// claiming sub-tasks from a larger parallel task.
SequentialSubTasksDone _conc_par_seq_tasks;
BlockOffsetArrayNonContigSpace _bt;
CMSCollector* _collector;
ConcurrentMarkSweepGeneration* _gen;
// Data structures for free blocks (used during allocation/sweeping)
// Allocation is done linearly from two different blocks depending on
// whether the request is small or large, in an effort to reduce
// fragmentation. We assume that any locking for allocation is done
// by the containing generation. Thus, none of the methods in this
// space are re-entrant.
enum SomeConstants {
SmallForLinearAlloc = 16, // size < this then use _sLAB
SmallForDictionary = 257, // size < this then use _indexedFreeList
IndexSetSize = SmallForDictionary // keep this odd-sized
};
static size_t IndexSetStart;
static size_t IndexSetStride;
private:
enum FitStrategyOptions {
FreeBlockStrategyNone = 0,
FreeBlockBestFitFirst
};
PromotionInfo _promoInfo;
// helps to impose a global total order on freelistLock ranks;
// assumes that CFLSpace's are allocated in global total order
static int _lockRank;
// a lock protecting the free lists and free blocks;
// mutable because of ubiquity of locking even for otherwise const methods
mutable Mutex _freelistLock;
// locking verifier convenience function
void assert_locked() const PRODUCT_RETURN;
void assert_locked(const Mutex* lock) const PRODUCT_RETURN;
// Linear allocation blocks
LinearAllocBlock _smallLinearAllocBlock;
FreeBlockDictionary<FreeChunk>::DictionaryChoice _dictionaryChoice;
AFLBinaryTreeDictionary* _dictionary; // ptr to dictionary for large size blocks
AdaptiveFreeList<FreeChunk> _indexedFreeList[IndexSetSize];
// indexed array for small size blocks
// allocation stategy
bool _fitStrategy; // Use best fit strategy.
bool _adaptive_freelists; // Use adaptive freelists
// This is an address close to the largest free chunk in the heap.
// It is currently assumed to be at the end of the heap. Free
// chunks with addresses greater than nearLargestChunk are coalesced
// in an effort to maintain a large chunk at the end of the heap.
HeapWord* _nearLargestChunk;
// Used to keep track of limit of sweep for the space
HeapWord* _sweep_limit;
// Support for compacting cms
HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
HeapWord* forward(oop q, size_t size, CompactPoint* cp, HeapWord* compact_top);
// Initialization helpers.
void initializeIndexedFreeListArray();
// Extra stuff to manage promotion parallelism.
// a lock protecting the dictionary during par promotion allocation.
mutable Mutex _parDictionaryAllocLock;
Mutex* parDictionaryAllocLock() const { return &_parDictionaryAllocLock; }
// Locks protecting the exact lists during par promotion allocation.
Mutex* _indexedFreeListParLocks[IndexSetSize];
// Attempt to obtain up to "n" blocks of the size "word_sz" (which is
// required to be smaller than "IndexSetSize".) If successful,
// adds them to "fl", which is required to be an empty free list.
// If the count of "fl" is negative, it's absolute value indicates a
// number of free chunks that had been previously "borrowed" from global
// list of size "word_sz", and must now be decremented.
void par_get_chunk_of_blocks(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
// Used by par_get_chunk_of_blocks() for the chunks from the
// indexed_free_lists.
bool par_get_chunk_of_blocks_IFL(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
// Used by par_get_chunk_of_blocks_dictionary() to get a chunk
// evenly splittable into "n" "word_sz" chunks. Returns that
// evenly splittable chunk. May split a larger chunk to get the
// evenly splittable chunk.
FreeChunk* get_n_way_chunk_to_split(size_t word_sz, size_t n);
// Used by par_get_chunk_of_blocks() for the chunks from the
// dictionary.
void par_get_chunk_of_blocks_dictionary(size_t word_sz, size_t n, AdaptiveFreeList<FreeChunk>* fl);
// Allocation helper functions
// Allocate using a strategy that takes from the indexed free lists
// first. This allocation strategy assumes a companion sweeping
// strategy that attempts to keep the needed number of chunks in each
// indexed free lists.
HeapWord* allocate_adaptive_freelists(size_t size);
// Allocate from the linear allocation buffers first. This allocation
// strategy assumes maximal coalescing can maintain chunks large enough
// to be used as linear allocation buffers.
HeapWord* allocate_non_adaptive_freelists(size_t size);
// Gets a chunk from the linear allocation block (LinAB). If there
// is not enough space in the LinAB, refills it.
HeapWord* getChunkFromLinearAllocBlock(LinearAllocBlock* blk, size_t size);
HeapWord* getChunkFromSmallLinearAllocBlock(size_t size);
// Get a chunk from the space remaining in the linear allocation block. Do
// not attempt to refill if the space is not available, return NULL. Do the
// repairs on the linear allocation block as appropriate.
HeapWord* getChunkFromLinearAllocBlockRemainder(LinearAllocBlock* blk, size_t size);
inline HeapWord* getChunkFromSmallLinearAllocBlockRemainder(size_t size);
// Helper function for getChunkFromIndexedFreeList.
// Replenish the indexed free list for this "size". Do not take from an
// underpopulated size.
FreeChunk* getChunkFromIndexedFreeListHelper(size_t size, bool replenish = true);
// Get a chunk from the indexed free list. If the indexed free list
// does not have a free chunk, try to replenish the indexed free list
// then get the free chunk from the replenished indexed free list.
inline FreeChunk* getChunkFromIndexedFreeList(size_t size);
// The returned chunk may be larger than requested (or null).
FreeChunk* getChunkFromDictionary(size_t size);
// The returned chunk is the exact size requested (or null).
FreeChunk* getChunkFromDictionaryExact(size_t size);
// Find a chunk in the indexed free list that is the best
// fit for size "numWords".
FreeChunk* bestFitSmall(size_t numWords);
// For free list "fl" of chunks of size > numWords,
// remove a chunk, split off a chunk of size numWords
// and return it. The split off remainder is returned to
// the free lists. The old name for getFromListGreater
// was lookInListGreater.
FreeChunk* getFromListGreater(AdaptiveFreeList<FreeChunk>* fl, size_t numWords);
// Get a chunk in the indexed free list or dictionary,
// by considering a larger chunk and splitting it.
FreeChunk* getChunkFromGreater(size_t numWords);
// Verify that the given chunk is in the indexed free lists.
bool verifyChunkInIndexedFreeLists(FreeChunk* fc) const;
// Remove the specified chunk from the indexed free lists.
void removeChunkFromIndexedFreeList(FreeChunk* fc);
// Remove the specified chunk from the dictionary.
void removeChunkFromDictionary(FreeChunk* fc);
// Split a free chunk into a smaller free chunk of size "new_size".
// Return the smaller free chunk and return the remainder to the
// free lists.
FreeChunk* splitChunkAndReturnRemainder(FreeChunk* chunk, size_t new_size);
// Add a chunk to the free lists.
void addChunkToFreeLists(HeapWord* chunk, size_t size);
// Add a chunk to the free lists, preferring to suffix it
// to the last free chunk at end of space if possible, and
// updating the block census stats as well as block offset table.
// Take any locks as appropriate if we are multithreaded.
void addChunkToFreeListsAtEndRecordingStats(HeapWord* chunk, size_t size);
// Add a free chunk to the indexed free lists.
void returnChunkToFreeList(FreeChunk* chunk);
// Add a free chunk to the dictionary.
void returnChunkToDictionary(FreeChunk* chunk);
// Functions for maintaining the linear allocation buffers (LinAB).
// Repairing a linear allocation block refers to operations
// performed on the remainder of a LinAB after an allocation
// has been made from it.
void repairLinearAllocationBlocks();
void repairLinearAllocBlock(LinearAllocBlock* blk);
void refillLinearAllocBlock(LinearAllocBlock* blk);
void refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk);
void refillLinearAllocBlocksIfNeeded();
void verify_objects_initialized() const;
// Statistics reporting helper functions
void reportFreeListStatistics() const;
void reportIndexedFreeListStatistics() const;
size_t maxChunkSizeInIndexedFreeLists() const;
size_t numFreeBlocksInIndexedFreeLists() const;
// Accessor
HeapWord* unallocated_block() const {
if (BlockOffsetArrayUseUnallocatedBlock) {
HeapWord* ub = _bt.unallocated_block();
assert(ub >= bottom() &&
ub <= end(), "space invariant");
return ub;
} else {
return end();
}
}
void freed(HeapWord* start, size_t size) {
_bt.freed(start, size);
}
protected:
// reset the indexed free list to its initial empty condition.
void resetIndexedFreeListArray();
// reset to an initial state with a single free block described
// by the MemRegion parameter.
void reset(MemRegion mr);
// Return the total number of words in the indexed free lists.
size_t totalSizeInIndexedFreeLists() const;
public:
// Constructor...
CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr,
bool use_adaptive_freelists,
FreeBlockDictionary<FreeChunk>::DictionaryChoice);
// accessors
bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
FreeBlockDictionary<FreeChunk>* dictionary() const { return _dictionary; }
HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
// Set CMS global values
static void set_cms_values();
// Return the free chunk at the end of the space. If no such
// chunk exists, return NULL.
FreeChunk* find_chunk_at_end();
bool adaptive_freelists() const { return _adaptive_freelists; }
void set_collector(CMSCollector* collector) { _collector = collector; }
// Support for parallelization of rescan and marking
const size_t rescan_task_size() const { return _rescan_task_size; }
const size_t marking_task_size() const { return _marking_task_size; }
SequentialSubTasksDone* conc_par_seq_tasks() {return &_conc_par_seq_tasks; }
void initialize_sequential_subtasks_for_rescan(int n_threads);
void initialize_sequential_subtasks_for_marking(int n_threads,
HeapWord* low = NULL);
// Space enquiries
size_t used() const;
size_t free() const;
size_t max_alloc_in_words() const;
// XXX: should have a less conservative used_region() than that of
// Space; we could consider keeping track of highest allocated
// address and correcting that at each sweep, as the sweeper
// goes through the entire allocated part of the generation. We
// could also use that information to keep the sweeper from
// sweeping more than is necessary. The allocator and sweeper will
// of course need to synchronize on this, since the sweeper will
// try to bump down the address and the allocator will try to bump it up.
// For now, however, we'll just use the default used_region()
// which overestimates the region by returning the entire
// committed region (this is safe, but inefficient).
// Returns a subregion of the space containing all the objects in
// the space.
MemRegion used_region() const {
return MemRegion(bottom(),
BlockOffsetArrayUseUnallocatedBlock ?
unallocated_block() : end());
}
virtual bool is_free_block(const HeapWord* p) const;
// Resizing support
void set_end(HeapWord* value); // override
// mutual exclusion support
Mutex* freelistLock() const { return &_freelistLock; }
// Iteration support
void oop_iterate(ExtendedOopClosure* cl);
void object_iterate(ObjectClosure* blk);
// Apply the closure to each object in the space whose references
// point to objects in the heap. The usage of CompactibleFreeListSpace
// by the ConcurrentMarkSweepGeneration for concurrent GC's allows
// objects in the space with references to objects that are no longer
// valid. For example, an object may reference another object
// that has already been sweep up (collected). This method uses
// obj_is_alive() to determine whether it is safe to iterate of
// an object.
void safe_object_iterate(ObjectClosure* blk);
// Iterate over all objects that intersect with mr, calling "cl->do_object"
// on each. There is an exception to this: if this closure has already
// been invoked on an object, it may skip such objects in some cases. This is
// Most likely to happen in an "upwards" (ascending address) iteration of
// MemRegions.
void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
// Requires that "mr" be entirely within the space.
// Apply "cl->do_object" to all objects that intersect with "mr".
// If the iteration encounters an unparseable portion of the region,
// terminate the iteration and return the address of the start of the
// subregion that isn't done. Return of "NULL" indicates that the
// interation completed.
HeapWord* object_iterate_careful_m(MemRegion mr,
ObjectClosureCareful* cl);
// Override: provides a DCTO_CL specific to this kind of space.
DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
CardTableModRefBS::PrecisionStyle precision,
HeapWord* boundary);
void blk_iterate(BlkClosure* cl);
void blk_iterate_careful(BlkClosureCareful* cl);
HeapWord* block_start_const(const void* p) const;
HeapWord* block_start_careful(const void* p) const;
size_t block_size(const HeapWord* p) const;
size_t block_size_no_stall(HeapWord* p, const CMSCollector* c) const;
bool block_is_obj(const HeapWord* p) const;
bool obj_is_alive(const HeapWord* p) const;
size_t block_size_nopar(const HeapWord* p) const;
bool block_is_obj_nopar(const HeapWord* p) const;
// iteration support for promotion
void save_marks();
bool no_allocs_since_save_marks();
// iteration support for sweeping
void save_sweep_limit() {
_sweep_limit = BlockOffsetArrayUseUnallocatedBlock ?
unallocated_block() : end();
if (CMSTraceSweeper) {
gclog_or_tty->print_cr(">>>>> Saving sweep limit " PTR_FORMAT
" for space [" PTR_FORMAT "," PTR_FORMAT ") <<<<<<",
p2i(_sweep_limit), p2i(bottom()), p2i(end()));
}
}
NOT_PRODUCT(
void clear_sweep_limit() { _sweep_limit = NULL; }
)
HeapWord* sweep_limit() { return _sweep_limit; }
// Apply "blk->do_oop" to the addresses of all reference fields in objects
// promoted into this generation since the most recent save_marks() call.
// Fields in objects allocated by applications of the closure
// *are* included in the iteration. Thus, when the iteration completes
// there should be no further such objects remaining.
#define CFLS_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DECL)
#undef CFLS_OOP_SINCE_SAVE_MARKS_DECL
// Allocation support
HeapWord* allocate(size_t size);
HeapWord* par_allocate(size_t size);
oop promote(oop obj, size_t obj_size);
void gc_prologue();
void gc_epilogue();
// This call is used by a containing CMS generation / collector
// to inform the CFLS space that a sweep has been completed
// and that the space can do any related house-keeping functions.
void sweep_completed();
// For an object in this space, the mark-word's two
// LSB's having the value [11] indicates that it has been
// promoted since the most recent call to save_marks() on
// this generation and has not subsequently been iterated
// over (using oop_since_save_marks_iterate() above).
// This property holds only for single-threaded collections,
// and is typically used for Cheney scans; for MT scavenges,
// the property holds for all objects promoted during that
// scavenge for the duration of the scavenge and is used
// by card-scanning to avoid scanning objects (being) promoted
// during that scavenge.
bool obj_allocated_since_save_marks(const oop obj) const {
assert(is_in_reserved(obj), "Wrong space?");
return ((PromotedObject*)obj)->hasPromotedMark();
}
// A worst-case estimate of the space required (in HeapWords) to expand the
// heap when promoting an obj of size obj_size.
size_t expansionSpaceRequired(size_t obj_size) const;
FreeChunk* allocateScratch(size_t size);
// returns true if either the small or large linear allocation buffer is empty.
bool linearAllocationWouldFail() const;
// Adjust the chunk for the minimum size. This version is called in
// most cases in CompactibleFreeListSpace methods.
inline static size_t adjustObjectSize(size_t size) {
return (size_t) align_object_size(MAX2(size, (size_t)MinChunkSize));
}
// This is a virtual version of adjustObjectSize() that is called
// only occasionally when the compaction space changes and the type
// of the new compaction space is is only known to be CompactibleSpace.
size_t adjust_object_size_v(size_t size) const {
return adjustObjectSize(size);
}
// Minimum size of a free block.
virtual size_t minimum_free_block_size() const { return MinChunkSize; }
void removeFreeChunkFromFreeLists(FreeChunk* chunk);
void addChunkAndRepairOffsetTable(HeapWord* chunk, size_t size,
bool coalesced);
// Support for decisions regarding concurrent collection policy
bool should_concurrent_collect() const;
// Support for compaction
void prepare_for_compaction(CompactPoint* cp);
void adjust_pointers();
void compact();
// reset the space to reflect the fact that a compaction of the
// space has been done.
virtual void reset_after_compaction();
// Debugging support
void print() const;
void print_on(outputStream* st) const;
void prepare_for_verify();
void verify() const;
void verifyFreeLists() const PRODUCT_RETURN;
void verifyIndexedFreeLists() const;
void verifyIndexedFreeList(size_t size) const;
// Verify that the given chunk is in the free lists:
// i.e. either the binary tree dictionary, the indexed free lists
// or the linear allocation block.
bool verify_chunk_in_free_list(FreeChunk* fc) const;
// Verify that the given chunk is the linear allocation block
bool verify_chunk_is_linear_alloc_block(FreeChunk* fc) const;
// Do some basic checks on the the free lists.
void check_free_list_consistency() const PRODUCT_RETURN;
// Printing support
void dump_at_safepoint_with_locks(CMSCollector* c, outputStream* st);
void print_indexed_free_lists(outputStream* st) const;
void print_dictionary_free_lists(outputStream* st) const;
void print_promo_info_blocks(outputStream* st) const;
NOT_PRODUCT (
void initializeIndexedFreeListArrayReturnedBytes();
size_t sumIndexedFreeListArrayReturnedBytes();
// Return the total number of chunks in the indexed free lists.
size_t totalCountInIndexedFreeLists() const;
// Return the total numberof chunks in the space.
size_t totalCount();
)
// The census consists of counts of the quantities such as
// the current count of the free chunks, number of chunks
// created as a result of the split of a larger chunk or
// coalescing of smaller chucks, etc. The counts in the
// census is used to make decisions on splitting and
// coalescing of chunks during the sweep of garbage.
// Print the statistics for the free lists.
void printFLCensus(size_t sweep_count) const;
// Statistics functions
// Initialize census for lists before the sweep.
void beginSweepFLCensus(float inter_sweep_current,
float inter_sweep_estimate,
float intra_sweep_estimate);
// Set the surplus for each of the free lists.
void setFLSurplus();
// Set the hint for each of the free lists.
void setFLHints();
// Clear the census for each of the free lists.
void clearFLCensus();
// Perform functions for the census after the end of the sweep.
void endSweepFLCensus(size_t sweep_count);
// Return true if the count of free chunks is greater
// than the desired number of free chunks.
bool coalOverPopulated(size_t size);
// Record (for each size):
//
// split-births = #chunks added due to splits in (prev-sweep-end,
// this-sweep-start)
// split-deaths = #chunks removed for splits in (prev-sweep-end,
// this-sweep-start)
// num-curr = #chunks at start of this sweep
// num-prev = #chunks at end of previous sweep
//
// The above are quantities that are measured. Now define:
//
// num-desired := num-prev + split-births - split-deaths - num-curr
//
// Roughly, num-prev + split-births is the supply,
// split-deaths is demand due to other sizes
// and num-curr is what we have left.
//
// Thus, num-desired is roughly speaking the "legitimate demand"
// for blocks of this size and what we are striving to reach at the
// end of the current sweep.
//
// For a given list, let num-len be its current population.
// Define, for a free list of a given size:
//
// coal-overpopulated := num-len >= num-desired * coal-surplus
// (coal-surplus is set to 1.05, i.e. we allow a little slop when
// coalescing -- we do not coalesce unless we think that the current
// supply has exceeded the estimated demand by more than 5%).
//
// For the set of sizes in the binary tree, which is neither dense nor
// closed, it may be the case that for a particular size we have never
// had, or do not now have, or did not have at the previous sweep,
// chunks of that size. We need to extend the definition of
// coal-overpopulated to such sizes as well:
//
// For a chunk in/not in the binary tree, extend coal-overpopulated
// defined above to include all sizes as follows:
//
// . a size that is non-existent is coal-overpopulated
// . a size that has a num-desired <= 0 as defined above is
// coal-overpopulated.
//
// Also define, for a chunk heap-offset C and mountain heap-offset M:
//
// close-to-mountain := C >= 0.99 * M
//
// Now, the coalescing strategy is:
//
// Coalesce left-hand chunk with right-hand chunk if and
// only if:
//
// EITHER
// . left-hand chunk is of a size that is coal-overpopulated
// OR
// . right-hand chunk is close-to-mountain
void smallCoalBirth(size_t size);
void smallCoalDeath(size_t size);
void coalBirth(size_t size);
void coalDeath(size_t size);
void smallSplitBirth(size_t size);
void smallSplitDeath(size_t size);
void split_birth(size_t size);
void splitDeath(size_t size);
void split(size_t from, size_t to1);
double flsFrag() const;
};
// A parallel-GC-thread-local allocation buffer for allocation into a
// CompactibleFreeListSpace.
class CFLS_LAB : public CHeapObj<mtGC> {
// The space that this buffer allocates into.
CompactibleFreeListSpace* _cfls;
// Our local free lists.
AdaptiveFreeList<FreeChunk> _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
// Initialized from a command-line arg.
// Allocation statistics in support of dynamic adjustment of
// #blocks to claim per get_from_global_pool() call below.
static AdaptiveWeightedAverage
_blocks_to_claim [CompactibleFreeListSpace::IndexSetSize];
static size_t _global_num_blocks [CompactibleFreeListSpace::IndexSetSize];
static uint _global_num_workers[CompactibleFreeListSpace::IndexSetSize];
size_t _num_blocks [CompactibleFreeListSpace::IndexSetSize];
// Internal work method
void get_from_global_pool(size_t word_sz, AdaptiveFreeList<FreeChunk>* fl);
public:
CFLS_LAB(CompactibleFreeListSpace* cfls);
// Allocate and return a block of the given size, or else return NULL.
HeapWord* alloc(size_t word_sz);
// Return any unused portions of the buffer to the global pool.
void retire(int tid);
// Dynamic OldPLABSize sizing
static void compute_desired_plab_size();
// When the settings are modified from default static initialization
static void modify_initialization(size_t n, unsigned wt);
};
size_t PromotionInfo::refillSize() const {
const size_t CMSSpoolBlockSize = 256;
const size_t sz = heap_word_size(sizeof(SpoolBlock) + sizeof(markOop)
* CMSSpoolBlockSize);
return CompactibleFreeListSpace::adjustObjectSize(sz);
}
#endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_COMPACTIBLEFREELISTSPACE_HPP