blob: c9059d73c67f0e5962ff49a6fb6ac58f3bcc06b0 [file] [log] [blame]
/*
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "code/codeBlob.hpp"
#include "code/codeCache.hpp"
#include "code/compiledIC.hpp"
#include "code/dependencies.hpp"
#include "code/icBuffer.hpp"
#include "code/nmethod.hpp"
#include "code/pcDesc.hpp"
#include "compiler/compileBroker.hpp"
#include "gc_implementation/shared/markSweep.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/gcLocker.hpp"
#include "memory/iterator.hpp"
#include "memory/resourceArea.hpp"
#include "oops/method.hpp"
#include "oops/objArrayOop.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/arguments.hpp"
#include "runtime/icache.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "services/memoryService.hpp"
#include "trace/tracing.hpp"
#include "utilities/xmlstream.hpp"
// Helper class for printing in CodeCache
class CodeBlob_sizes {
private:
int count;
int total_size;
int header_size;
int code_size;
int stub_size;
int relocation_size;
int scopes_oop_size;
int scopes_metadata_size;
int scopes_data_size;
int scopes_pcs_size;
public:
CodeBlob_sizes() {
count = 0;
total_size = 0;
header_size = 0;
code_size = 0;
stub_size = 0;
relocation_size = 0;
scopes_oop_size = 0;
scopes_metadata_size = 0;
scopes_data_size = 0;
scopes_pcs_size = 0;
}
int total() { return total_size; }
bool is_empty() { return count == 0; }
void print(const char* title) {
tty->print_cr(" #%d %s = %dK (hdr %d%%, loc %d%%, code %d%%, stub %d%%, [oops %d%%, metadata %d%%, data %d%%, pcs %d%%])",
count,
title,
(int)(total() / K),
header_size * 100 / total_size,
relocation_size * 100 / total_size,
code_size * 100 / total_size,
stub_size * 100 / total_size,
scopes_oop_size * 100 / total_size,
scopes_metadata_size * 100 / total_size,
scopes_data_size * 100 / total_size,
scopes_pcs_size * 100 / total_size);
}
void add(CodeBlob* cb) {
count++;
total_size += cb->size();
header_size += cb->header_size();
relocation_size += cb->relocation_size();
if (cb->is_nmethod()) {
nmethod* nm = cb->as_nmethod_or_null();
code_size += nm->insts_size();
stub_size += nm->stub_size();
scopes_oop_size += nm->oops_size();
scopes_metadata_size += nm->metadata_size();
scopes_data_size += nm->scopes_data_size();
scopes_pcs_size += nm->scopes_pcs_size();
} else {
code_size += cb->code_size();
}
}
};
// CodeCache implementation
CodeHeap * CodeCache::_heap = new CodeHeap();
int CodeCache::_number_of_blobs = 0;
int CodeCache::_number_of_adapters = 0;
int CodeCache::_number_of_nmethods = 0;
int CodeCache::_number_of_nmethods_with_dependencies = 0;
bool CodeCache::_needs_cache_clean = false;
nmethod* CodeCache::_scavenge_root_nmethods = NULL;
int CodeCache::_codemem_full_count = 0;
CodeBlob* CodeCache::first() {
assert_locked_or_safepoint(CodeCache_lock);
return (CodeBlob*)_heap->first();
}
CodeBlob* CodeCache::next(CodeBlob* cb) {
assert_locked_or_safepoint(CodeCache_lock);
return (CodeBlob*)_heap->next(cb);
}
CodeBlob* CodeCache::alive(CodeBlob *cb) {
assert_locked_or_safepoint(CodeCache_lock);
while (cb != NULL && !cb->is_alive()) cb = next(cb);
return cb;
}
nmethod* CodeCache::alive_nmethod(CodeBlob* cb) {
assert_locked_or_safepoint(CodeCache_lock);
while (cb != NULL && (!cb->is_alive() || !cb->is_nmethod())) cb = next(cb);
return (nmethod*)cb;
}
nmethod* CodeCache::first_nmethod() {
assert_locked_or_safepoint(CodeCache_lock);
CodeBlob* cb = first();
while (cb != NULL && !cb->is_nmethod()) {
cb = next(cb);
}
return (nmethod*)cb;
}
nmethod* CodeCache::next_nmethod (CodeBlob* cb) {
assert_locked_or_safepoint(CodeCache_lock);
cb = next(cb);
while (cb != NULL && !cb->is_nmethod()) {
cb = next(cb);
}
return (nmethod*)cb;
}
static size_t maxCodeCacheUsed = 0;
CodeBlob* CodeCache::allocate(int size, bool is_critical) {
// Do not seize the CodeCache lock here--if the caller has not
// already done so, we are going to lose bigtime, since the code
// cache will contain a garbage CodeBlob until the caller can
// run the constructor for the CodeBlob subclass he is busy
// instantiating.
guarantee(size >= 0, "allocation request must be reasonable");
assert_locked_or_safepoint(CodeCache_lock);
CodeBlob* cb = NULL;
_number_of_blobs++;
while (true) {
cb = (CodeBlob*)_heap->allocate(size, is_critical);
if (cb != NULL) break;
if (!_heap->expand_by(CodeCacheExpansionSize)) {
// Expansion failed
return NULL;
}
if (PrintCodeCacheExtension) {
ResourceMark rm;
tty->print_cr("code cache extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
(intptr_t)_heap->low_boundary(), (intptr_t)_heap->high(),
(address)_heap->high() - (address)_heap->low_boundary());
}
}
maxCodeCacheUsed = MAX2(maxCodeCacheUsed, ((address)_heap->high_boundary() -
(address)_heap->low_boundary()) - unallocated_capacity());
verify_if_often();
print_trace("allocation", cb, size);
return cb;
}
void CodeCache::free(CodeBlob* cb) {
assert_locked_or_safepoint(CodeCache_lock);
verify_if_often();
print_trace("free", cb);
if (cb->is_nmethod()) {
_number_of_nmethods--;
if (((nmethod *)cb)->has_dependencies()) {
_number_of_nmethods_with_dependencies--;
}
}
if (cb->is_adapter_blob()) {
_number_of_adapters--;
}
_number_of_blobs--;
_heap->deallocate(cb);
verify_if_often();
assert(_number_of_blobs >= 0, "sanity check");
}
void CodeCache::commit(CodeBlob* cb) {
// this is called by nmethod::nmethod, which must already own CodeCache_lock
assert_locked_or_safepoint(CodeCache_lock);
if (cb->is_nmethod()) {
_number_of_nmethods++;
if (((nmethod *)cb)->has_dependencies()) {
_number_of_nmethods_with_dependencies++;
}
}
if (cb->is_adapter_blob()) {
_number_of_adapters++;
}
// flush the hardware I-cache
ICache::invalidate_range(cb->content_begin(), cb->content_size());
}
void CodeCache::flush() {
assert_locked_or_safepoint(CodeCache_lock);
Unimplemented();
}
// Iteration over CodeBlobs
#define FOR_ALL_BLOBS(var) for (CodeBlob *var = first() ; var != NULL; var = next(var) )
#define FOR_ALL_ALIVE_BLOBS(var) for (CodeBlob *var = alive(first()); var != NULL; var = alive(next(var)))
#define FOR_ALL_ALIVE_NMETHODS(var) for (nmethod *var = alive_nmethod(first()); var != NULL; var = alive_nmethod(next(var)))
bool CodeCache::contains(void *p) {
// It should be ok to call contains without holding a lock
return _heap->contains(p);
}
// This method is safe to call without holding the CodeCache_lock, as long as a dead codeblob is not
// looked up (i.e., one that has been marked for deletion). It only dependes on the _segmap to contain
// valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
CodeBlob* CodeCache::find_blob(void* start) {
CodeBlob* result = find_blob_unsafe(start);
if (result == NULL) return NULL;
// We could potientially look up non_entrant methods
guarantee(!result->is_zombie() || result->is_locked_by_vm() || is_error_reported(), "unsafe access to zombie method");
return result;
}
nmethod* CodeCache::find_nmethod(void* start) {
CodeBlob *cb = find_blob(start);
assert(cb == NULL || cb->is_nmethod(), "did not find an nmethod");
return (nmethod*)cb;
}
void CodeCache::blobs_do(void f(CodeBlob* nm)) {
assert_locked_or_safepoint(CodeCache_lock);
FOR_ALL_BLOBS(p) {
f(p);
}
}
void CodeCache::nmethods_do(void f(nmethod* nm)) {
assert_locked_or_safepoint(CodeCache_lock);
FOR_ALL_BLOBS(nm) {
if (nm->is_nmethod()) f((nmethod*)nm);
}
}
void CodeCache::alive_nmethods_do(void f(nmethod* nm)) {
assert_locked_or_safepoint(CodeCache_lock);
FOR_ALL_ALIVE_NMETHODS(nm) {
f(nm);
}
}
int CodeCache::alignment_unit() {
return (int)_heap->alignment_unit();
}
int CodeCache::alignment_offset() {
return (int)_heap->alignment_offset();
}
// Mark nmethods for unloading if they contain otherwise unreachable
// oops.
void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) {
assert_locked_or_safepoint(CodeCache_lock);
FOR_ALL_ALIVE_NMETHODS(nm) {
nm->do_unloading(is_alive, unloading_occurred);
}
}
void CodeCache::blobs_do(CodeBlobClosure* f) {
assert_locked_or_safepoint(CodeCache_lock);
FOR_ALL_ALIVE_BLOBS(cb) {
f->do_code_blob(cb);
#ifdef ASSERT
if (cb->is_nmethod())
((nmethod*)cb)->verify_scavenge_root_oops();
#endif //ASSERT
}
}
// Walk the list of methods which might contain non-perm oops.
void CodeCache::scavenge_root_nmethods_do(CodeBlobClosure* f) {
assert_locked_or_safepoint(CodeCache_lock);
if (UseG1GC) {
return;
}
debug_only(mark_scavenge_root_nmethods());
for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
debug_only(cur->clear_scavenge_root_marked());
assert(cur->scavenge_root_not_marked(), "");
assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
bool is_live = (!cur->is_zombie() && !cur->is_unloaded());
#ifndef PRODUCT
if (TraceScavenge) {
cur->print_on(tty, is_live ? "scavenge root" : "dead scavenge root"); tty->cr();
}
#endif //PRODUCT
if (is_live) {
// Perform cur->oops_do(f), maybe just once per nmethod.
f->do_code_blob(cur);
}
}
// Check for stray marks.
debug_only(verify_perm_nmethods(NULL));
}
void CodeCache::add_scavenge_root_nmethod(nmethod* nm) {
assert_locked_or_safepoint(CodeCache_lock);
if (UseG1GC) {
return;
}
nm->set_on_scavenge_root_list();
nm->set_scavenge_root_link(_scavenge_root_nmethods);
set_scavenge_root_nmethods(nm);
print_trace("add_scavenge_root", nm);
}
void CodeCache::drop_scavenge_root_nmethod(nmethod* nm) {
assert_locked_or_safepoint(CodeCache_lock);
if (UseG1GC) {
return;
}
print_trace("drop_scavenge_root", nm);
nmethod* last = NULL;
nmethod* cur = scavenge_root_nmethods();
while (cur != NULL) {
nmethod* next = cur->scavenge_root_link();
if (cur == nm) {
if (last != NULL)
last->set_scavenge_root_link(next);
else set_scavenge_root_nmethods(next);
nm->set_scavenge_root_link(NULL);
nm->clear_on_scavenge_root_list();
return;
}
last = cur;
cur = next;
}
assert(false, "should have been on list");
}
void CodeCache::prune_scavenge_root_nmethods() {
assert_locked_or_safepoint(CodeCache_lock);
if (UseG1GC) {
return;
}
debug_only(mark_scavenge_root_nmethods());
nmethod* last = NULL;
nmethod* cur = scavenge_root_nmethods();
while (cur != NULL) {
nmethod* next = cur->scavenge_root_link();
debug_only(cur->clear_scavenge_root_marked());
assert(cur->scavenge_root_not_marked(), "");
assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
if (!cur->is_zombie() && !cur->is_unloaded()
&& cur->detect_scavenge_root_oops()) {
// Keep it. Advance 'last' to prevent deletion.
last = cur;
} else {
// Prune it from the list, so we don't have to look at it any more.
print_trace("prune_scavenge_root", cur);
cur->set_scavenge_root_link(NULL);
cur->clear_on_scavenge_root_list();
if (last != NULL)
last->set_scavenge_root_link(next);
else set_scavenge_root_nmethods(next);
}
cur = next;
}
// Check for stray marks.
debug_only(verify_perm_nmethods(NULL));
}
#ifndef PRODUCT
void CodeCache::asserted_non_scavengable_nmethods_do(CodeBlobClosure* f) {
if (UseG1GC) {
return;
}
// While we are here, verify the integrity of the list.
mark_scavenge_root_nmethods();
for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
cur->clear_scavenge_root_marked();
}
verify_perm_nmethods(f);
}
// Temporarily mark nmethods that are claimed to be on the non-perm list.
void CodeCache::mark_scavenge_root_nmethods() {
FOR_ALL_ALIVE_BLOBS(cb) {
if (cb->is_nmethod()) {
nmethod *nm = (nmethod*)cb;
assert(nm->scavenge_root_not_marked(), "clean state");
if (nm->on_scavenge_root_list())
nm->set_scavenge_root_marked();
}
}
}
// If the closure is given, run it on the unlisted nmethods.
// Also make sure that the effects of mark_scavenge_root_nmethods is gone.
void CodeCache::verify_perm_nmethods(CodeBlobClosure* f_or_null) {
FOR_ALL_ALIVE_BLOBS(cb) {
bool call_f = (f_or_null != NULL);
if (cb->is_nmethod()) {
nmethod *nm = (nmethod*)cb;
assert(nm->scavenge_root_not_marked(), "must be already processed");
if (nm->on_scavenge_root_list())
call_f = false; // don't show this one to the client
nm->verify_scavenge_root_oops();
} else {
call_f = false; // not an nmethod
}
if (call_f) f_or_null->do_code_blob(cb);
}
}
#endif //PRODUCT
void CodeCache::verify_clean_inline_caches() {
#ifdef ASSERT
FOR_ALL_ALIVE_BLOBS(cb) {
if (cb->is_nmethod()) {
nmethod* nm = (nmethod*)cb;
assert(!nm->is_unloaded(), "Tautology");
nm->verify_clean_inline_caches();
nm->verify();
}
}
#endif
}
void CodeCache::verify_icholder_relocations() {
#ifdef ASSERT
// make sure that we aren't leaking icholders
int count = 0;
FOR_ALL_BLOBS(cb) {
if (cb->is_nmethod()) {
nmethod* nm = (nmethod*)cb;
count += nm->verify_icholder_relocations();
}
}
assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
CompiledICHolder::live_count(), "must agree");
#endif
}
void CodeCache::gc_prologue() {
}
void CodeCache::gc_epilogue() {
assert_locked_or_safepoint(CodeCache_lock);
NOT_DEBUG(if (needs_cache_clean())) {
FOR_ALL_ALIVE_BLOBS(cb) {
if (cb->is_nmethod()) {
nmethod *nm = (nmethod*)cb;
assert(!nm->is_unloaded(), "Tautology");
DEBUG_ONLY(if (needs_cache_clean())) {
nm->cleanup_inline_caches();
}
DEBUG_ONLY(nm->verify());
DEBUG_ONLY(nm->verify_oop_relocations());
}
}
}
set_needs_cache_clean(false);
prune_scavenge_root_nmethods();
verify_icholder_relocations();
}
void CodeCache::verify_oops() {
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
VerifyOopClosure voc;
FOR_ALL_ALIVE_BLOBS(cb) {
if (cb->is_nmethod()) {
nmethod *nm = (nmethod*)cb;
nm->oops_do(&voc);
nm->verify_oop_relocations();
}
}
}
address CodeCache::first_address() {
assert_locked_or_safepoint(CodeCache_lock);
return (address)_heap->low_boundary();
}
address CodeCache::last_address() {
assert_locked_or_safepoint(CodeCache_lock);
return (address)_heap->high();
}
/**
* Returns the reverse free ratio. E.g., if 25% (1/4) of the code cache
* is free, reverse_free_ratio() returns 4.
*/
double CodeCache::reverse_free_ratio() {
double unallocated_capacity = (double)(CodeCache::unallocated_capacity() - CodeCacheMinimumFreeSpace);
double max_capacity = (double)CodeCache::max_capacity();
return max_capacity / unallocated_capacity;
}
void icache_init();
void CodeCache::initialize() {
assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
#ifdef COMPILER2
assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment, "CodeCacheSegmentSize must be large enough to align inner loops");
#endif
assert(CodeCacheSegmentSize >= sizeof(jdouble), "CodeCacheSegmentSize must be large enough to align constants");
// This was originally just a check of the alignment, causing failure, instead, round
// the code cache to the page size. In particular, Solaris is moving to a larger
// default page size.
CodeCacheExpansionSize = round_to(CodeCacheExpansionSize, os::vm_page_size());
InitialCodeCacheSize = round_to(InitialCodeCacheSize, os::vm_page_size());
ReservedCodeCacheSize = round_to(ReservedCodeCacheSize, os::vm_page_size());
if (!_heap->reserve(ReservedCodeCacheSize, InitialCodeCacheSize, CodeCacheSegmentSize)) {
vm_exit_during_initialization("Could not reserve enough space for code cache");
}
MemoryService::add_code_heap_memory_pool(_heap);
// Initialize ICache flush mechanism
// This service is needed for os::register_code_area
icache_init();
// Give OS a chance to register generated code area.
// This is used on Windows 64 bit platforms to register
// Structured Exception Handlers for our generated code.
os::register_code_area(_heap->low_boundary(), _heap->high_boundary());
}
void codeCache_init() {
CodeCache::initialize();
}
//------------------------------------------------------------------------------------------------
int CodeCache::number_of_nmethods_with_dependencies() {
return _number_of_nmethods_with_dependencies;
}
void CodeCache::clear_inline_caches() {
assert_locked_or_safepoint(CodeCache_lock);
FOR_ALL_ALIVE_NMETHODS(nm) {
nm->clear_inline_caches();
}
}
#ifndef PRODUCT
// used to keep track of how much time is spent in mark_for_deoptimization
static elapsedTimer dependentCheckTime;
static int dependentCheckCount = 0;
#endif // PRODUCT
int CodeCache::mark_for_deoptimization(DepChange& changes) {
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
#ifndef PRODUCT
dependentCheckTime.start();
dependentCheckCount++;
#endif // PRODUCT
int number_of_marked_CodeBlobs = 0;
// search the hierarchy looking for nmethods which are affected by the loading of this class
// then search the interfaces this class implements looking for nmethods
// which might be dependent of the fact that an interface only had one
// implementor.
{ No_Safepoint_Verifier nsv;
for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
Klass* d = str.klass();
number_of_marked_CodeBlobs += InstanceKlass::cast(d)->mark_dependent_nmethods(changes);
}
}
if (VerifyDependencies) {
// Turn off dependency tracing while actually testing deps.
NOT_PRODUCT( FlagSetting fs(TraceDependencies, false) );
FOR_ALL_ALIVE_NMETHODS(nm) {
if (!nm->is_marked_for_deoptimization() &&
nm->check_all_dependencies()) {
ResourceMark rm;
tty->print_cr("Should have been marked for deoptimization:");
changes.print();
nm->print();
nm->print_dependencies();
}
}
}
#ifndef PRODUCT
dependentCheckTime.stop();
#endif // PRODUCT
return number_of_marked_CodeBlobs;
}
#ifdef HOTSWAP
int CodeCache::mark_for_evol_deoptimization(instanceKlassHandle dependee) {
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
int number_of_marked_CodeBlobs = 0;
// Deoptimize all methods of the evolving class itself
Array<Method*>* old_methods = dependee->methods();
for (int i = 0; i < old_methods->length(); i++) {
ResourceMark rm;
Method* old_method = old_methods->at(i);
nmethod *nm = old_method->code();
if (nm != NULL) {
nm->mark_for_deoptimization();
number_of_marked_CodeBlobs++;
}
}
FOR_ALL_ALIVE_NMETHODS(nm) {
if (nm->is_marked_for_deoptimization()) {
// ...Already marked in the previous pass; don't count it again.
} else if (nm->is_evol_dependent_on(dependee())) {
ResourceMark rm;
nm->mark_for_deoptimization();
number_of_marked_CodeBlobs++;
} else {
// flush caches in case they refer to a redefined Method*
nm->clear_inline_caches();
}
}
return number_of_marked_CodeBlobs;
}
#endif // HOTSWAP
// Deoptimize all methods
void CodeCache::mark_all_nmethods_for_deoptimization() {
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
FOR_ALL_ALIVE_NMETHODS(nm) {
if (!nm->method()->is_method_handle_intrinsic()) {
nm->mark_for_deoptimization();
}
}
}
int CodeCache::mark_for_deoptimization(Method* dependee) {
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
int number_of_marked_CodeBlobs = 0;
FOR_ALL_ALIVE_NMETHODS(nm) {
if (nm->is_dependent_on_method(dependee)) {
ResourceMark rm;
nm->mark_for_deoptimization();
number_of_marked_CodeBlobs++;
}
}
return number_of_marked_CodeBlobs;
}
void CodeCache::make_marked_nmethods_not_entrant() {
assert_locked_or_safepoint(CodeCache_lock);
FOR_ALL_ALIVE_NMETHODS(nm) {
if (nm->is_marked_for_deoptimization()) {
nm->make_not_entrant();
}
}
}
void CodeCache::verify() {
_heap->verify();
FOR_ALL_ALIVE_BLOBS(p) {
p->verify();
}
}
void CodeCache::report_codemem_full() {
_codemem_full_count++;
EventCodeCacheFull event;
if (event.should_commit()) {
event.set_startAddress((u8)low_bound());
event.set_commitedTopAddress((u8)high());
event.set_reservedTopAddress((u8)high_bound());
event.set_entryCount(nof_blobs());
event.set_methodCount(nof_nmethods());
event.set_adaptorCount(nof_adapters());
event.set_unallocatedCapacity(unallocated_capacity()/K);
event.set_fullCount(_codemem_full_count);
event.commit();
}
}
//------------------------------------------------------------------------------------------------
// Non-product version
#ifndef PRODUCT
void CodeCache::verify_if_often() {
if (VerifyCodeCacheOften) {
_heap->verify();
}
}
void CodeCache::print_trace(const char* event, CodeBlob* cb, int size) {
if (PrintCodeCache2) { // Need to add a new flag
ResourceMark rm;
if (size == 0) size = cb->size();
tty->print_cr("CodeCache %s: addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
}
}
void CodeCache::print_internals() {
int nmethodCount = 0;
int runtimeStubCount = 0;
int adapterCount = 0;
int deoptimizationStubCount = 0;
int uncommonTrapStubCount = 0;
int bufferBlobCount = 0;
int total = 0;
int nmethodAlive = 0;
int nmethodNotEntrant = 0;
int nmethodZombie = 0;
int nmethodUnloaded = 0;
int nmethodJava = 0;
int nmethodNative = 0;
int maxCodeSize = 0;
ResourceMark rm;
CodeBlob *cb;
for (cb = first(); cb != NULL; cb = next(cb)) {
total++;
if (cb->is_nmethod()) {
nmethod* nm = (nmethod*)cb;
if (Verbose && nm->method() != NULL) {
ResourceMark rm;
char *method_name = nm->method()->name_and_sig_as_C_string();
tty->print("%s", method_name);
if(nm->is_alive()) { tty->print_cr(" alive"); }
if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
if(nm->is_zombie()) { tty->print_cr(" zombie"); }
}
nmethodCount++;
if(nm->is_alive()) { nmethodAlive++; }
if(nm->is_not_entrant()) { nmethodNotEntrant++; }
if(nm->is_zombie()) { nmethodZombie++; }
if(nm->is_unloaded()) { nmethodUnloaded++; }
if(nm->is_native_method()) { nmethodNative++; }
if(nm->method() != NULL && nm->is_java_method()) {
nmethodJava++;
if (nm->insts_size() > maxCodeSize) {
maxCodeSize = nm->insts_size();
}
}
} else if (cb->is_runtime_stub()) {
runtimeStubCount++;
} else if (cb->is_deoptimization_stub()) {
deoptimizationStubCount++;
} else if (cb->is_uncommon_trap_stub()) {
uncommonTrapStubCount++;
} else if (cb->is_adapter_blob()) {
adapterCount++;
} else if (cb->is_buffer_blob()) {
bufferBlobCount++;
}
}
int bucketSize = 512;
int bucketLimit = maxCodeSize / bucketSize + 1;
int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
memset(buckets,0,sizeof(int) * bucketLimit);
for (cb = first(); cb != NULL; cb = next(cb)) {
if (cb->is_nmethod()) {
nmethod* nm = (nmethod*)cb;
if(nm->is_java_method()) {
buckets[nm->insts_size() / bucketSize]++;
}
}
}
tty->print_cr("Code Cache Entries (total of %d)",total);
tty->print_cr("-------------------------------------------------");
tty->print_cr("nmethods: %d",nmethodCount);
tty->print_cr("\talive: %d",nmethodAlive);
tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
tty->print_cr("\tzombie: %d",nmethodZombie);
tty->print_cr("\tunloaded: %d",nmethodUnloaded);
tty->print_cr("\tjava: %d",nmethodJava);
tty->print_cr("\tnative: %d",nmethodNative);
tty->print_cr("runtime_stubs: %d",runtimeStubCount);
tty->print_cr("adapters: %d",adapterCount);
tty->print_cr("buffer blobs: %d",bufferBlobCount);
tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
tty->print_cr("\nnmethod size distribution (non-zombie java)");
tty->print_cr("-------------------------------------------------");
for(int i=0; i<bucketLimit; i++) {
if(buckets[i] != 0) {
tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
tty->fill_to(40);
tty->print_cr("%d",buckets[i]);
}
}
FREE_C_HEAP_ARRAY(int, buckets, mtCode);
}
#endif // !PRODUCT
void CodeCache::print() {
print_summary(tty);
#ifndef PRODUCT
if (!Verbose) return;
CodeBlob_sizes live;
CodeBlob_sizes dead;
FOR_ALL_BLOBS(p) {
if (!p->is_alive()) {
dead.add(p);
} else {
live.add(p);
}
}
tty->print_cr("CodeCache:");
tty->print_cr("nmethod dependency checking time %f, per dependent %f", dependentCheckTime.seconds(),
dependentCheckTime.seconds() / dependentCheckCount);
if (!live.is_empty()) {
live.print("live");
}
if (!dead.is_empty()) {
dead.print("dead");
}
if (WizardMode) {
// print the oop_map usage
int code_size = 0;
int number_of_blobs = 0;
int number_of_oop_maps = 0;
int map_size = 0;
FOR_ALL_BLOBS(p) {
if (p->is_alive()) {
number_of_blobs++;
code_size += p->code_size();
OopMapSet* set = p->oop_maps();
if (set != NULL) {
number_of_oop_maps += set->size();
map_size += set->heap_size();
}
}
}
tty->print_cr("OopMaps");
tty->print_cr(" #blobs = %d", number_of_blobs);
tty->print_cr(" code size = %d", code_size);
tty->print_cr(" #oop_maps = %d", number_of_oop_maps);
tty->print_cr(" map size = %d", map_size);
}
#endif // !PRODUCT
}
void CodeCache::print_summary(outputStream* st, bool detailed) {
size_t total = (_heap->high_boundary() - _heap->low_boundary());
st->print_cr("CodeCache: size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
"Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
total/K, (total - unallocated_capacity())/K,
maxCodeCacheUsed/K, unallocated_capacity()/K);
if (detailed) {
st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
p2i(_heap->low_boundary()),
p2i(_heap->high()),
p2i(_heap->high_boundary()));
st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
" adapters=" UINT32_FORMAT,
nof_blobs(), nof_nmethods(), nof_adapters());
st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ?
"enabled" : Arguments::mode() == Arguments::_int ?
"disabled (interpreter mode)" :
"disabled (not enough contiguous free space left)");
}
}
void CodeCache::log_state(outputStream* st) {
st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
" adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
nof_blobs(), nof_nmethods(), nof_adapters(),
unallocated_capacity());
}