blob: 3d1b37e5fbc78273e0805517081697a01b947d1c [file] [log] [blame]
/*
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/vmSymbols.hpp"
#include "memory/oopFactory.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "utilities/xmlstream.hpp"
Symbol* vmSymbols::_symbols[vmSymbols::SID_LIMIT];
Symbol* vmSymbols::_type_signatures[T_VOID+1] = { NULL /*, NULL...*/ };
inline int compare_symbol(Symbol* a, Symbol* b) {
if (a == b) return 0;
// follow the natural address order:
return (address)a > (address)b ? +1 : -1;
}
static vmSymbols::SID vm_symbol_index[vmSymbols::SID_LIMIT];
extern "C" {
static int compare_vmsymbol_sid(const void* void_a, const void* void_b) {
Symbol* a = vmSymbols::symbol_at(*((vmSymbols::SID*) void_a));
Symbol* b = vmSymbols::symbol_at(*((vmSymbols::SID*) void_b));
return compare_symbol(a, b);
}
}
#ifdef ASSERT
#define VM_SYMBOL_ENUM_NAME_BODY(name, string) #name "\0"
static const char* vm_symbol_enum_names =
VM_SYMBOLS_DO(VM_SYMBOL_ENUM_NAME_BODY, VM_ALIAS_IGNORE)
"\0";
static const char* vm_symbol_enum_name(vmSymbols::SID sid) {
const char* string = &vm_symbol_enum_names[0];
int skip = (int)sid - (int)vmSymbols::FIRST_SID;
for (; skip != 0; skip--) {
size_t skiplen = strlen(string);
if (skiplen == 0) return "<unknown>"; // overflow
string += skiplen+1;
}
return string;
}
#endif //ASSERT
// Put all the VM symbol strings in one place.
// Makes for a more compact libjvm.
#define VM_SYMBOL_BODY(name, string) string "\0"
static const char* vm_symbol_bodies = VM_SYMBOLS_DO(VM_SYMBOL_BODY, VM_ALIAS_IGNORE);
void vmSymbols::initialize(TRAPS) {
assert((int)SID_LIMIT <= (1<<log2_SID_LIMIT), "must fit in this bitfield");
assert((int)SID_LIMIT*5 > (1<<log2_SID_LIMIT), "make the bitfield smaller, please");
assert(vmIntrinsics::FLAG_LIMIT <= (1 << vmIntrinsics::log2_FLAG_LIMIT), "must fit in this bitfield");
if (!UseSharedSpaces) {
const char* string = &vm_symbol_bodies[0];
for (int index = (int)FIRST_SID; index < (int)SID_LIMIT; index++) {
Symbol* sym = SymbolTable::new_permanent_symbol(string, CHECK);
_symbols[index] = sym;
string += strlen(string); // skip string body
string += 1; // skip trailing null
}
_type_signatures[T_BYTE] = byte_signature();
_type_signatures[T_CHAR] = char_signature();
_type_signatures[T_DOUBLE] = double_signature();
_type_signatures[T_FLOAT] = float_signature();
_type_signatures[T_INT] = int_signature();
_type_signatures[T_LONG] = long_signature();
_type_signatures[T_SHORT] = short_signature();
_type_signatures[T_BOOLEAN] = bool_signature();
_type_signatures[T_VOID] = void_signature();
// no single signatures for T_OBJECT or T_ARRAY
}
#ifdef ASSERT
// Check for duplicates:
for (int i1 = (int)FIRST_SID; i1 < (int)SID_LIMIT; i1++) {
Symbol* sym = symbol_at((SID)i1);
for (int i2 = (int)FIRST_SID; i2 < i1; i2++) {
if (symbol_at((SID)i2) == sym) {
tty->print("*** Duplicate VM symbol SIDs %s(%d) and %s(%d): \"",
vm_symbol_enum_name((SID)i2), i2,
vm_symbol_enum_name((SID)i1), i1);
sym->print_symbol_on(tty);
tty->print_cr("\"");
}
}
}
#endif //ASSERT
// Create an index for find_id:
{
for (int index = (int)FIRST_SID; index < (int)SID_LIMIT; index++) {
vm_symbol_index[index] = (SID)index;
}
int num_sids = SID_LIMIT-FIRST_SID;
qsort(&vm_symbol_index[FIRST_SID], num_sids, sizeof(vm_symbol_index[0]),
compare_vmsymbol_sid);
}
#ifdef ASSERT
{
// Spot-check correspondence between strings, symbols, and enums:
assert(_symbols[NO_SID] == NULL, "must be");
const char* str = "java/lang/Object";
TempNewSymbol jlo = SymbolTable::new_permanent_symbol(str, CHECK);
assert(strncmp(str, (char*)jlo->base(), jlo->utf8_length()) == 0, "");
assert(jlo == java_lang_Object(), "");
SID sid = VM_SYMBOL_ENUM_NAME(java_lang_Object);
assert(find_sid(jlo) == sid, "");
assert(symbol_at(sid) == jlo, "");
// Make sure find_sid produces the right answer in each case.
for (int index = (int)FIRST_SID; index < (int)SID_LIMIT; index++) {
Symbol* sym = symbol_at((SID)index);
sid = find_sid(sym);
assert(sid == (SID)index, "symbol index works");
// Note: If there are duplicates, this assert will fail.
// A "Duplicate VM symbol" message will have already been printed.
}
// The string "format" happens (at the moment) not to be a vmSymbol,
// though it is a method name in java.lang.String.
str = "format";
TempNewSymbol fmt = SymbolTable::new_permanent_symbol(str, CHECK);
sid = find_sid(fmt);
assert(sid == NO_SID, "symbol index works (negative test)");
}
#endif
}
#ifndef PRODUCT
const char* vmSymbols::name_for(vmSymbols::SID sid) {
if (sid == NO_SID)
return "NO_SID";
const char* string = &vm_symbol_bodies[0];
for (int index = (int)FIRST_SID; index < (int)SID_LIMIT; index++) {
if (index == (int)sid)
return string;
string += strlen(string); // skip string body
string += 1; // skip trailing null
}
return "BAD_SID";
}
#endif
void vmSymbols::symbols_do(SymbolClosure* f) {
for (int index = (int)FIRST_SID; index < (int)SID_LIMIT; index++) {
f->do_symbol(&_symbols[index]);
}
for (int i = 0; i < T_VOID+1; i++) {
f->do_symbol(&_type_signatures[i]);
}
}
void vmSymbols::serialize(SerializeClosure* soc) {
soc->do_region((u_char*)&_symbols[FIRST_SID],
(SID_LIMIT - FIRST_SID) * sizeof(_symbols[0]));
soc->do_region((u_char*)_type_signatures, sizeof(_type_signatures));
}
BasicType vmSymbols::signature_type(Symbol* s) {
assert(s != NULL, "checking");
for (int i = T_BOOLEAN; i < T_VOID+1; i++) {
if (s == _type_signatures[i]) {
return (BasicType)i;
}
}
return T_OBJECT;
}
static int mid_hint = (int)vmSymbols::FIRST_SID+1;
#ifndef PRODUCT
static int find_sid_calls, find_sid_probes;
// (Typical counts are calls=7000 and probes=17000.)
#endif
vmSymbols::SID vmSymbols::find_sid(Symbol* symbol) {
// Handle the majority of misses by a bounds check.
// Then, use a binary search over the index.
// Expected trip count is less than log2_SID_LIMIT, about eight.
// This is slow but acceptable, given that calls are not
// dynamically common. (Method*::intrinsic_id has a cache.)
NOT_PRODUCT(find_sid_calls++);
int min = (int)FIRST_SID, max = (int)SID_LIMIT - 1;
SID sid = NO_SID, sid1;
int cmp1;
sid1 = vm_symbol_index[min];
cmp1 = compare_symbol(symbol, symbol_at(sid1));
if (cmp1 <= 0) { // before the first
if (cmp1 == 0) sid = sid1;
} else {
sid1 = vm_symbol_index[max];
cmp1 = compare_symbol(symbol, symbol_at(sid1));
if (cmp1 >= 0) { // after the last
if (cmp1 == 0) sid = sid1;
} else {
// After checking the extremes, do a binary search.
++min; --max; // endpoints are done
int mid = mid_hint; // start at previous success
while (max >= min) {
assert(mid >= min && mid <= max, "");
NOT_PRODUCT(find_sid_probes++);
sid1 = vm_symbol_index[mid];
cmp1 = compare_symbol(symbol, symbol_at(sid1));
if (cmp1 == 0) {
mid_hint = mid;
sid = sid1;
break;
}
if (cmp1 < 0)
max = mid - 1; // symbol < symbol_at(sid)
else
min = mid + 1;
// Pick a new probe point:
mid = (max + min) / 2;
}
}
}
#ifdef ASSERT
// Perform the exhaustive self-check the first 1000 calls,
// and every 100 calls thereafter.
static int find_sid_check_count = -2000;
if ((uint)++find_sid_check_count > (uint)100) {
if (find_sid_check_count > 0) find_sid_check_count = 0;
// Make sure this is the right answer, using linear search.
// (We have already proven that there are no duplicates in the list.)
SID sid2 = NO_SID;
for (int index = (int)FIRST_SID; index < (int)SID_LIMIT; index++) {
Symbol* sym2 = symbol_at((SID)index);
if (sym2 == symbol) {
sid2 = (SID)index;
break;
}
}
// Unless it's a duplicate, assert that the sids are the same.
if (_symbols[sid] != _symbols[sid2]) {
assert(sid == sid2, "binary same as linear search");
}
}
#endif //ASSERT
return sid;
}
vmSymbols::SID vmSymbols::find_sid(const char* symbol_name) {
Symbol* symbol = SymbolTable::probe(symbol_name, (int) strlen(symbol_name));
if (symbol == NULL) return NO_SID;
return find_sid(symbol);
}
static vmIntrinsics::ID wrapper_intrinsic(BasicType type, bool unboxing) {
#define TYPE2(type, unboxing) ((int)(type)*2 + ((unboxing) ? 1 : 0))
switch (TYPE2(type, unboxing)) {
#define BASIC_TYPE_CASE(type, box, unbox) \
case TYPE2(type, false): return vmIntrinsics::box; \
case TYPE2(type, true): return vmIntrinsics::unbox
BASIC_TYPE_CASE(T_BOOLEAN, _Boolean_valueOf, _booleanValue);
BASIC_TYPE_CASE(T_BYTE, _Byte_valueOf, _byteValue);
BASIC_TYPE_CASE(T_CHAR, _Character_valueOf, _charValue);
BASIC_TYPE_CASE(T_SHORT, _Short_valueOf, _shortValue);
BASIC_TYPE_CASE(T_INT, _Integer_valueOf, _intValue);
BASIC_TYPE_CASE(T_LONG, _Long_valueOf, _longValue);
BASIC_TYPE_CASE(T_FLOAT, _Float_valueOf, _floatValue);
BASIC_TYPE_CASE(T_DOUBLE, _Double_valueOf, _doubleValue);
#undef BASIC_TYPE_CASE
}
#undef TYPE2
return vmIntrinsics::_none;
}
vmIntrinsics::ID vmIntrinsics::for_boxing(BasicType type) {
return wrapper_intrinsic(type, false);
}
vmIntrinsics::ID vmIntrinsics::for_unboxing(BasicType type) {
return wrapper_intrinsic(type, true);
}
vmIntrinsics::ID vmIntrinsics::for_raw_conversion(BasicType src, BasicType dest) {
#define SRC_DEST(s,d) (((int)(s) << 4) + (int)(d))
switch (SRC_DEST(src, dest)) {
case SRC_DEST(T_INT, T_FLOAT): return vmIntrinsics::_intBitsToFloat;
case SRC_DEST(T_FLOAT, T_INT): return vmIntrinsics::_floatToRawIntBits;
case SRC_DEST(T_LONG, T_DOUBLE): return vmIntrinsics::_longBitsToDouble;
case SRC_DEST(T_DOUBLE, T_LONG): return vmIntrinsics::_doubleToRawLongBits;
}
#undef SRC_DEST
return vmIntrinsics::_none;
}
// Some intrinsics produce different results if they are not pinned
bool vmIntrinsics::should_be_pinned(vmIntrinsics::ID id) {
assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
switch(id) {
#ifdef TRACE_HAVE_INTRINSICS
case vmIntrinsics::_counterTime:
#endif
case vmIntrinsics::_currentTimeMillis:
case vmIntrinsics::_nanoTime:
return true;
default:
return false;
}
}
#define VM_INTRINSIC_INITIALIZE(id, klass, name, sig, flags) #id "\0"
static const char* vm_intrinsic_name_bodies =
VM_INTRINSICS_DO(VM_INTRINSIC_INITIALIZE,
VM_SYMBOL_IGNORE, VM_SYMBOL_IGNORE, VM_SYMBOL_IGNORE, VM_ALIAS_IGNORE);
static const char* vm_intrinsic_name_table[vmIntrinsics::ID_LIMIT];
const char* vmIntrinsics::name_at(vmIntrinsics::ID id) {
const char** nt = &vm_intrinsic_name_table[0];
if (nt[_none] == NULL) {
char* string = (char*) &vm_intrinsic_name_bodies[0];
for (int index = FIRST_ID; index < ID_LIMIT; index++) {
nt[index] = string;
string += strlen(string); // skip string body
string += 1; // skip trailing null
}
assert(!strcmp(nt[_hashCode], "_hashCode"), "lined up");
nt[_none] = "_none";
}
if ((uint)id < (uint)ID_LIMIT)
return vm_intrinsic_name_table[(uint)id];
else
return "(unknown intrinsic)";
}
// These are flag-matching functions:
inline bool match_F_R(jshort flags) {
const int req = 0;
const int neg = JVM_ACC_STATIC | JVM_ACC_SYNCHRONIZED;
return (flags & (req | neg)) == req;
}
inline bool match_F_Y(jshort flags) {
const int req = JVM_ACC_SYNCHRONIZED;
const int neg = JVM_ACC_STATIC;
return (flags & (req | neg)) == req;
}
inline bool match_F_RN(jshort flags) {
const int req = JVM_ACC_NATIVE;
const int neg = JVM_ACC_STATIC | JVM_ACC_SYNCHRONIZED;
return (flags & (req | neg)) == req;
}
inline bool match_F_S(jshort flags) {
const int req = JVM_ACC_STATIC;
const int neg = JVM_ACC_SYNCHRONIZED;
return (flags & (req | neg)) == req;
}
inline bool match_F_SN(jshort flags) {
const int req = JVM_ACC_STATIC | JVM_ACC_NATIVE;
const int neg = JVM_ACC_SYNCHRONIZED;
return (flags & (req | neg)) == req;
}
inline bool match_F_RNY(jshort flags) {
const int req = JVM_ACC_NATIVE | JVM_ACC_SYNCHRONIZED;
const int neg = JVM_ACC_STATIC;
return (flags & (req | neg)) == req;
}
// These are for forming case labels:
#define ID3(x, y, z) (( jlong)(z) + \
((jlong)(y) << vmSymbols::log2_SID_LIMIT) + \
((jlong)(x) << (2*vmSymbols::log2_SID_LIMIT)) )
#define SID_ENUM(n) vmSymbols::VM_SYMBOL_ENUM_NAME(n)
vmIntrinsics::ID vmIntrinsics::find_id_impl(vmSymbols::SID holder,
vmSymbols::SID name,
vmSymbols::SID sig,
jshort flags) {
assert((int)vmSymbols::SID_LIMIT <= (1<<vmSymbols::log2_SID_LIMIT), "must fit");
// Let the C compiler build the decision tree.
#define VM_INTRINSIC_CASE(id, klass, name, sig, fcode) \
case ID3(SID_ENUM(klass), SID_ENUM(name), SID_ENUM(sig)): \
if (!match_##fcode(flags)) break; \
return id;
switch (ID3(holder, name, sig)) {
VM_INTRINSICS_DO(VM_INTRINSIC_CASE,
VM_SYMBOL_IGNORE, VM_SYMBOL_IGNORE, VM_SYMBOL_IGNORE, VM_ALIAS_IGNORE);
}
return vmIntrinsics::_none;
#undef VM_INTRINSIC_CASE
}
const char* vmIntrinsics::short_name_as_C_string(vmIntrinsics::ID id, char* buf, int buflen) {
const char* str = name_at(id);
#ifndef PRODUCT
const char* kname = vmSymbols::name_for(class_for(id));
const char* mname = vmSymbols::name_for(name_for(id));
const char* sname = vmSymbols::name_for(signature_for(id));
const char* fname = "";
switch (flags_for(id)) {
case F_Y: fname = "synchronized "; break;
case F_RN: fname = "native "; break;
case F_SN: fname = "native static "; break;
case F_S: fname = "static "; break;
case F_RNY:fname = "native synchronized "; break;
}
const char* kptr = strrchr(kname, '/');
if (kptr != NULL) kname = kptr + 1;
int len = jio_snprintf(buf, buflen, "%s: %s%s.%s%s",
str, fname, kname, mname, sname);
if (len < buflen)
str = buf;
#endif //PRODUCT
return str;
}
// These are to get information about intrinsics.
#define ID4(x, y, z, f) ((ID3(x, y, z) << vmIntrinsics::log2_FLAG_LIMIT) | (jlong) (f))
static const jlong intrinsic_info_array[vmIntrinsics::ID_LIMIT+1] = {
#define VM_INTRINSIC_INFO(ignore_id, klass, name, sig, fcode) \
ID4(SID_ENUM(klass), SID_ENUM(name), SID_ENUM(sig), vmIntrinsics::fcode),
0, VM_INTRINSICS_DO(VM_INTRINSIC_INFO,
VM_SYMBOL_IGNORE, VM_SYMBOL_IGNORE, VM_SYMBOL_IGNORE, VM_ALIAS_IGNORE)
0
#undef VM_INTRINSIC_INFO
};
inline jlong intrinsic_info(vmIntrinsics::ID id) {
return intrinsic_info_array[vmIntrinsics::ID_from((int)id)];
}
vmSymbols::SID vmIntrinsics::class_for(vmIntrinsics::ID id) {
jlong info = intrinsic_info(id);
int shift = 2*vmSymbols::log2_SID_LIMIT + log2_FLAG_LIMIT, mask = right_n_bits(vmSymbols::log2_SID_LIMIT);
assert(((ID4(1021,1022,1023,15) >> shift) & mask) == 1021, "");
return vmSymbols::SID( (info >> shift) & mask );
}
vmSymbols::SID vmIntrinsics::name_for(vmIntrinsics::ID id) {
jlong info = intrinsic_info(id);
int shift = vmSymbols::log2_SID_LIMIT + log2_FLAG_LIMIT, mask = right_n_bits(vmSymbols::log2_SID_LIMIT);
assert(((ID4(1021,1022,1023,15) >> shift) & mask) == 1022, "");
return vmSymbols::SID( (info >> shift) & mask );
}
vmSymbols::SID vmIntrinsics::signature_for(vmIntrinsics::ID id) {
jlong info = intrinsic_info(id);
int shift = log2_FLAG_LIMIT, mask = right_n_bits(vmSymbols::log2_SID_LIMIT);
assert(((ID4(1021,1022,1023,15) >> shift) & mask) == 1023, "");
return vmSymbols::SID( (info >> shift) & mask );
}
vmIntrinsics::Flags vmIntrinsics::flags_for(vmIntrinsics::ID id) {
jlong info = intrinsic_info(id);
int shift = 0, mask = right_n_bits(log2_FLAG_LIMIT);
assert(((ID4(1021,1022,1023,15) >> shift) & mask) == 15, "");
return Flags( (info >> shift) & mask );
}
#ifndef PRODUCT
// verify_method performs an extra check on a matched intrinsic method
static bool match_method(Method* m, Symbol* n, Symbol* s) {
return (m->name() == n &&
m->signature() == s);
}
static vmIntrinsics::ID match_method_with_klass(Method* m, Symbol* mk) {
#define VM_INTRINSIC_MATCH(id, klassname, namepart, sigpart, flags) \
{ Symbol* k = vmSymbols::klassname(); \
if (mk == k) { \
Symbol* n = vmSymbols::namepart(); \
Symbol* s = vmSymbols::sigpart(); \
if (match_method(m, n, s)) \
return vmIntrinsics::id; \
} }
VM_INTRINSICS_DO(VM_INTRINSIC_MATCH,
VM_SYMBOL_IGNORE, VM_SYMBOL_IGNORE, VM_SYMBOL_IGNORE, VM_ALIAS_IGNORE);
return vmIntrinsics::_none;
#undef VM_INTRINSIC_MATCH
}
void vmIntrinsics::verify_method(ID actual_id, Method* m) {
Symbol* mk = m->method_holder()->name();
ID declared_id = match_method_with_klass(m, mk);
if (declared_id == actual_id) return; // success
if (declared_id == _none && actual_id != _none && mk == vmSymbols::java_lang_StrictMath()) {
// Here are a few special cases in StrictMath not declared in vmSymbols.hpp.
switch (actual_id) {
case _min:
case _max:
case _dsqrt:
declared_id = match_method_with_klass(m, vmSymbols::java_lang_Math());
if (declared_id == actual_id) return; // acceptable alias
break;
}
}
const char* declared_name = name_at(declared_id);
const char* actual_name = name_at(actual_id);
methodHandle mh = m;
m = NULL;
ttyLocker ttyl;
if (xtty != NULL) {
xtty->begin_elem("intrinsic_misdeclared actual='%s' declared='%s'",
actual_name, declared_name);
xtty->method(mh);
xtty->end_elem("%s", "");
}
if (PrintMiscellaneous && (WizardMode || Verbose)) {
tty->print_cr("*** misidentified method; %s(%d) should be %s(%d):",
declared_name, declared_id, actual_name, actual_id);
mh()->print_short_name(tty);
tty->cr();
}
}
#endif //PRODUCT