blob: f53dbd582f4bf2dca3aef12e0d38d5e5aaebf009 [file] [log] [blame]
/*
* Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// output_c.cpp - Class CPP file output routines for architecture definition
#include "adlc.hpp"
// Utilities to characterize effect statements
static bool is_def(int usedef) {
switch(usedef) {
case Component::DEF:
case Component::USE_DEF: return true; break;
}
return false;
}
static bool is_use(int usedef) {
switch(usedef) {
case Component::USE:
case Component::USE_DEF:
case Component::USE_KILL: return true; break;
}
return false;
}
static bool is_kill(int usedef) {
switch(usedef) {
case Component::KILL:
case Component::USE_KILL: return true; break;
}
return false;
}
// Define an array containing the machine register names, strings.
static void defineRegNames(FILE *fp, RegisterForm *registers) {
if (registers) {
fprintf(fp,"\n");
fprintf(fp,"// An array of character pointers to machine register names.\n");
fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
// Output the register name for each register in the allocation classes
RegDef *reg_def = NULL;
RegDef *next = NULL;
registers->reset_RegDefs();
for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
next = registers->iter_RegDefs();
const char *comma = (next != NULL) ? "," : " // no trailing comma";
fprintf(fp," \"%s\"%s\n", reg_def->_regname, comma);
}
// Finish defining enumeration
fprintf(fp,"};\n");
fprintf(fp,"\n");
fprintf(fp,"// An array of character pointers to machine register names.\n");
fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
reg_def = NULL;
next = NULL;
registers->reset_RegDefs();
for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
next = registers->iter_RegDefs();
const char *comma = (next != NULL) ? "," : " // no trailing comma";
fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
}
// Finish defining array
fprintf(fp,"\t};\n");
fprintf(fp,"\n");
fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
}
}
// Define an array containing the machine register encoding values
static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
if (registers) {
fprintf(fp,"\n");
fprintf(fp,"// An array of the machine register encode values\n");
fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
// Output the register encoding for each register in the allocation classes
RegDef *reg_def = NULL;
RegDef *next = NULL;
registers->reset_RegDefs();
for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
next = registers->iter_RegDefs();
const char* register_encode = reg_def->register_encode();
const char *comma = (next != NULL) ? "," : " // no trailing comma";
int encval;
if (!ADLParser::is_int_token(register_encode, encval)) {
fprintf(fp," %s%s // %s\n", register_encode, comma, reg_def->_regname);
} else {
// Output known constants in hex char format (backward compatibility).
assert(encval < 256, "Exceeded supported width for register encoding");
fprintf(fp," (unsigned char)'\\x%X'%s // %s\n", encval, comma, reg_def->_regname);
}
}
// Finish defining enumeration
fprintf(fp,"};\n");
} // Done defining array
}
// Output an enumeration of register class names
static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
if (registers) {
// Output an enumeration of register class names
fprintf(fp,"\n");
fprintf(fp,"// Enumeration of register class names\n");
fprintf(fp, "enum machRegisterClass {\n");
registers->_rclasses.reset();
for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
const char * class_name_to_upper = toUpper(class_name);
fprintf(fp," %s,\n", class_name_to_upper);
delete[] class_name_to_upper;
}
// Finish defining enumeration
fprintf(fp, " _last_Mach_Reg_Class\n");
fprintf(fp, "};\n");
}
}
// Declare an enumeration of user-defined register classes
// and a list of register masks, one for each class.
void ArchDesc::declare_register_masks(FILE *fp_hpp) {
const char *rc_name;
if (_register) {
// Build enumeration of user-defined register classes.
defineRegClassEnum(fp_hpp, _register);
// Generate a list of register masks, one for each class.
fprintf(fp_hpp,"\n");
fprintf(fp_hpp,"// Register masks, one for each register class.\n");
_register->_rclasses.reset();
for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
RegClass *reg_class = _register->getRegClass(rc_name);
assert(reg_class, "Using an undefined register class");
reg_class->declare_register_masks(fp_hpp);
}
}
}
// Generate an enumeration of user-defined register classes
// and a list of register masks, one for each class.
void ArchDesc::build_register_masks(FILE *fp_cpp) {
const char *rc_name;
if (_register) {
// Generate a list of register masks, one for each class.
fprintf(fp_cpp,"\n");
fprintf(fp_cpp,"// Register masks, one for each register class.\n");
_register->_rclasses.reset();
for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
RegClass *reg_class = _register->getRegClass(rc_name);
assert(reg_class, "Using an undefined register class");
reg_class->build_register_masks(fp_cpp);
}
}
}
// Compute an index for an array in the pipeline_reads_NNN arrays
static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
{
int templen = 1;
int paramcount = 0;
const char *paramname;
if (pipeclass->_parameters.count() == 0)
return -1;
pipeclass->_parameters.reset();
paramname = pipeclass->_parameters.iter();
const PipeClassOperandForm *pipeopnd =
(const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
pipeclass->_parameters.reset();
while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
const PipeClassOperandForm *tmppipeopnd =
(const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
if (tmppipeopnd)
templen += 10 + (int)strlen(tmppipeopnd->_stage);
else
templen += 19;
paramcount++;
}
// See if the count is zero
if (paramcount == 0) {
return -1;
}
char *operand_stages = new char [templen];
operand_stages[0] = 0;
int i = 0;
templen = 0;
pipeclass->_parameters.reset();
paramname = pipeclass->_parameters.iter();
pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
pipeclass->_parameters.reset();
while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
const PipeClassOperandForm *tmppipeopnd =
(const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
templen += sprintf(&operand_stages[templen], " stage_%s%c\n",
tmppipeopnd ? tmppipeopnd->_stage : "undefined",
(++i < paramcount ? ',' : ' ') );
}
// See if the same string is in the table
int ndx = pipeline_reads.index(operand_stages);
// No, add it to the table
if (ndx < 0) {
pipeline_reads.addName(operand_stages);
ndx = pipeline_reads.index(operand_stages);
fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
ndx+1, paramcount, operand_stages);
}
else
delete [] operand_stages;
return (ndx);
}
// Compute an index for an array in the pipeline_res_stages_NNN arrays
static int pipeline_res_stages_initializer(
FILE *fp_cpp,
PipelineForm *pipeline,
NameList &pipeline_res_stages,
PipeClassForm *pipeclass)
{
const PipeClassResourceForm *piperesource;
int * res_stages = new int [pipeline->_rescount];
int i;
for (i = 0; i < pipeline->_rescount; i++)
res_stages[i] = 0;
for (pipeclass->_resUsage.reset();
(piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
for (i = 0; i < pipeline->_rescount; i++)
if ((1 << i) & used_mask) {
int stage = pipeline->_stages.index(piperesource->_stage);
if (res_stages[i] < stage+1)
res_stages[i] = stage+1;
}
}
// Compute the length needed for the resource list
int commentlen = 0;
int max_stage = 0;
for (i = 0; i < pipeline->_rescount; i++) {
if (res_stages[i] == 0) {
if (max_stage < 9)
max_stage = 9;
}
else {
int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
if (max_stage < stagelen)
max_stage = stagelen;
}
commentlen += (int)strlen(pipeline->_reslist.name(i));
}
int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
// Allocate space for the resource list
char * resource_stages = new char [templen];
templen = 0;
for (i = 0; i < pipeline->_rescount; i++) {
const char * const resname =
res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
templen += sprintf(&resource_stages[templen], " stage_%s%-*s // %s\n",
resname, max_stage - (int)strlen(resname) + 1,
(i < pipeline->_rescount-1) ? "," : "",
pipeline->_reslist.name(i));
}
// See if the same string is in the table
int ndx = pipeline_res_stages.index(resource_stages);
// No, add it to the table
if (ndx < 0) {
pipeline_res_stages.addName(resource_stages);
ndx = pipeline_res_stages.index(resource_stages);
fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
ndx+1, pipeline->_rescount, resource_stages);
}
else
delete [] resource_stages;
delete [] res_stages;
return (ndx);
}
// Compute an index for an array in the pipeline_res_cycles_NNN arrays
static int pipeline_res_cycles_initializer(
FILE *fp_cpp,
PipelineForm *pipeline,
NameList &pipeline_res_cycles,
PipeClassForm *pipeclass)
{
const PipeClassResourceForm *piperesource;
int * res_cycles = new int [pipeline->_rescount];
int i;
for (i = 0; i < pipeline->_rescount; i++)
res_cycles[i] = 0;
for (pipeclass->_resUsage.reset();
(piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
for (i = 0; i < pipeline->_rescount; i++)
if ((1 << i) & used_mask) {
int cycles = piperesource->_cycles;
if (res_cycles[i] < cycles)
res_cycles[i] = cycles;
}
}
// Pre-compute the string length
int templen;
int cyclelen = 0, commentlen = 0;
int max_cycles = 0;
char temp[32];
for (i = 0; i < pipeline->_rescount; i++) {
if (max_cycles < res_cycles[i])
max_cycles = res_cycles[i];
templen = sprintf(temp, "%d", res_cycles[i]);
if (cyclelen < templen)
cyclelen = templen;
commentlen += (int)strlen(pipeline->_reslist.name(i));
}
templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
// Allocate space for the resource list
char * resource_cycles = new char [templen];
templen = 0;
for (i = 0; i < pipeline->_rescount; i++) {
templen += sprintf(&resource_cycles[templen], " %*d%c // %s\n",
cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
}
// See if the same string is in the table
int ndx = pipeline_res_cycles.index(resource_cycles);
// No, add it to the table
if (ndx < 0) {
pipeline_res_cycles.addName(resource_cycles);
ndx = pipeline_res_cycles.index(resource_cycles);
fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
ndx+1, pipeline->_rescount, resource_cycles);
}
else
delete [] resource_cycles;
delete [] res_cycles;
return (ndx);
}
//typedef unsigned long long uint64_t;
// Compute an index for an array in the pipeline_res_mask_NNN arrays
static int pipeline_res_mask_initializer(
FILE *fp_cpp,
PipelineForm *pipeline,
NameList &pipeline_res_mask,
NameList &pipeline_res_args,
PipeClassForm *pipeclass)
{
const PipeClassResourceForm *piperesource;
const uint rescount = pipeline->_rescount;
const uint maxcycleused = pipeline->_maxcycleused;
const uint cyclemasksize = (maxcycleused + 31) >> 5;
int i, j;
int element_count = 0;
uint *res_mask = new uint [cyclemasksize];
uint resources_used = 0;
uint resources_used_exclusively = 0;
for (pipeclass->_resUsage.reset();
(piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
element_count++;
}
// Pre-compute the string length
int templen;
int commentlen = 0;
int max_cycles = 0;
int cyclelen = ((maxcycleused + 3) >> 2);
int masklen = (rescount + 3) >> 2;
int cycledigit = 0;
for (i = maxcycleused; i > 0; i /= 10)
cycledigit++;
int maskdigit = 0;
for (i = rescount; i > 0; i /= 10)
maskdigit++;
static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
static const char* pipeline_use_element = "Pipeline_Use_Element";
templen = 1 +
(int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
(cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
// Allocate space for the resource list
char * resource_mask = new char [templen];
char * last_comma = NULL;
templen = 0;
for (pipeclass->_resUsage.reset();
(piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
if (!used_mask) {
fprintf(stderr, "*** used_mask is 0 ***\n");
}
resources_used |= used_mask;
uint lb, ub;
for (lb = 0; (used_mask & (1 << lb)) == 0; lb++);
for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
if (lb == ub) {
resources_used_exclusively |= used_mask;
}
int formatlen =
sprintf(&resource_mask[templen], " %s(0x%0*x, %*d, %*d, %s %s(",
pipeline_use_element,
masklen, used_mask,
cycledigit, lb, cycledigit, ub,
((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
pipeline_use_cycle_mask);
templen += formatlen;
memset(res_mask, 0, cyclemasksize * sizeof(uint));
int cycles = piperesource->_cycles;
uint stage = pipeline->_stages.index(piperesource->_stage);
if ((uint)NameList::Not_in_list == stage) {
fprintf(stderr,
"pipeline_res_mask_initializer: "
"semantic error: "
"pipeline stage undeclared: %s\n",
piperesource->_stage);
exit(1);
}
uint upper_limit = stage + cycles - 1;
uint lower_limit = stage - 1;
uint upper_idx = upper_limit >> 5;
uint lower_idx = lower_limit >> 5;
uint upper_position = upper_limit & 0x1f;
uint lower_position = lower_limit & 0x1f;
uint mask = (((uint)1) << upper_position) - 1;
while (upper_idx > lower_idx) {
res_mask[upper_idx--] |= mask;
mask = (uint)-1;
}
mask -= (((uint)1) << lower_position) - 1;
res_mask[upper_idx] |= mask;
for (j = cyclemasksize-1; j >= 0; j--) {
formatlen =
sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
templen += formatlen;
}
resource_mask[templen++] = ')';
resource_mask[templen++] = ')';
last_comma = &resource_mask[templen];
resource_mask[templen++] = ',';
resource_mask[templen++] = '\n';
}
resource_mask[templen] = 0;
if (last_comma) {
last_comma[0] = ' ';
}
// See if the same string is in the table
int ndx = pipeline_res_mask.index(resource_mask);
// No, add it to the table
if (ndx < 0) {
pipeline_res_mask.addName(resource_mask);
ndx = pipeline_res_mask.index(resource_mask);
if (strlen(resource_mask) > 0)
fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
ndx+1, element_count, resource_mask);
char* args = new char [9 + 2*masklen + maskdigit];
sprintf(args, "0x%0*x, 0x%0*x, %*d",
masklen, resources_used,
masklen, resources_used_exclusively,
maskdigit, element_count);
pipeline_res_args.addName(args);
}
else {
delete [] resource_mask;
}
delete [] res_mask;
//delete [] res_masks;
return (ndx);
}
void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
const char *classname;
const char *resourcename;
int resourcenamelen = 0;
NameList pipeline_reads;
NameList pipeline_res_stages;
NameList pipeline_res_cycles;
NameList pipeline_res_masks;
NameList pipeline_res_args;
const int default_latency = 1;
const int non_operand_latency = 0;
const int node_latency = 0;
if (!_pipeline) {
fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
fprintf(fp_cpp, " // assert(false, \"pipeline functionality is not defined\");\n");
fprintf(fp_cpp, " return %d;\n", non_operand_latency);
fprintf(fp_cpp, "}\n");
return;
}
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
fprintf(fp_cpp, "#ifndef PRODUCT\n");
fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
fprintf(fp_cpp, " static const char * const _stage_names[] = {\n");
fprintf(fp_cpp, " \"undefined\"");
for (int s = 0; s < _pipeline->_stagecnt; s++)
fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
fprintf(fp_cpp, "\n };\n\n");
fprintf(fp_cpp, " return (s <= %d ? _stage_names[s] : \"???\");\n",
_pipeline->_stagecnt);
fprintf(fp_cpp, "}\n");
fprintf(fp_cpp, "#endif\n\n");
fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
fprintf(fp_cpp, " // See if the functional units overlap\n");
#if 0
fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
fprintf(fp_cpp, " tty->print(\"# functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, "#endif\n\n");
#endif
fprintf(fp_cpp, " uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
fprintf(fp_cpp, " if (mask == 0)\n return (start);\n\n");
#if 0
fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
fprintf(fp_cpp, " tty->print(\"# functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, "#endif\n\n");
#endif
fprintf(fp_cpp, " for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
fprintf(fp_cpp, " if (predUse->multiple())\n");
fprintf(fp_cpp, " continue;\n\n");
fprintf(fp_cpp, " for (uint j = 0; j < resourceUseCount(); j++) {\n");
fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
fprintf(fp_cpp, " if (currUse->multiple())\n");
fprintf(fp_cpp, " continue;\n\n");
fprintf(fp_cpp, " if (predUse->used() & currUse->used()) {\n");
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
fprintf(fp_cpp, " for ( y <<= start; x.overlaps(y); start++ )\n");
fprintf(fp_cpp, " y <<= 1;\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " }\n\n");
fprintf(fp_cpp, " // There is the potential for overlap\n");
fprintf(fp_cpp, " return (start);\n");
fprintf(fp_cpp, "}\n\n");
fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
fprintf(fp_cpp, " for (uint i = 0; i < pred._count; i++) {\n");
fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred.element(i);\n");
fprintf(fp_cpp, " if (predUse->_multiple) {\n");
fprintf(fp_cpp, " uint min_delay = %d;\n",
_pipeline->_maxcycleused+1);
fprintf(fp_cpp, " // Multiple possible functional units, choose first unused one\n");
fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = element(j);\n");
fprintf(fp_cpp, " uint curr_delay = delay;\n");
fprintf(fp_cpp, " if (predUse->_used & currUse->_used) {\n");
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
fprintf(fp_cpp, " for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
fprintf(fp_cpp, " y <<= 1;\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " if (min_delay > curr_delay)\n min_delay = curr_delay;\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " if (delay < min_delay)\n delay = min_delay;\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " else {\n");
fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = element(j);\n");
fprintf(fp_cpp, " if (predUse->_used & currUse->_used) {\n");
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
fprintf(fp_cpp, " for ( y <<= delay; x.overlaps(y); delay++ )\n");
fprintf(fp_cpp, " y <<= 1;\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " }\n\n");
fprintf(fp_cpp, " return (delay);\n");
fprintf(fp_cpp, "}\n\n");
fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
fprintf(fp_cpp, " for (uint i = 0; i < pred._count; i++) {\n");
fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred.element(i);\n");
fprintf(fp_cpp, " if (predUse->_multiple) {\n");
fprintf(fp_cpp, " // Multiple possible functional units, choose first unused one\n");
fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
fprintf(fp_cpp, " Pipeline_Use_Element *currUse = element(j);\n");
fprintf(fp_cpp, " if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
fprintf(fp_cpp, " currUse->_used |= (1 << j);\n");
fprintf(fp_cpp, " _resources_used |= (1 << j);\n");
fprintf(fp_cpp, " currUse->_mask.Or(predUse->_mask);\n");
fprintf(fp_cpp, " break;\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " else {\n");
fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
fprintf(fp_cpp, " Pipeline_Use_Element *currUse = element(j);\n");
fprintf(fp_cpp, " currUse->_used |= (1 << j);\n");
fprintf(fp_cpp, " _resources_used |= (1 << j);\n");
fprintf(fp_cpp, " currUse->_mask.Or(predUse->_mask);\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, "}\n\n");
fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
fprintf(fp_cpp, " int const default_latency = 1;\n");
fprintf(fp_cpp, "\n");
#if 0
fprintf(fp_cpp, "#ifndef PRODUCT\n");
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
fprintf(fp_cpp, " tty->print(\"# operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, "#endif\n\n");
#endif
fprintf(fp_cpp, " assert(this, \"NULL pipeline info\");\n");
fprintf(fp_cpp, " assert(pred, \"NULL predecessor pipline info\");\n\n");
fprintf(fp_cpp, " if (pred->hasFixedLatency())\n return (pred->fixedLatency());\n\n");
fprintf(fp_cpp, " // If this is not an operand, then assume a dependence with 0 latency\n");
fprintf(fp_cpp, " if (opnd > _read_stage_count)\n return (0);\n\n");
fprintf(fp_cpp, " uint writeStage = pred->_write_stage;\n");
fprintf(fp_cpp, " uint readStage = _read_stages[opnd-1];\n");
#if 0
fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
fprintf(fp_cpp, " tty->print(\"# operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, "#endif\n\n");
#endif
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, " if (writeStage == stage_undefined || readStage == stage_undefined)\n");
fprintf(fp_cpp, " return (default_latency);\n");
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, " int delta = writeStage - readStage;\n");
fprintf(fp_cpp, " if (delta < 0) delta = 0;\n\n");
#if 0
fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
fprintf(fp_cpp, " tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, "#endif\n\n");
#endif
fprintf(fp_cpp, " return (delta);\n");
fprintf(fp_cpp, "}\n\n");
if (!_pipeline)
/* Do Nothing */;
else if (_pipeline->_maxcycleused <=
#ifdef SPARC
64
#else
32
#endif
) {
fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
fprintf(fp_cpp, "}\n\n");
fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
fprintf(fp_cpp, "}\n\n");
}
else {
uint l;
uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(");
for (l = 1; l <= masklen; l++)
fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
fprintf(fp_cpp, ");\n");
fprintf(fp_cpp, "}\n\n");
fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(");
for (l = 1; l <= masklen; l++)
fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
fprintf(fp_cpp, ");\n");
fprintf(fp_cpp, "}\n\n");
fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
for (l = 1; l <= masklen; l++)
fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
fprintf(fp_cpp, "\n}\n\n");
}
/* Get the length of all the resource names */
for (_pipeline->_reslist.reset(), resourcenamelen = 0;
(resourcename = _pipeline->_reslist.iter()) != NULL;
resourcenamelen += (int)strlen(resourcename));
// Create the pipeline class description
fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
fprintf(fp_cpp, " Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
for (int i2 = masklen-1; i2 >= 0; i2--)
fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
}
fprintf(fp_cpp, "};\n\n");
fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
_pipeline->_rescount);
for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
int maxWriteStage = -1;
int maxMoreInstrs = 0;
int paramcount = 0;
int i = 0;
const char *paramname;
int resource_count = (_pipeline->_rescount + 3) >> 2;
// Scan the operands, looking for last output stage and number of inputs
for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
const PipeClassOperandForm *pipeopnd =
(const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
if (pipeopnd) {
if (pipeopnd->_iswrite) {
int stagenum = _pipeline->_stages.index(pipeopnd->_stage);
int moreinsts = pipeopnd->_more_instrs;
if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
maxWriteStage = stagenum;
maxMoreInstrs = moreinsts;
}
}
}
if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
paramcount++;
}
// Create the list of stages for the operands that are read
// Note that we will build a NameList to reduce the number of copies
int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
int pipeline_res_stages_index = pipeline_res_stages_initializer(
fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
int pipeline_res_mask_index = pipeline_res_mask_initializer(
fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
#if 0
// Process the Resources
const PipeClassResourceForm *piperesource;
unsigned resources_used = 0;
unsigned exclusive_resources_used = 0;
unsigned resource_groups = 0;
for (pipeclass->_resUsage.reset();
(piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
if (used_mask)
resource_groups++;
resources_used |= used_mask;
if ((used_mask & (used_mask-1)) == 0)
exclusive_resources_used |= used_mask;
}
if (resource_groups > 0) {
fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
pipeclass->_num, resource_groups);
for (pipeclass->_resUsage.reset(), i = 1;
(piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
i++ ) {
int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
if (used_mask) {
fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
}
}
fprintf(fp_cpp, "};\n\n");
}
#endif
// Create the pipeline class description
fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
pipeclass->_num);
if (maxWriteStage < 0)
fprintf(fp_cpp, "(uint)stage_undefined");
else if (maxMoreInstrs == 0)
fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
else
fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
paramcount,
pipeclass->hasFixedLatency() ? "true" : "false",
pipeclass->fixedLatency(),
pipeclass->InstructionCount(),
pipeclass->hasBranchDelay() ? "true" : "false",
pipeclass->hasMultipleBundles() ? "true" : "false",
pipeclass->forceSerialization() ? "true" : "false",
pipeclass->mayHaveNoCode() ? "true" : "false" );
if (paramcount > 0) {
fprintf(fp_cpp, "\n (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
pipeline_reads_index+1);
}
else
fprintf(fp_cpp, " NULL,");
fprintf(fp_cpp, " (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
pipeline_res_stages_index+1);
fprintf(fp_cpp, " (uint * const) pipeline_res_cycles_%03d,\n",
pipeline_res_cycles_index+1);
fprintf(fp_cpp, " Pipeline_Use(%s, (Pipeline_Use_Element *)",
pipeline_res_args.name(pipeline_res_mask_index));
if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
pipeline_res_mask_index+1);
else
fprintf(fp_cpp, "NULL");
fprintf(fp_cpp, "));\n");
}
// Generate the Node::latency method if _pipeline defined
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
if (_pipeline) {
#if 0
fprintf(fp_cpp, "#ifndef PRODUCT\n");
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
fprintf(fp_cpp, " tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, "#endif\n");
#endif
fprintf(fp_cpp, " uint j;\n");
fprintf(fp_cpp, " // verify in legal range for inputs\n");
fprintf(fp_cpp, " assert(i < len(), \"index not in range\");\n\n");
fprintf(fp_cpp, " // verify input is not null\n");
fprintf(fp_cpp, " Node *pred = in(i);\n");
fprintf(fp_cpp, " if (!pred)\n return %d;\n\n",
non_operand_latency);
fprintf(fp_cpp, " if (pred->is_Proj())\n pred = pred->in(0);\n\n");
fprintf(fp_cpp, " // if either node does not have pipeline info, use default\n");
fprintf(fp_cpp, " const Pipeline *predpipe = pred->pipeline();\n");
fprintf(fp_cpp, " assert(predpipe, \"no predecessor pipeline info\");\n\n");
fprintf(fp_cpp, " if (predpipe->hasFixedLatency())\n return predpipe->fixedLatency();\n\n");
fprintf(fp_cpp, " const Pipeline *currpipe = pipeline();\n");
fprintf(fp_cpp, " assert(currpipe, \"no pipeline info\");\n\n");
fprintf(fp_cpp, " if (!is_Mach())\n return %d;\n\n",
node_latency);
fprintf(fp_cpp, " const MachNode *m = as_Mach();\n");
fprintf(fp_cpp, " j = m->oper_input_base();\n");
fprintf(fp_cpp, " if (i < j)\n return currpipe->functional_unit_latency(%d, predpipe);\n\n",
non_operand_latency);
fprintf(fp_cpp, " // determine which operand this is in\n");
fprintf(fp_cpp, " uint n = m->num_opnds();\n");
fprintf(fp_cpp, " int delta = %d;\n\n",
non_operand_latency);
fprintf(fp_cpp, " uint k;\n");
fprintf(fp_cpp, " for (k = 1; k < n; k++) {\n");
fprintf(fp_cpp, " j += m->_opnds[k]->num_edges();\n");
fprintf(fp_cpp, " if (i < j)\n");
fprintf(fp_cpp, " break;\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, " if (k < n)\n");
fprintf(fp_cpp, " delta = currpipe->operand_latency(k,predpipe);\n\n");
fprintf(fp_cpp, " return currpipe->functional_unit_latency(delta, predpipe);\n");
}
else {
fprintf(fp_cpp, " // assert(false, \"pipeline functionality is not defined\");\n");
fprintf(fp_cpp, " return %d;\n",
non_operand_latency);
}
fprintf(fp_cpp, "}\n\n");
// Output the list of nop nodes
fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
const char *nop;
int nopcnt = 0;
for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt);
int i = 0;
for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
fprintf(fp_cpp, " nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop);
}
fprintf(fp_cpp, "};\n\n");
fprintf(fp_cpp, "#ifndef PRODUCT\n");
fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
fprintf(fp_cpp, " static const char * bundle_flags[] = {\n");
fprintf(fp_cpp, " \"\",\n");
fprintf(fp_cpp, " \"use nop delay\",\n");
fprintf(fp_cpp, " \"use unconditional delay\",\n");
fprintf(fp_cpp, " \"use conditional delay\",\n");
fprintf(fp_cpp, " \"used in conditional delay\",\n");
fprintf(fp_cpp, " \"used in unconditional delay\",\n");
fprintf(fp_cpp, " \"used in all conditional delays\",\n");
fprintf(fp_cpp, " };\n\n");
fprintf(fp_cpp, " static const char *resource_names[%d] = {", _pipeline->_rescount);
for (i = 0; i < _pipeline->_rescount; i++)
fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
fprintf(fp_cpp, "};\n\n");
// See if the same string is in the table
fprintf(fp_cpp, " bool needs_comma = false;\n\n");
fprintf(fp_cpp, " if (_flags) {\n");
fprintf(fp_cpp, " st->print(\"%%s\", bundle_flags[_flags]);\n");
fprintf(fp_cpp, " needs_comma = true;\n");
fprintf(fp_cpp, " };\n");
fprintf(fp_cpp, " if (instr_count()) {\n");
fprintf(fp_cpp, " st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
fprintf(fp_cpp, " needs_comma = true;\n");
fprintf(fp_cpp, " };\n");
fprintf(fp_cpp, " uint r = resources_used();\n");
fprintf(fp_cpp, " if (r) {\n");
fprintf(fp_cpp, " st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
fprintf(fp_cpp, " for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
fprintf(fp_cpp, " if ((r & (1 << i)) != 0)\n");
fprintf(fp_cpp, " st->print(\" %%s\", resource_names[i]);\n");
fprintf(fp_cpp, " needs_comma = true;\n");
fprintf(fp_cpp, " };\n");
fprintf(fp_cpp, " st->print(\"\\n\");\n");
fprintf(fp_cpp, "}\n");
fprintf(fp_cpp, "#endif\n");
}
// ---------------------------------------------------------------------------
//------------------------------Utilities to build Instruction Classes--------
// ---------------------------------------------------------------------------
static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
node, regMask);
}
static void print_block_index(FILE *fp, int inst_position) {
assert( inst_position >= 0, "Instruction number less than zero");
fprintf(fp, "block_index");
if( inst_position != 0 ) {
fprintf(fp, " - %d", inst_position);
}
}
// Scan the peepmatch and output a test for each instruction
static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
int parent = -1;
int inst_position = 0;
const char* inst_name = NULL;
int input = 0;
fprintf(fp, " // Check instruction sub-tree\n");
pmatch->reset();
for( pmatch->next_instruction( parent, inst_position, inst_name, input );
inst_name != NULL;
pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
// If this is not a placeholder
if( ! pmatch->is_placeholder() ) {
// Define temporaries 'inst#', based on parent and parent's input index
if( parent != -1 ) { // root was initialized
fprintf(fp, " // Identify previous instruction if inside this block\n");
fprintf(fp, " if( ");
print_block_index(fp, inst_position);
fprintf(fp, " > 0 ) {\n Node *n = block->get_node(");
print_block_index(fp, inst_position);
fprintf(fp, ");\n inst%d = (n->is_Mach()) ? ", inst_position);
fprintf(fp, "n->as_Mach() : NULL;\n }\n");
}
// When not the root
// Test we have the correct instruction by comparing the rule.
if( parent != -1 ) {
fprintf(fp, " matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
inst_position, inst_position, inst_name);
}
} else {
// Check that user did not try to constrain a placeholder
assert( ! pconstraint->constrains_instruction(inst_position),
"fatal(): Can not constrain a placeholder instruction");
}
}
}
// Build mapping for register indices, num_edges to input
static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
int parent = -1;
int inst_position = 0;
const char* inst_name = NULL;
int input = 0;
fprintf(fp, " // Build map to register info\n");
pmatch->reset();
for( pmatch->next_instruction( parent, inst_position, inst_name, input );
inst_name != NULL;
pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
// If this is not a placeholder
if( ! pmatch->is_placeholder() ) {
// Define temporaries 'inst#', based on self's inst_position
InstructForm *inst = globals[inst_name]->is_instruction();
if( inst != NULL ) {
char inst_prefix[] = "instXXXX_";
sprintf(inst_prefix, "inst%d_", inst_position);
char receiver[] = "instXXXX->";
sprintf(receiver, "inst%d->", inst_position);
inst->index_temps( fp, globals, inst_prefix, receiver );
}
}
}
}
// Generate tests for the constraints
static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
fprintf(fp, "\n");
fprintf(fp, " // Check constraints on sub-tree-leaves\n");
// Build mapping from num_edges to local variables
build_instruction_index_mapping( fp, globals, pmatch );
// Build constraint tests
if( pconstraint != NULL ) {
fprintf(fp, " matches = matches &&");
bool first_constraint = true;
while( pconstraint != NULL ) {
// indentation and connecting '&&'
const char *indentation = " ";
fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : " "));
// Only have '==' relation implemented
if( strcmp(pconstraint->_relation,"==") != 0 ) {
assert( false, "Unimplemented()" );
}
// LEFT
int left_index = pconstraint->_left_inst;
const char *left_op = pconstraint->_left_op;
// Access info on the instructions whose operands are compared
InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
assert( inst_left, "Parser should guaranty this is an instruction");
int left_op_base = inst_left->oper_input_base(globals);
// Access info on the operands being compared
int left_op_index = inst_left->operand_position(left_op, Component::USE);
if( left_op_index == -1 ) {
left_op_index = inst_left->operand_position(left_op, Component::DEF);
if( left_op_index == -1 ) {
left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
}
}
assert( left_op_index != NameList::Not_in_list, "Did not find operand in instruction");
ComponentList components_left = inst_left->_components;
const char *left_comp_type = components_left.at(left_op_index)->_type;
OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
// RIGHT
int right_op_index = -1;
int right_index = pconstraint->_right_inst;
const char *right_op = pconstraint->_right_op;
if( right_index != -1 ) { // Match operand
// Access info on the instructions whose operands are compared
InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
assert( inst_right, "Parser should guaranty this is an instruction");
int right_op_base = inst_right->oper_input_base(globals);
// Access info on the operands being compared
right_op_index = inst_right->operand_position(right_op, Component::USE);
if( right_op_index == -1 ) {
right_op_index = inst_right->operand_position(right_op, Component::DEF);
if( right_op_index == -1 ) {
right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
}
}
assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
ComponentList components_right = inst_right->_components;
const char *right_comp_type = components_right.at(right_op_index)->_type;
OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
assert( right_interface_type == left_interface_type, "Both must be same interface");
} else { // Else match register
// assert( false, "should be a register" );
}
//
// Check for equivalence
//
// fprintf(fp, "phase->eqv( ");
// fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
// left_index, left_op_base, left_op_index, left_op,
// right_index, right_op_base, right_op_index, right_op );
// fprintf(fp, ")");
//
switch( left_interface_type ) {
case Form::register_interface: {
// Check that they are allocated to the same register
// Need parameter for index position if not result operand
char left_reg_index[] = ",instXXXX_idxXXXX";
if( left_op_index != 0 ) {
assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
// Must have index into operands
sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
} else {
strcpy(left_reg_index, "");
}
fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s) /* %d.%s */",
left_index, left_op_index, left_index, left_reg_index, left_index, left_op );
fprintf(fp, " == ");
if( right_index != -1 ) {
char right_reg_index[18] = ",instXXXX_idxXXXX";
if( right_op_index != 0 ) {
assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
// Must have index into operands
sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
} else {
strcpy(right_reg_index, "");
}
fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
} else {
fprintf(fp, "%s_enc", right_op );
}
fprintf(fp,")");
break;
}
case Form::constant_interface: {
// Compare the '->constant()' values
fprintf(fp, "(inst%d->_opnds[%d]->constant() /* %d.%s */",
left_index, left_op_index, left_index, left_op );
fprintf(fp, " == ");
fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
right_index, right_op, right_index, right_op_index );
break;
}
case Form::memory_interface: {
// Compare 'base', 'index', 'scale', and 'disp'
// base
fprintf(fp, "( \n");
fprintf(fp, " (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d) /* %d.%s$$base */",
left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
fprintf(fp, " == ");
fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
// index
fprintf(fp, " (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d) /* %d.%s$$index */",
left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
fprintf(fp, " == ");
fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
// scale
fprintf(fp, " (inst%d->_opnds[%d]->scale() /* %d.%s$$scale */",
left_index, left_op_index, left_index, left_op );
fprintf(fp, " == ");
fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
right_index, right_op, right_index, right_op_index );
// disp
fprintf(fp, " (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d) /* %d.%s$$disp */",
left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
fprintf(fp, " == ");
fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
fprintf(fp, ") \n");
break;
}
case Form::conditional_interface: {
// Compare the condition code being tested
assert( false, "Unimplemented()" );
break;
}
default: {
assert( false, "ShouldNotReachHere()" );
break;
}
}
// Advance to next constraint
pconstraint = pconstraint->next();
first_constraint = false;
}
fprintf(fp, ";\n");
}
}
// // EXPERIMENTAL -- TEMPORARY code
// static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
// int op_index = instr->operand_position(op_name, Component::USE);
// if( op_index == -1 ) {
// op_index = instr->operand_position(op_name, Component::DEF);
// if( op_index == -1 ) {
// op_index = instr->operand_position(op_name, Component::USE_DEF);
// }
// }
// assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
//
// ComponentList components_right = instr->_components;
// char *right_comp_type = components_right.at(op_index)->_type;
// OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
// Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
//
// return;
// }
// Construct the new sub-tree
static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
fprintf(fp, " // IF instructions and constraints matched\n");
fprintf(fp, " if( matches ) {\n");
fprintf(fp, " // generate the new sub-tree\n");
fprintf(fp, " assert( true, \"Debug stopping point\");\n");
if( preplace != NULL ) {
// Get the root of the new sub-tree
const char *root_inst = NULL;
preplace->next_instruction(root_inst);
InstructForm *root_form = globals[root_inst]->is_instruction();
assert( root_form != NULL, "Replacement instruction was not previously defined");
fprintf(fp, " %sNode *root = new (C) %sNode();\n", root_inst, root_inst);
int inst_num;
const char *op_name;
int opnds_index = 0; // define result operand
// Then install the use-operands for the new sub-tree
// preplace->reset(); // reset breaks iteration
for( preplace->next_operand( inst_num, op_name );
op_name != NULL;
preplace->next_operand( inst_num, op_name ) ) {
InstructForm *inst_form;
inst_form = globals[pmatch->instruction_name(inst_num)]->is_instruction();
assert( inst_form, "Parser should guaranty this is an instruction");
int inst_op_num = inst_form->operand_position(op_name, Component::USE);
if( inst_op_num == NameList::Not_in_list )
inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
// find the name of the OperandForm from the local name
const Form *form = inst_form->_localNames[op_name];
OperandForm *op_form = form->is_operand();
if( opnds_index == 0 ) {
// Initial setup of new instruction
fprintf(fp, " // ----- Initial setup -----\n");
//
// Add control edge for this node
fprintf(fp, " root->add_req(_in[0]); // control edge\n");
// Add unmatched edges from root of match tree
int op_base = root_form->oper_input_base(globals);
for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
fprintf(fp, " root->add_req(inst%d->in(%d)); // unmatched ideal edge\n",
inst_num, unmatched_edge);
}
// If new instruction captures bottom type
if( root_form->captures_bottom_type(globals) ) {
// Get bottom type from instruction whose result we are replacing
fprintf(fp, " root->_bottom_type = inst%d->bottom_type();\n", inst_num);
}
// Define result register and result operand
fprintf(fp, " ra_->add_reference(root, inst%d);\n", inst_num);
fprintf(fp, " ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
fprintf(fp, " ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
fprintf(fp, " root->_opnds[0] = inst%d->_opnds[0]->clone(C); // result\n", inst_num);
fprintf(fp, " // ----- Done with initial setup -----\n");
} else {
if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
// Do not have ideal edges for constants after matching
fprintf(fp, " for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
inst_op_num, inst_num, inst_op_num,
inst_op_num, inst_num, inst_op_num+1, inst_op_num );
fprintf(fp, " root->add_req( inst%d->in(x%d) );\n",
inst_num, inst_op_num );
} else {
fprintf(fp, " // no ideal edge for constants after matching\n");
}
fprintf(fp, " root->_opnds[%d] = inst%d->_opnds[%d]->clone(C);\n",
opnds_index, inst_num, inst_op_num );
}
++opnds_index;
}
}else {
// Replacing subtree with empty-tree
assert( false, "ShouldNotReachHere();");
}
// Return the new sub-tree
fprintf(fp, " deleted = %d;\n", max_position+1 /*zero to one based*/);
fprintf(fp, " return root; // return new root;\n");
fprintf(fp, " }\n");
}
// Define the Peephole method for an instruction node
void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
// Generate Peephole function header
fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident);
fprintf(fp, " bool matches = true;\n");
// Identify the maximum instruction position,
// generate temporaries that hold current instruction
//
// MachNode *inst0 = NULL;
// ...
// MachNode *instMAX = NULL;
//
int max_position = 0;
Peephole *peep;
for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
PeepMatch *pmatch = peep->match();
assert( pmatch != NULL, "fatal(), missing peepmatch rule");
if( max_position < pmatch->max_position() ) max_position = pmatch->max_position();
}
for( int i = 0; i <= max_position; ++i ) {
if( i == 0 ) {
fprintf(fp, " MachNode *inst0 = this;\n");
} else {
fprintf(fp, " MachNode *inst%d = NULL;\n", i);
}
}
// For each peephole rule in architecture description
// Construct a test for the desired instruction sub-tree
// then check the constraints
// If these match, Generate the new subtree
for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
int peephole_number = peep->peephole_number();
PeepMatch *pmatch = peep->match();
PeepConstraint *pconstraint = peep->constraints();
PeepReplace *preplace = peep->replacement();
// Root of this peephole is the current MachNode
assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
"root of PeepMatch does not match instruction");
// Make each peephole rule individually selectable
fprintf(fp, " if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
fprintf(fp, " matches = true;\n");
// Scan the peepmatch and output a test for each instruction
check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
// Check constraints and build replacement inside scope
fprintf(fp, " // If instruction subtree matches\n");
fprintf(fp, " if( matches ) {\n");
// Generate tests for the constraints
check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
// Construct the new sub-tree
generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
// End of scope for this peephole's constraints
fprintf(fp, " }\n");
// Closing brace '}' to make each peephole rule individually selectable
fprintf(fp, " } // end of peephole rule #%d\n", peephole_number);
fprintf(fp, "\n");
}
fprintf(fp, " return NULL; // No peephole rules matched\n");
fprintf(fp, "}\n");
fprintf(fp, "\n");
}
// Define the Expand method for an instruction node
void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
unsigned cnt = 0; // Count nodes we have expand into
unsigned i;
// Generate Expand function header
fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
fprintf(fp, " Compile* C = Compile::current();\n");
// Generate expand code
if( node->expands() ) {
const char *opid;
int new_pos, exp_pos;
const char *new_id = NULL;
const Form *frm = NULL;
InstructForm *new_inst = NULL;
OperandForm *new_oper = NULL;
unsigned numo = node->num_opnds() +
node->_exprule->_newopers.count();
// If necessary, generate any operands created in expand rule
if (node->_exprule->_newopers.count()) {
for(node->_exprule->_newopers.reset();
(new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
frm = node->_localNames[new_id];
assert(frm, "Invalid entry in new operands list of expand rule");
new_oper = frm->is_operand();
char *tmp = (char *)node->_exprule->_newopconst[new_id];
if (tmp == NULL) {
fprintf(fp," MachOper *op%d = new (C) %sOper();\n",
cnt, new_oper->_ident);
}
else {
fprintf(fp," MachOper *op%d = new (C) %sOper(%s);\n",
cnt, new_oper->_ident, tmp);
}
}
}
cnt = 0;
// Generate the temps to use for DAG building
for(i = 0; i < numo; i++) {
if (i < node->num_opnds()) {
fprintf(fp," MachNode *tmp%d = this;\n", i);
}
else {
fprintf(fp," MachNode *tmp%d = NULL;\n", i);
}
}
// Build mapping from num_edges to local variables
fprintf(fp," unsigned num0 = 0;\n");
for( i = 1; i < node->num_opnds(); i++ ) {
fprintf(fp," unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
}
// Build a mapping from operand index to input edges
fprintf(fp," unsigned idx0 = oper_input_base();\n");
// The order in which the memory input is added to a node is very
// strange. Store nodes get a memory input before Expand is
// called and other nodes get it afterwards or before depending on
// match order so oper_input_base is wrong during expansion. This
// code adjusts it so that expansion will work correctly.
int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
if (has_memory_edge) {
fprintf(fp," if (mem == (Node*)1) {\n");
fprintf(fp," idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
fprintf(fp," }\n");
}
for( i = 0; i < node->num_opnds(); i++ ) {
fprintf(fp," unsigned idx%d = idx%d + num%d;\n",
i+1,i,i);
}
// Declare variable to hold root of expansion
fprintf(fp," MachNode *result = NULL;\n");
// Iterate over the instructions 'node' expands into
ExpandRule *expand = node->_exprule;
NameAndList *expand_instr = NULL;
for(expand->reset_instructions();
(expand_instr = expand->iter_instructions()) != NULL; cnt++) {
new_id = expand_instr->name();
InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
if (!expand_instruction) {
globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
node->_ident, new_id);
continue;
}
if (expand_instruction->has_temps()) {
globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
node->_ident, new_id);
}
// Build the node for the instruction
fprintf(fp,"\n %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id);
// Add control edge for this node
fprintf(fp," n%d->add_req(_in[0]);\n", cnt);
// Build the operand for the value this node defines.
Form *form = (Form*)_globalNames[new_id];
assert( form, "'new_id' must be a defined form name");
// Grab the InstructForm for the new instruction
new_inst = form->is_instruction();
assert( new_inst, "'new_id' must be an instruction name");
if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
fprintf(fp, " ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
fprintf(fp, " ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
}
if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
fprintf(fp, " ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
fprintf(fp, " ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n",cnt);
fprintf(fp, " ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n",cnt);
}
// Fill in the bottom_type where requested
if (node->captures_bottom_type(_globalNames) &&
new_inst->captures_bottom_type(_globalNames)) {
fprintf(fp, " ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
}
const char *resultOper = new_inst->reduce_result();
fprintf(fp," n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n",
cnt, machOperEnum(resultOper));
// get the formal operand NameList
NameList *formal_lst = &new_inst->_parameters;
formal_lst->reset();
// Handle any memory operand
int memory_operand = new_inst->memory_operand(_globalNames);
if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
int node_mem_op = node->memory_operand(_globalNames);
assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
"expand rule member needs memory but top-level inst doesn't have any" );
if (has_memory_edge) {
// Copy memory edge
fprintf(fp," if (mem != (Node*)1) {\n");
fprintf(fp," n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
fprintf(fp," }\n");
}
}
// Iterate over the new instruction's operands
int prev_pos = -1;
for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
// Use 'parameter' at current position in list of new instruction's formals
// instead of 'opid' when looking up info internal to new_inst
const char *parameter = formal_lst->iter();
if (!parameter) {
globalAD->syntax_err(node->_linenum, "Operand %s of expand instruction %s has"
" no equivalent in new instruction %s.",
opid, node->_ident, new_inst->_ident);
assert(0, "Wrong expand");
}
// Check for an operand which is created in the expand rule
if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
new_pos = new_inst->operand_position(parameter,Component::USE);
exp_pos += node->num_opnds();
// If there is no use of the created operand, just skip it
if (new_pos != NameList::Not_in_list) {
//Copy the operand from the original made above
fprintf(fp," n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n",
cnt, new_pos, exp_pos-node->num_opnds(), opid);
// Check for who defines this operand & add edge if needed
fprintf(fp," if(tmp%d != NULL)\n", exp_pos);
fprintf(fp," n%d->add_req(tmp%d);\n", cnt, exp_pos);
}
}
else {
// Use operand name to get an index into instruction component list
// ins = (InstructForm *) _globalNames[new_id];
exp_pos = node->operand_position_format(opid);
assert(exp_pos != -1, "Bad expand rule");
if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
// For the add_req calls below to work correctly they need
// to added in the same order that a match would add them.
// This means that they would need to be in the order of
// the components list instead of the formal parameters.
// This is a sort of hidden invariant that previously
// wasn't checked and could lead to incorrectly
// constructed nodes.
syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
node->_ident, new_inst->_ident);
}
prev_pos = exp_pos;
new_pos = new_inst->operand_position(parameter,Component::USE);
if (new_pos != -1) {
// Copy the operand from the ExpandNode to the new node
fprintf(fp," n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
cnt, new_pos, exp_pos, opid);
// For each operand add appropriate input edges by looking at tmp's
fprintf(fp," if(tmp%d == this) {\n", exp_pos);
// Grab corresponding edges from ExpandNode and insert them here
fprintf(fp," for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
fprintf(fp," n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
fprintf(fp," }\n");
fprintf(fp," }\n");
// This value is generated by one of the new instructions
fprintf(fp," else n%d->add_req(tmp%d);\n", cnt, exp_pos);
}
}
// Update the DAG tmp's for values defined by this instruction
int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
Effect *eform = (Effect *)new_inst->_effects[parameter];
// If this operand is a definition in either an effects rule
// or a match rule
if((eform) && (is_def(eform->_use_def))) {
// Update the temp associated with this operand
fprintf(fp," tmp%d = n%d;\n", exp_pos, cnt);
}
else if( new_def_pos != -1 ) {
// Instruction defines a value but user did not declare it
// in the 'effect' clause
fprintf(fp," tmp%d = n%d;\n", exp_pos, cnt);
}
} // done iterating over a new instruction's operands
// Invoke Expand() for the newly created instruction.
fprintf(fp," result = n%d->Expand( state, proj_list, mem );\n", cnt);
assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
} // done iterating over new instructions
fprintf(fp,"\n");
} // done generating expand rule
// Generate projections for instruction's additional DEFs and KILLs
if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
// Get string representing the MachNode that projections point at
const char *machNode = "this";
// Generate the projections
fprintf(fp," // Add projection edges for additional defs or kills\n");
// Examine each component to see if it is a DEF or KILL
node->_components.reset();
// Skip the first component, if already handled as (SET dst (...))
Component *comp = NULL;
// For kills, the choice of projection numbers is arbitrary
int proj_no = 1;
bool declared_def = false;
bool declared_kill = false;
while( (comp = node->_components.iter()) != NULL ) {
// Lookup register class associated with operand type
Form *form = (Form*)_globalNames[comp->_type];
assert( form, "component type must be a defined form");
OperandForm *op = form->is_operand();
if (comp->is(Component::TEMP)) {
fprintf(fp, " // TEMP %s\n", comp->_name);
if (!declared_def) {
// Define the variable "def" to hold new MachProjNodes
fprintf(fp, " MachTempNode *def;\n");
declared_def = true;
}
if (op && op->_interface && op->_interface->is_RegInterface()) {
fprintf(fp," def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n",
machOperEnum(op->_ident));
fprintf(fp," add_req(def);\n");
// The operand for TEMP is already constructed during
// this mach node construction, see buildMachNode().
//
// int idx = node->operand_position_format(comp->_name);
// fprintf(fp," set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n",
// idx, machOperEnum(op->_ident));
} else {
assert(false, "can't have temps which aren't registers");
}
} else if (comp->isa(Component::KILL)) {
fprintf(fp, " // DEF/KILL %s\n", comp->_name);
if (!declared_kill) {
// Define the variable "kill" to hold new MachProjNodes
fprintf(fp, " MachProjNode *kill;\n");
declared_kill = true;
}
assert( op, "Support additional KILLS for base operands");
const char *regmask = reg_mask(*op);
const char *ideal_type = op->ideal_type(_globalNames, _register);
if (!op->is_bound_register()) {
syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
node->_ident, comp->_type, comp->_name);
}
fprintf(fp," kill = ");
fprintf(fp,"new (C) MachProjNode( %s, %d, (%s), Op_%s );\n",
machNode, proj_no++, regmask, ideal_type);
fprintf(fp," proj_list.push(kill);\n");
}
}
}
if( !node->expands() && node->_matrule != NULL ) {
// Remove duplicated operands and inputs which use the same name.
// Seach through match operands for the same name usage.
uint cur_num_opnds = node->num_opnds();
if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
Component *comp = NULL;
// Build mapping from num_edges to local variables
fprintf(fp," unsigned num0 = 0;\n");
for( i = 1; i < cur_num_opnds; i++ ) {
fprintf(fp," unsigned num%d = opnd_array(%d)->num_edges();",i,i);
fprintf(fp, " \t// %s\n", node->opnd_ident(i));
}
// Build a mapping from operand index to input edges
fprintf(fp," unsigned idx0 = oper_input_base();\n");
for( i = 0; i < cur_num_opnds; i++ ) {
fprintf(fp," unsigned idx%d = idx%d + num%d;\n",
i+1,i,i);
}
uint new_num_opnds = 1;
node->_components.reset();
// Skip first unique operands.
for( i = 1; i < cur_num_opnds; i++ ) {
comp = node->_components.iter();
if (i != node->unique_opnds_idx(i)) {
break;
}
new_num_opnds++;
}
// Replace not unique operands with next unique operands.
for( ; i < cur_num_opnds; i++ ) {
comp = node->_components.iter();
uint j = node->unique_opnds_idx(i);
// unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
if( j != node->unique_opnds_idx(j) ) {
fprintf(fp," set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
new_num_opnds, i, comp->_name);
// delete not unique edges here
fprintf(fp," for(unsigned i = 0; i < num%d; i++) {\n", i);
fprintf(fp," set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
fprintf(fp," }\n");
fprintf(fp," num%d = num%d;\n", new_num_opnds, i);
fprintf(fp," idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
new_num_opnds++;
}
}
// delete the rest of edges
fprintf(fp," for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
fprintf(fp," del_req(i);\n");
fprintf(fp," }\n");
fprintf(fp," _num_opnds = %d;\n", new_num_opnds);
assert(new_num_opnds == node->num_unique_opnds(), "what?");
}
}
// If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
// NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
// There are nodes that don't use $constantablebase, but still require that it
// is an input to the node. Example: divF_reg_immN, Repl32B_imm on x86_64.
if (node->is_mach_constant() || node->needs_constant_base()) {
if (node->is_ideal_call() != Form::invalid_type &&
node->is_ideal_call() != Form::JAVA_LEAF) {
fprintf(fp, " // MachConstantBaseNode added in matcher.\n");
_needs_clone_jvms = true;
} else {
fprintf(fp, " add_req(C->mach_constant_base_node());\n");
}
}
fprintf(fp, "\n");
if (node->expands()) {
fprintf(fp, " return result;\n");
} else {
fprintf(fp, " return this;\n");
}
fprintf(fp, "}\n");
fprintf(fp, "\n");
}
//------------------------------Emit Routines----------------------------------
// Special classes and routines for defining node emit routines which output
// target specific instruction object encodings.
// Define the ___Node::emit() routine
//
// (1) void ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
// (2) // ... encoding defined by user
// (3)
// (4) }
//
class DefineEmitState {
private:
enum reloc_format { RELOC_NONE = -1,
RELOC_IMMEDIATE = 0,
RELOC_DISP = 1,
RELOC_CALL_DISP = 2 };
enum literal_status{ LITERAL_NOT_SEEN = 0,
LITERAL_SEEN = 1,
LITERAL_ACCESSED = 2,
LITERAL_OUTPUT = 3 };
// Temporaries that describe current operand
bool _cleared;
OpClassForm *_opclass;
OperandForm *_operand;
int _operand_idx;
const char *_local_name;
const char *_operand_name;
bool _doing_disp;
bool _doing_constant;
Form::DataType _constant_type;
DefineEmitState::literal_status _constant_status;
DefineEmitState::literal_status _reg_status;
bool _doing_emit8;
bool _doing_emit_d32;
bool _doing_emit_d16;
bool _doing_emit_hi;
bool _doing_emit_lo;
bool _may_reloc;
reloc_format _reloc_form;
const char * _reloc_type;
bool _processing_noninput;
NameList _strings_to_emit;
// Stable state, set by constructor
ArchDesc &_AD;
FILE *_fp;
EncClass &_encoding;
InsEncode &_ins_encode;
InstructForm &_inst;
public:
DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
InsEncode &ins_encode, InstructForm &inst)
: _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
clear();
}
void clear() {
_cleared = true;
_opclass = NULL;
_operand = NULL;
_operand_idx = 0;
_local_name = "";
_operand_name = "";
_doing_disp = false;
_doing_constant= false;
_constant_type = Form::none;
_constant_status = LITERAL_NOT_SEEN;
_reg_status = LITERAL_NOT_SEEN;
_doing_emit8 = false;
_doing_emit_d32= false;
_doing_emit_d16= false;
_doing_emit_hi = false;
_doing_emit_lo = false;
_may_reloc = false;
_reloc_form = RELOC_NONE;
_reloc_type = AdlcVMDeps::none_reloc_type();
_strings_to_emit.clear();
}
// Track necessary state when identifying a replacement variable
// @arg rep_var: The formal parameter of the encoding.
void update_state(const char *rep_var) {
// A replacement variable or one of its subfields
// Obtain replacement variable from list
if ( (*rep_var) != '$' ) {
// A replacement variable, '$' prefix
// check_rep_var( rep_var );
if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
// No state needed.
assert( _opclass == NULL,
"'primary', 'secondary' and 'tertiary' don't follow operand.");
}
else if ((strcmp(rep_var, "constanttablebase") == 0) ||
(strcmp(rep_var, "constantoffset") == 0) ||
(strcmp(rep_var, "constantaddress") == 0)) {
if (!(_inst.is_mach_constant() || _inst.needs_constant_base())) {
_AD.syntax_err(_encoding._linenum,
"Replacement variable %s not allowed in instruct %s (only in MachConstantNode or MachCall).\n",
rep_var, _encoding._name);
}
}
else {
// Lookup its position in (formal) parameter list of encoding
int param_no = _encoding.rep_var_index(rep_var);
if ( param_no == -1 ) {
_AD.syntax_err( _encoding._linenum,
"Replacement variable %s not found in enc_class %s.\n",
rep_var, _encoding._name);
}
// Lookup the corresponding ins_encode parameter
// This is the argument (actual parameter) to the encoding.
const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
if (inst_rep_var == NULL) {
_AD.syntax_err( _ins_encode._linenum,
"Parameter %s not passed to enc_class %s from instruct %s.\n",
rep_var, _encoding._name, _inst._ident);
}
// Check if instruction's actual parameter is a local name in the instruction
const Form *local = _inst._localNames[inst_rep_var];
OpClassForm *opc = (local != NULL) ? local->is_opclass() : NULL;
// Note: assert removed to allow constant and symbolic parameters
// assert( opc, "replacement variable was not found in local names");
// Lookup the index position iff the replacement variable is a localName
int idx = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
if ( idx != -1 ) {
// This is a local in the instruction
// Update local state info.
_opclass = opc;
_operand_idx = idx;
_local_name = rep_var;
_operand_name = inst_rep_var;
// !!!!!
// Do not support consecutive operands.
assert( _operand == NULL, "Unimplemented()");
_operand = opc->is_operand();
}
else if( ADLParser::is_literal_constant(inst_rep_var) ) {
// Instruction provided a constant expression
// Check later that encoding specifies $$$constant to resolve as constant
_constant_status = LITERAL_SEEN;
}
else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
// Instruction provided an opcode: "primary", "secondary", "tertiary"
// Check later that encoding specifies $$$constant to resolve as constant
_constant_status = LITERAL_SEEN;
}
else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
// Instruction provided a literal register name for this parameter
// Check that encoding specifies $$$reg to resolve.as register.
_reg_status = LITERAL_SEEN;
}
else {
// Check for unimplemented functionality before hard failure
assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
assert( false, "ShouldNotReachHere()");
}
} // done checking which operand this is.
} else {
//
// A subfield variable, '$$' prefix
// Check for fields that may require relocation information.
// Then check that literal register parameters are accessed with 'reg' or 'constant'
//
if ( strcmp(rep_var,"$disp") == 0 ) {
_doing_disp = true;
assert( _opclass, "Must use operand or operand class before '$disp'");
if( _operand == NULL ) {
// Only have an operand class, generate run-time check for relocation
_may_reloc = true;
_reloc_form = RELOC_DISP;
_reloc_type = AdlcVMDeps::oop_reloc_type();
} else {
// Do precise check on operand: is it a ConP or not
//
// Check interface for value of displacement
assert( ( _operand->_interface != NULL ),
"$disp can only follow memory interface operand");
MemInterface *mem_interface= _operand->_interface->is_MemInterface();
assert( mem_interface != NULL,
"$disp can only follow memory interface operand");
const char *disp = mem_interface->_disp;
if( disp != NULL && (*disp == '$') ) {
// MemInterface::disp contains a replacement variable,
// Check if this matches a ConP
//
// Lookup replacement variable, in operand's component list
const char *rep_var_name = disp + 1; // Skip '$'
const Component *comp = _operand->_components.search(rep_var_name);
assert( comp != NULL,"Replacement variable not found in components");
const char *type = comp->_type;
// Lookup operand form for replacement variable's type
const Form *form = _AD.globalNames()[type];
assert( form != NULL, "Replacement variable's type not found");
OperandForm *op = form->is_operand();
assert( op, "Attempting to emit a non-register or non-constant");
// Check if this is a constant
if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
// Check which constant this name maps to: _c0, _c1, ..., _cn
// const int idx = _operand.constant_position(_AD.globalNames(), comp);
// assert( idx != -1, "Constant component not found in operand");
Form::DataType dtype = op->is_base_constant(_AD.globalNames());
if ( dtype == Form::idealP ) {
_may_reloc = true;
// No longer true that idealP is always an oop
_reloc_form = RELOC_DISP;
_reloc_type = AdlcVMDeps::oop_reloc_type();
}
}
else if( _operand->is_user_name_for_sReg() != Form::none ) {
// The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
_may_reloc = false;
} else {
assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
}
}
} // finished with precise check of operand for relocation.
} // finished with subfield variable
else if ( strcmp(rep_var,"$constant") == 0 ) {
_doing_constant = true;
if ( _constant_status == LITERAL_NOT_SEEN ) {
// Check operand for type of constant
assert( _operand, "Must use operand before '$$constant'");
Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
_constant_type = dtype;
if ( dtype == Form::idealP ) {
_may_reloc = true;
// No longer true that idealP is always an oop
// // _must_reloc = true;
_reloc_form = RELOC_IMMEDIATE;
_reloc_type = AdlcVMDeps::oop_reloc_type();
} else {
// No relocation information needed
}
} else {
// User-provided literals may not require relocation information !!!!!
assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
}
}
else if ( strcmp(rep_var,"$label") == 0 ) {
// Calls containing labels require relocation
if ( _inst.is_ideal_call() ) {
_may_reloc = true;
// !!!!! !!!!!
_reloc_type = AdlcVMDeps::none_reloc_type();
}
}
// literal register parameter must be accessed as a 'reg' field.
if ( _reg_status != LITERAL_NOT_SEEN ) {
assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
_reg_status = LITERAL_ACCESSED;
} else {
_AD.syntax_err(_encoding._linenum,
"Invalid access to literal register parameter '%s' in %s.\n",
rep_var, _encoding._name);
assert( false, "invalid access to literal register parameter");
}
}
// literal constant parameters must be accessed as a 'constant' field
if (_constant_status != LITERAL_NOT_SEEN) {
assert(_constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
if (strcmp(rep_var,"$constant") == 0) {
_constant_status = LITERAL_ACCESSED;
} else {
_AD.syntax_err(_encoding._linenum,
"Invalid access to literal constant parameter '%s' in %s.\n",
rep_var, _encoding._name);
}
}
} // end replacement and/or subfield
}
void add_rep_var(const char *rep_var) {
// Handle subfield and replacement variables.
if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
// Check for emit prefix, '$$emit32'
assert( _cleared, "Can not nest $$$emit32");
if ( strcmp(rep_var,"$$emit32") == 0 ) {
_doing_emit_d32 = true;
}
else if ( strcmp(rep_var,"$$emit16") == 0 ) {
_doing_emit_d16 = true;
}
else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
_doing_emit_hi = true;
}
else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
_doing_emit_lo = true;
}
else if ( strcmp(rep_var,"$$emit8") == 0 ) {
_doing_emit8 = true;
}
else {
_AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
assert( false, "fatal();");
}
}
else {
// Update state for replacement variables
update_state( rep_var );
_strings_to_emit.addName(rep_var);
}
_cleared = false;
}
void emit_replacement() {
// A replacement variable or one of its subfields
// Obtain replacement variable from list
// const char *ec_rep_var = encoding->_rep_vars.iter();
const char *rep_var;
_strings_to_emit.reset();
while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
if ( (*rep_var) == '$' ) {
// A subfield variable, '$$' prefix
emit_field( rep_var );
} else {
if (_strings_to_emit.peek() != NULL &&
strcmp(_strings_to_emit.peek(), "$Address") == 0) {
fprintf(_fp, "Address::make_raw(");
emit_rep_var( rep_var );
fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
_reg_status = LITERAL_ACCESSED;
emit_rep_var( rep_var );
fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
_reg_status = LITERAL_ACCESSED;
emit_rep_var( rep_var );
fprintf(_fp,"->scale(), ");
_reg_status = LITERAL_ACCESSED;
emit_rep_var( rep_var );
Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
if( _operand && _operand_idx==0 && stack_type != Form::none ) {
fprintf(_fp,"->disp(ra_,this,0), ");
} else {
fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
}
_reg_status = LITERAL_ACCESSED;
emit_rep_var( rep_var );
fprintf(_fp,"->disp_reloc())");
// skip trailing $Address
_strings_to_emit.iter();
} else {
// A replacement variable, '$' prefix
const char* next = _strings_to_emit.peek();
const char* next2 = _strings_to_emit.peek(2);
if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
(strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
// handle $rev_var$$base$$Register and $rev_var$$index$$Register by
// producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
fprintf(_fp, "as_Register(");
// emit the operand reference
emit_rep_var( rep_var );
rep_var = _strings_to_emit.iter();
assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
// handle base or index
emit_field(rep_var);
rep_var = _strings_to_emit.iter();
assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
// close up the parens
fprintf(_fp, ")");
} else {
emit_rep_var( rep_var );
}
}
} // end replacement and/or subfield
}
}
void emit_reloc_type(const char* type) {
fprintf(_fp, "%s", type)
;
}
void emit() {
//
// "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
//
// Emit the function name when generating an emit function
if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
// In general, relocatable isn't known at compiler compile time.
// Check results of prior scan
if ( ! _may_reloc ) {
// Definitely don't need relocation information
fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
emit_replacement(); fprintf(_fp, ")");
}
else {
// Emit RUNTIME CHECK to see if value needs relocation info
// If emitting a relocatable address, use 'emit_d32_reloc'
const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
assert( (_doing_disp || _doing_constant)
&& !(_doing_disp && _doing_constant),
"Must be emitting either a displacement or a constant");
fprintf(_fp,"\n");
fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
_operand_idx, disp_constant);
fprintf(_fp," ");
fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
emit_replacement(); fprintf(_fp,", ");
fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
_operand_idx, disp_constant);
fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
fprintf(_fp,"\n");
fprintf(_fp,"} else {\n");
fprintf(_fp," emit_%s(cbuf, ", d32_hi_lo);
emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
}
}
else if ( _doing_emit_d16 ) {
// Relocation of 16-bit values is not supported
fprintf(_fp,"emit_d16(cbuf, ");
emit_replacement(); fprintf(_fp, ")");
// No relocation done for 16-bit values
}
else if ( _doing_emit8 ) {
// Relocation of 8-bit values is not supported
fprintf(_fp,"emit_d8(cbuf, ");
emit_replacement(); fprintf(_fp, ")");
// No relocation done for 8-bit values
}
else {
// Not an emit# command, just output the replacement string.
emit_replacement();
}
// Get ready for next state collection.
clear();
}
private:
// recognizes names which represent MacroAssembler register types
// and return the conversion function to build them from OptoReg
const char* reg_conversion(const char* rep_var) {
if (strcmp(rep_var,"$Register") == 0) return "as_Register";
if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
#if defined(IA32) || defined(AMD64)
if (strcmp(rep_var,"$XMMRegister") == 0) return "as_XMMRegister";
#endif
if (strcmp(rep_var,"$CondRegister") == 0) return "as_ConditionRegister";
return NULL;
}
void emit_field(const char *rep_var) {
const char* reg_convert = reg_conversion(rep_var);
// A subfield variable, '$$subfield'
if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
// $reg form or the $Register MacroAssembler type conversions
assert( _operand_idx != -1,
"Must use this subfield after operand");
if( _reg_status == LITERAL_NOT_SEEN ) {
if (_processing_noninput) {
const Form *local = _inst._localNames[_operand_name];
OperandForm *oper = local->is_operand();
const RegDef* first = oper->get_RegClass()->find_first_elem();
if (reg_convert != NULL) {
fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
} else {
fprintf(_fp, "%s_enc", first->_regname);
}
} else {
fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
// Add parameter for index position, if not result operand
if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
fprintf(_fp,")");
fprintf(_fp, "/* %s */", _operand_name);
}
} else {
assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
// Register literal has already been sent to output file, nothing more needed
}
}
else if ( strcmp(rep_var,"$base") == 0 ) {
assert( _operand_idx != -1,
"Must use this subfield after operand");
assert( ! _may_reloc, "UnImplemented()");
fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
}
else if ( strcmp(rep_var,"$index") == 0 ) {
assert( _operand_idx != -1,
"Must use this subfield after operand");
assert( ! _may_reloc, "UnImplemented()");
fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
}
else if ( strcmp(rep_var,"$scale") == 0 ) {
assert( ! _may_reloc, "UnImplemented()");
fprintf(_fp,"->scale()");
}
else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
assert( ! _may_reloc, "UnImplemented()");
fprintf(_fp,"->ccode()");
}
else if ( strcmp(rep_var,"$constant") == 0 ) {
if( _constant_status == LITERAL_NOT_SEEN ) {
if ( _constant_type == Form::idealD ) {
fprintf(_fp,"->constantD()");
} else if ( _constant_type == Form::idealF ) {
fprintf(_fp,"->constantF()");
} else if ( _constant_type == Form::idealL ) {
fprintf(_fp,"->constantL()");
} else {
fprintf(_fp,"->constant()");
}
} else {
assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
// Constant literal has already been sent to output file, nothing more needed
}
}
else if ( strcmp(rep_var,"$disp") == 0 ) {
Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
if( _operand && _operand_idx==0 && stack_type != Form::none ) {
fprintf(_fp,"->disp(ra_,this,0)");
} else {
fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
}
}
else if ( strcmp(rep_var,"$label") == 0 ) {
fprintf(_fp,"->label()");
}
else if ( strcmp(rep_var,"$method") == 0 ) {
fprintf(_fp,"->method()");
}
else {
printf("emit_field: %s\n",rep_var);
globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
rep_var, _inst._ident);
assert( false, "UnImplemented()");
}
}
void emit_rep_var(const char *rep_var) {
_processing_noninput = false;
// A replacement variable, originally '$'
if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
// Missing opcode
_AD.syntax_err( _inst._linenum,
"Missing $%s opcode definition in %s, used by encoding %s\n",
rep_var, _inst._ident, _encoding._name);
}
}
else if (strcmp(rep_var, "constanttablebase") == 0) {
fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
}
else if (strcmp(rep_var, "constantoffset") == 0) {
fprintf(_fp, "constant_offset()");
}
else if (strcmp(rep_var, "constantaddress") == 0) {
fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
}
else {
// Lookup its position in parameter list
int param_no = _encoding.rep_var_index(rep_var);
if ( param_no == -1 ) {
_AD.syntax_err( _encoding._linenum,
"Replacement variable %s not found in enc_class %s.\n",
rep_var, _encoding._name);
}
// Lookup the corresponding ins_encode parameter
const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
// Check if instruction's actual parameter is a local name in the instruction
const Form *local = _inst._localNames[inst_rep_var];
OpClassForm *opc = (local != NULL) ? local->is_opclass() : NULL;
// Note: assert removed to allow constant and symbolic parameters
// assert( opc, "replacement variable was not found in local names");
// Lookup the index position iff the replacement variable is a localName
int idx = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
if( idx != -1 ) {
if (_inst.is_noninput_operand(idx)) {
// This operand isn't a normal input so printing it is done
// specially.
_processing_noninput = true;
} else {
// Output the emit code for this operand
fprintf(_fp,"opnd_array(%d)",idx);
}
assert( _operand == opc->is_operand(),
"Previous emit $operand does not match current");
}
else if( ADLParser::is_literal_constant(inst_rep_var) ) {
// else check if it is a constant expression
// Removed following assert to allow primitive C types as arguments to encodings
// assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
fprintf(_fp,"(%s)", inst_rep_var);
_constant_status = LITERAL_OUTPUT;
}
else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
// else check if "primary", "secondary", "tertiary"
assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
// Missing opcode
_AD.syntax_err( _inst._linenum,
"Missing $%s opcode definition in %s\n",
rep_var, _inst._ident);
}
_constant_status = LITERAL_OUTPUT;
}
else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
// Instruction provided a literal register name for this parameter
// Check that encoding specifies $$$reg to resolve.as register.
assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
fprintf(_fp,"(%s_enc)", inst_rep_var);
_reg_status = LITERAL_OUTPUT;
}
else {
// Check for unimplemented functionality before hard failure
assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
assert( false, "ShouldNotReachHere()");
}
// all done
}
}
}; // end class DefineEmitState
void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
//(1)
// Output instruction's emit prototype
fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
inst._ident);
fprintf(fp, " assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
//(2)
// Print the size
fprintf(fp, " return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
// (3) and (4)
fprintf(fp,"}\n\n");
}
// Emit postalloc expand function.
void ArchDesc::define_postalloc_expand(FILE *fp, InstructForm &inst) {
InsEncode *ins_encode = inst._insencode;
// Output instruction's postalloc_expand prototype.
fprintf(fp, "void %sNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {\n",
inst._ident);
assert((_encode != NULL) && (ins_encode != NULL), "You must define an encode section.");
// Output each operand's offset into the array of registers.
inst.index_temps(fp, _globalNames);
// Output variables "unsigned idx_<par_name>", Node *n_<par_name> and "MachOpnd *op_<par_name>"
// for each parameter <par_name> specified in the encoding.
ins_encode->reset();
const char *ec_name = ins_encode->encode_class_iter();
assert(ec_name != NULL, "Postalloc expand must specify an encoding.");
EncClass *encoding = _encode->encClass(ec_name);
if (encoding == NULL) {
fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
abort();
}
if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
inst._ident, ins_encode->current_encoding_num_args(),
ec_name, encoding->num_args());
}
fprintf(fp, " // Access to ins and operands for postalloc expand.\n");
const int buflen = 2000;
char idxbuf[buflen]; char *ib = idxbuf; idxbuf[0] = '\0';
char nbuf [buflen]; char *nb = nbuf; nbuf[0] = '\0';
char opbuf [buflen]; char *ob = opbuf; opbuf[0] = '\0';
encoding->_parameter_type.reset();
encoding->_parameter_name.reset();
const char *type = encoding->_parameter_type.iter();
const char *name = encoding->_parameter_name.iter();
int param_no = 0;
for (; (type != NULL) && (name != NULL);
(type = encoding->_parameter_type.iter()), (name = encoding->_parameter_name.iter())) {
const char* arg_name = ins_encode->rep_var_name(inst, param_no);
int idx = inst.operand_position_format(arg_name);
if (strcmp(arg_name, "constanttablebase") == 0) {
ib += sprintf(ib, " unsigned idx_%-5s = mach_constant_base_node_input(); \t// %s, \t%s\n",
name, type, arg_name);
nb += sprintf(nb, " Node *n_%-7s = lookup(idx_%s);\n", name, name);
// There is no operand for the constanttablebase.
} else if (inst.is_noninput_operand(idx)) {
globalAD->syntax_err(inst._linenum,
"In %s: you can not pass the non-input %s to a postalloc expand encoding.\n",
inst._ident, arg_name);
} else {
ib += sprintf(ib, " unsigned idx_%-5s = idx%d; \t// %s, \t%s\n",
name, idx, type, arg_name);
nb += sprintf(nb, " Node *n_%-7s = lookup(idx_%s);\n", name, name);
ob += sprintf(ob, " %sOper *op_%s = (%sOper *)opnd_array(%d);\n", type, name, type, idx);
}
param_no++;
}
assert(ib < &idxbuf[buflen-1] && nb < &nbuf[buflen-1] && ob < &opbuf[buflen-1], "buffer overflow");
fprintf(fp, "%s", idxbuf);
fprintf(fp, " Node *n_region = lookup(0);\n");
fprintf(fp, "%s%s", nbuf, opbuf);
fprintf(fp, " Compile *C = ra_->C;\n");
// Output this instruction's encodings.
fprintf(fp, " {");
const char *ec_code = NULL;
const char *ec_rep_var = NULL;
assert(encoding == _encode->encClass(ec_name), "");
DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst);
encoding->_code.reset();
encoding->_rep_vars.reset();
// Process list of user-defined strings,
// and occurrences of replacement variables.
// Replacement Vars are pushed into a list and then output.
while ((ec_code = encoding->_code.iter()) != NULL) {
if (! encoding->_code.is_signal(ec_code)) {
// Emit pending code.
pending.emit();
pending.clear();
// Emit this code section.
fprintf(fp, "%s", ec_code);
} else {
// A replacement variable or one of its subfields.
// Obtain replacement variable from list.
ec_rep_var = encoding->_rep_vars.iter();
pending.add_rep_var(ec_rep_var);
}
}
// Emit pending code.
pending.emit();
pending.clear();
fprintf(fp, " }\n");
fprintf(fp, "}\n\n");
ec_name = ins_encode->encode_class_iter();
assert(ec_name == NULL, "Postalloc expand may only have one encoding.");
}
// defineEmit -----------------------------------------------------------------
void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
InsEncode* encode = inst._insencode;
// (1)
// Output instruction's emit prototype
fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
// If user did not define an encode section,
// provide stub that does not generate any machine code.
if( (_encode == NULL) || (encode == NULL) ) {
fprintf(fp, " // User did not define an encode section.\n");
fprintf(fp, "}\n");
return;
}
// Save current instruction's starting address (helps with relocation).
fprintf(fp, " cbuf.set_insts_mark();\n");
// For MachConstantNodes which are ideal jump nodes, fill the jump table.
if (inst.is_mach_constant() && inst.is_ideal_jump()) {
fprintf(fp, " ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
}
// Output each operand's offset into the array of registers.
inst.index_temps(fp, _globalNames);
// Output this instruction's encodings
const char *ec_name;
bool user_defined = false;
encode->reset();
while ((ec_name = encode->encode_class_iter()) != NULL) {
fprintf(fp, " {\n");
// Output user-defined encoding
user_defined = true;
const char *ec_code = NULL;
const char *ec_rep_var = NULL;
EncClass *encoding = _encode->encClass(ec_name);
if (encoding == NULL) {
fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
abort();
}
if (encode->current_encoding_num_args() != encoding->num_args()) {
globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
inst._ident, encode->current_encoding_num_args(),
ec_name, encoding->num_args());
}
DefineEmitState pending(fp, *this, *encoding, *encode, inst);
encoding->_code.reset();
encoding->_rep_vars.reset();
// Process list of user-defined strings,
// and occurrences of replacement variables.
// Replacement Vars are pushed into a list and then output
while ((ec_code = encoding->_code.iter()) != NULL) {
if (!encoding->_code.is_signal(ec_code)) {
// Emit pending code
pending.emit();
pending.clear();
// Emit this code section
fprintf(fp, "%s", ec_code);
} else {
// A replacement variable or one of its subfields
// Obtain replacement variable from list
ec_rep_var = encoding->_rep_vars.iter();
pending.add_rep_var(ec_rep_var);
}
}
// Emit pending code
pending.emit();
pending.clear();
fprintf(fp, " }\n");
} // end while instruction's encodings
// Check if user stated which encoding to user
if ( user_defined == false ) {
fprintf(fp, " // User did not define which encode class to use.\n");
}
// (3) and (4)
fprintf(fp, "}\n\n");
}
// defineEvalConstant ---------------------------------------------------------
void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
InsEncode* encode = inst._constant;
// (1)
// Output instruction's emit prototype
fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
// For ideal jump nodes, add a jump-table entry.
if (inst.is_ideal_jump()) {
fprintf(fp, " _constant = C->constant_table().add_jump_table(this);\n");
}
// If user did not define an encode section,
// provide stub that does not generate any machine code.
if ((_encode == NULL) || (encode == NULL)) {
fprintf(fp, " // User did not define an encode section.\n");
fprintf(fp, "}\n");
return;
}
// Output this instruction's encodings
const char *ec_name;
bool user_defined = false;
encode->reset();
while ((ec_name = encode->encode_class_iter()) != NULL) {
fprintf(fp, " {\n");
// Output user-defined encoding
user_defined = true;
const char *ec_code = NULL;
const char *ec_rep_var = NULL;
EncClass *encoding = _encode->encClass(ec_name);
if (encoding == NULL) {
fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
abort();
}
if (encode->current_encoding_num_args() != encoding->num_args()) {
globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
inst._ident, encode->current_encoding_num_args(),
ec_name, encoding->num_args());
}
DefineEmitState pending(fp, *this, *encoding, *encode, inst);
encoding->_code.reset();
encoding->_rep_vars.reset();
// Process list of user-defined strings,
// and occurrences of replacement variables.
// Replacement Vars are pushed into a list and then output
while ((ec_code = encoding->_code.iter()) != NULL) {
if (!encoding->_code.is_signal(ec_code)) {
// Emit pending code
pending.emit();
pending.clear();
// Emit this code section
fprintf(fp, "%s", ec_code);
} else {
// A replacement variable or one of its subfields
// Obtain replacement variable from list
ec_rep_var = encoding->_rep_vars.iter();
pending.add_rep_var(ec_rep_var);
}
}
// Emit pending code
pending.emit();
pending.clear();
fprintf(fp, " }\n");
} // end while instruction's encodings
// Check if user stated which encoding to user
if (user_defined == false) {
fprintf(fp, " // User did not define which encode class to use.\n");
}
// (3) and (4)
fprintf(fp, "}\n");
}
// ---------------------------------------------------------------------------
//--------Utilities to build MachOper and MachNode derived Classes------------
// ---------------------------------------------------------------------------
//------------------------------Utilities to build Operand Classes------------
static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
uint num_edges = oper.num_edges(globals);
if( num_edges != 0 ) {
// Method header
fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
oper._ident);
// Assert that the index is in range.
fprintf(fp, " assert(0 <= index && index < %d, \"index out of range\");\n",
num_edges);
// Figure out if all RegMasks are the same.
const char* first_reg_class = oper.in_reg_class(0, globals);
bool all_same = true;
assert(first_reg_class != NULL, "did not find register mask");
for (uint index = 1; all_same && index < num_edges; index++) {
const char* some_reg_class = oper.in_reg_class(index, globals);
assert(some_reg_class != NULL, "did not find register mask");
if (strcmp(first_reg_class, some_reg_class) != 0) {
all_same = false;
}
}
if (all_same) {
// Return the sole RegMask.
if (strcmp(first_reg_class, "stack_slots") == 0) {
fprintf(fp," return &(Compile::current()->FIRST_STACK_mask());\n");
} else {
const char* first_reg_class_to_upper = toUpper(first_reg_class);
fprintf(fp," return &%s_mask();\n", first_reg_class_to_upper);
delete[] first_reg_class_to_upper;
}
} else {
// Build a switch statement to return the desired mask.
fprintf(fp," switch (index) {\n");
for (uint index = 0; index < num_edges; index++) {
const char *reg_class = oper.in_reg_class(index, globals);
assert(reg_class != NULL, "did not find register mask");
if( !strcmp(reg_class, "stack_slots") ) {
fprintf(fp, " case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
} else {
const char* reg_class_to_upper = toUpper(reg_class);
fprintf(fp, " case %d: return &%s_mask();\n", index, reg_class_to_upper);
delete[] reg_class_to_upper;
}
}
fprintf(fp," }\n");
fprintf(fp," ShouldNotReachHere();\n");
fprintf(fp," return NULL;\n");
}
// Method close
fprintf(fp, "}\n\n");
}
}
// generate code to create a clone for a class derived from MachOper
//
// (0) MachOper *MachOperXOper::clone(Compile* C) const {
// (1) return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn);
// (2) }
//
static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper._ident);
// Check for constants that need to be copied over
const int num_consts = oper.num_consts(globalNames);
const bool is_ideal_bool = oper.is_ideal_bool();
if( (num_consts > 0) ) {
fprintf(fp," return new (C) %sOper(", oper._ident);
// generate parameters for constants
int i = 0;
fprintf(fp,"_c%d", i);
for( i = 1; i < num_consts; ++i) {
fprintf(fp,", _c%d", i);
}
// finish line (1)
fprintf(fp,");\n");
}
else {
assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
fprintf(fp," return new (C) %sOper();\n", oper._ident);
}
// finish method
fprintf(fp,"}\n");
}
// Helper functions for bug 4796752, abstracted with minimal modification
// from define_oper_interface()
OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
OperandForm *op = NULL;
// Check for replacement variable
if( *encoding == '$' ) {
// Replacement variable
const char *rep_var = encoding + 1;
// Lookup replacement variable, rep_var, in operand's component list
const Component *comp = oper._components.search(rep_var);
assert( comp != NULL, "Replacement variable not found in components");
// Lookup operand form for replacement variable's type
const char *type = comp->_type;
Form *form = (Form*)globals[type];
assert( form != NULL, "Replacement variable's type not found");
op = form->is_operand();
assert( op, "Attempting to emit a non-register or non-constant");
}
return op;
}
int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
int idx = -1;
// Check for replacement variable
if( *encoding == '$' ) {
// Replacement variable
const char *rep_var = encoding + 1;
// Lookup replacement variable, rep_var, in operand's component list
const Component *comp = oper._components.search(rep_var);
assert( comp != NULL, "Replacement variable not found in components");
// Lookup operand form for replacement variable's type
const char *type = comp->_type;
Form *form = (Form*)globals[type];
assert( form != NULL, "Replacement variable's type not found");
OperandForm *op = form->is_operand();
assert( op, "Attempting to emit a non-register or non-constant");
// Check that this is a constant and find constant's index:
if (op->_matrule && op->_matrule->is_base_constant(globals)) {
idx = oper.constant_position(globals, comp);
}
}
return idx;
}
bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
bool is_regI = false;
OperandForm *op = rep_var_to_operand(encoding, oper, globals);
if( op != NULL ) {
// Check that this is a register
if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
// Register
const char* ideal = op->ideal_type(globals);
is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
}
}
return is_regI;
}
bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
bool is_conP = false;
OperandForm *op = rep_var_to_operand(encoding, oper, globals);
if( op != NULL ) {
// Check that this is a constant pointer
if (op->_matrule && op->_matrule->is_base_constant(globals)) {
// Constant
Form::DataType dtype = op->is_base_constant(globals);
is_conP = (dtype == Form::idealP);
}
}
return is_conP;
}
// Define a MachOper interface methods
void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
const char *name, const char *encoding) {
bool emit_position = false;
int position = -1;
fprintf(fp," virtual int %s", name);
// Generate access method for base, index, scale, disp, ...
if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
emit_position = true;
} else if ( (strcmp(name,"disp") == 0) ) {
fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
} else {
fprintf(fp, "() const {\n");
}
// Check for hexadecimal value OR replacement variable
if( *encoding == '$' ) {
// Replacement variable
const char *rep_var = encoding + 1;
fprintf(fp," // Replacement variable: %s\n", encoding+1);
// Lookup replacement variable, rep_var, in operand's component list
const Component *comp = oper._components.search(rep_var);
assert( comp != NULL, "Replacement variable not found in components");
// Lookup operand form for replacement variable's type
const char *type = comp->_type;
Form *form = (Form*)globals[type];
assert( form != NULL, "Replacement variable's type not found");
OperandForm *op = form->is_operand();
assert( op, "Attempting to emit a non-register or non-constant");
// Check that this is a register or a constant and generate code:
if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
// Register
int idx_offset = oper.register_position( globals, rep_var);
position = idx_offset;
fprintf(fp," return (int)ra_->get_encode(node->in(idx");
if ( idx_offset > 0 ) fprintf(fp, "+%d",idx_offset);
fprintf(fp,"));\n");
} else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
// StackSlot for an sReg comes either from input node or from self, when idx==0
fprintf(fp," if( idx != 0 ) {\n");
fprintf(fp," // Access stack offset (register number) for input operand\n");
fprintf(fp," return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
fprintf(fp," }\n");
fprintf(fp," // Access stack offset (register number) from myself\n");
fprintf(fp," return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
} else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
// Constant
// Check which constant this name maps to: _c0, _c1, ..., _cn
const int idx = oper.constant_position(globals, comp);
assert( idx != -1, "Constant component not found in operand");
// Output code for this constant, type dependent.
fprintf(fp," return (int)" );
oper.access_constant(fp, globals, (uint)idx /* , const_type */);
fprintf(fp,";\n");
} else {
assert( false, "Attempting to emit a non-register or non-constant");
}
}
else if( *encoding == '0' && *(encoding+1) == 'x' ) {
// Hex value
fprintf(fp," return %s;\n", encoding);
} else {
globalAD->syntax_err(oper._linenum, "In operand %s: Do not support this encode constant: '%s' for %s.",
oper._ident, encoding, name);
assert( false, "Do not support octal or decimal encode constants");
}
fprintf(fp," }\n");
if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
fprintf(fp," virtual int %s_position() const { return %d; }\n", name, position);
MemInterface *mem_interface = oper._interface->is_MemInterface();
const char *base = mem_interface->_base;
const char *disp = mem_interface->_disp;
if( emit_position && (strcmp(name,"base") == 0)
&& base != NULL && is_regI(base, oper, globals)
&& disp != NULL && is_conP(disp, oper, globals) ) {
// Found a memory access using a constant pointer for a displacement
// and a base register containing an integer offset.
// In this case the base and disp are reversed with respect to what
// is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
// Provide a non-NULL return for disp_as_type() that will allow adr_type()
// to correctly compute the access type for alias analysis.
//
// See BugId 4796752, operand indOffset32X in i486.ad
int idx = rep_var_to_constant_index(disp, oper, globals);
fprintf(fp," virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
}
}
}
//
// Construct the method to copy _idx, inputs and operands to new node.
static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n");
if( !used ) {
fprintf(fp_cpp, " // This architecture does not have cisc or short branch instructions\n");
fprintf(fp_cpp, " ShouldNotCallThis();\n");
fprintf(fp_cpp, "}\n");
} else {
// New node must use same node index for access through allocator's tables
fprintf(fp_cpp, " // New node must use same node index\n");
fprintf(fp_cpp, " node->set_idx( _idx );\n");
// Copy machine-independent inputs
fprintf(fp_cpp, " // Copy machine-independent inputs\n");
fprintf(fp_cpp, " for( uint j = 0; j < req(); j++ ) {\n");
fprintf(fp_cpp, " node->add_req(in(j));\n");
fprintf(fp_cpp, " }\n");
// Copy machine operands to new MachNode
fprintf(fp_cpp, " // Copy my operands, except for cisc position\n");
fprintf(fp_cpp, " int nopnds = num_opnds();\n");
fprintf(fp_cpp, " assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
fprintf(fp_cpp, " MachOper **to = node->_opnds;\n");
fprintf(fp_cpp, " for( int i = 0; i < nopnds; i++ ) {\n");
fprintf(fp_cpp, " if( i != cisc_operand() ) \n");
fprintf(fp_cpp, " to[i] = _opnds[i]->clone(C);\n");
fprintf(fp_cpp, " }\n");
fprintf(fp_cpp, "}\n");
}
fprintf(fp_cpp, "\n");
}
//------------------------------defineClasses----------------------------------
// Define members of MachNode and MachOper classes based on
// operand and instruction lists
void ArchDesc::defineClasses(FILE *fp) {
// Define the contents of an array containing the machine register names
defineRegNames(fp, _register);
// Define an array containing the machine register encoding values
defineRegEncodes(fp, _register);
// Generate an enumeration of user-defined register classes
// and a list of register masks, one for each class.
// Only define the RegMask value objects in the expand file.
// Declare each as an extern const RegMask ...; in ad_<arch>.hpp
declare_register_masks(_HPP_file._fp);
// build_register_masks(fp);
build_register_masks(_CPP_EXPAND_file._fp);
// Define the pipe_classes
build_pipe_classes(_CPP_PIPELINE_file._fp);
// Generate Machine Classes for each operand defined in AD file
fprintf(fp,"\n");
fprintf(fp,"\n");
fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
// Iterate through all operands
_operands.reset();
OperandForm *oper;
for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
// Ensure this is a machine-world instruction
if ( oper->ideal_only() ) continue;
// !!!!!
// The declaration of labelOper is in machine-independent file: machnode
if ( strcmp(oper->_ident,"label") == 0 ) {
defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper->_ident);
fprintf(fp," return new (C) %sOper(_label, _block_num);\n", oper->_ident);
fprintf(fp,"}\n");
fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
oper->_ident, machOperEnum(oper->_ident));
// // Currently all XXXOper::Hash() methods are identical (990820)
// define_hash(fp, oper->_ident);
// // Currently all XXXOper::Cmp() methods are identical (990820)
// define_cmp(fp, oper->_ident);
fprintf(fp,"\n");
continue;
}
// The declaration of methodOper is in machine-independent file: machnode
if ( strcmp(oper->_ident,"method") == 0 ) {
defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper->_ident);
fprintf(fp," return new (C) %sOper(_method);\n", oper->_ident);
fprintf(fp,"}\n");
fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
oper->_ident, machOperEnum(oper->_ident));
// // Currently all XXXOper::Hash() methods are identical (990820)
// define_hash(fp, oper->_ident);
// // Currently all XXXOper::Cmp() methods are identical (990820)
// define_cmp(fp, oper->_ident);
fprintf(fp,"\n");
continue;
}
defineIn_RegMask(fp, _globalNames, *oper);
defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
// // Currently all XXXOper::Hash() methods are identical (990820)
// define_hash(fp, oper->_ident);
// // Currently all XXXOper::Cmp() methods are identical (990820)
// define_cmp(fp, oper->_ident);
// side-call to generate output that used to be in the header file:
extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
}
// Generate Machine Classes for each instruction defined in AD file
fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
// Output the definitions for out_RegMask() // & kill_RegMask()
_instructions.reset();
InstructForm *instr;
MachNodeForm *machnode;
for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
// Ensure this is a machine-world instruction
if ( instr->ideal_only() ) continue;
defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
}
bool used = false;
// Output the definitions for expand rules & peephole rules
_instructions.reset();
for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
// Ensure this is a machine-world instruction
if ( instr->ideal_only() ) continue;
// If there are multiple defs/kills, or an explicit expand rule, build rule
if( instr->expands() || instr->needs_projections() ||
instr->has_temps() ||
instr->is_mach_constant() ||
instr->needs_constant_base() ||
instr->_matrule != NULL &&
instr->num_opnds() != instr->num_unique_opnds() )
defineExpand(_CPP_EXPAND_file._fp, instr);
// If there is an explicit peephole rule, build it
if ( instr->peepholes() )
definePeephole(_CPP_PEEPHOLE_file._fp, instr);
// Output code to convert to the cisc version, if applicable
used |= instr->define_cisc_version(*this, fp);
// Output code to convert to the short branch version, if applicable
used |= instr->define_short_branch_methods(*this, fp);
}
// Construct the method called by cisc_version() to copy inputs and operands.
define_fill_new_machnode(used, fp);
// Output the definitions for labels
_instructions.reset();
while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
// Ensure this is a machine-world instruction
if ( instr->ideal_only() ) continue;
// Access the fields for operand Label
int label_position = instr->label_position();
if( label_position != -1 ) {
// Set the label
fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
fprintf(fp," labelOper* oper = (labelOper*)(opnd_array(%d));\n",
label_position );
fprintf(fp," oper->_label = label;\n");
fprintf(fp," oper->_block_num = block_num;\n");
fprintf(fp,"}\n");
// Save the label
fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
fprintf(fp," labelOper* oper = (labelOper*)(opnd_array(%d));\n",
label_position );
fprintf(fp," *label = oper->_label;\n");
fprintf(fp," *block_num = oper->_block_num;\n");
fprintf(fp,"}\n");
}
}
// Output the definitions for methods
_instructions.reset();
while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
// Ensure this is a machine-world instruction
if ( instr->ideal_only() ) continue;
// Access the fields for operand Label
int method_position = instr->method_position();
if( method_position != -1 ) {
// Access the method's address
fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
fprintf(fp," ((methodOper*)opnd_array(%d))->_method = method;\n",
method_position );
fprintf(fp,"}\n");
fprintf(fp,"\n");
}
}
// Define this instruction's number of relocation entries, base is '0'
_instructions.reset();
while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
// Output the definition for number of relocation entries
uint reloc_size = instr->reloc(_globalNames);
if ( reloc_size != 0 ) {
fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
fprintf(fp," return %d;\n", reloc_size);
fprintf(fp,"}\n");
fprintf(fp,"\n");
}
}
fprintf(fp,"\n");
// Output the definitions for code generation
//
// address ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
// // ... encoding defined by user
// return ptr;
// }
//
_instructions.reset();
for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
// Ensure this is a machine-world instruction
if ( instr->ideal_only() ) continue;
if (instr->_insencode) {
if (instr->postalloc_expands()) {
// Don't write this to _CPP_EXPAND_file, as the code generated calls C-code
// from code sections in ad file that is dumped to fp.
define_postalloc_expand(fp, *instr);
} else {
defineEmit(fp, *instr);
}
}
if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
if (instr->_size) defineSize (fp, *instr);
// side-call to generate output that used to be in the header file:
extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
}
// Output the definitions for alias analysis
_instructions.reset();
for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
// Ensure this is a machine-world instruction
if ( instr->ideal_only() ) continue;
// Analyze machine instructions that either USE or DEF memory.
int memory_operand = instr->memory_operand(_globalNames);
// Some guys kill all of memory
if ( instr->is_wide_memory_kill(_globalNames) ) {
memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
}
if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
} else {
fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
}
}
}
// Get the length of the longest identifier
int max_ident_len = 0;
_instructions.reset();
for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
int ident_len = (int)strlen(instr->_ident);
if( max_ident_len < ident_len )
max_ident_len = ident_len;
}
}
// Emit specifically for Node(s)
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
fprintf(_CPP_PIPELINE_file._fp, "\n");
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
max_ident_len, "MachNode");
fprintf(_CPP_PIPELINE_file._fp, "\n");
// Output the definitions for machine node specific pipeline data
_machnodes.reset();
for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
}
fprintf(_CPP_PIPELINE_file._fp, "\n");
// Output the definitions for instruction pipeline static data references
_instructions.reset();
for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
fprintf(_CPP_PIPELINE_file._fp, "\n");
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
}
}
}
// -------------------------------- maps ------------------------------------
// Information needed to generate the ReduceOp mapping for the DFA
class OutputReduceOp : public OutputMap {
public:
OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
: OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
void declaration() { fprintf(_hpp, "extern const int reduceOp[];\n"); }
void definition() { fprintf(_cpp, "const int reduceOp[] = {\n"); }
void closing() { fprintf(_cpp, " 0 // no trailing comma\n");
OutputMap::closing();
}
void map(OpClassForm &opc) {
const char *reduce = opc._ident;
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
else fprintf(_cpp, " 0");
}
void map(OperandForm &oper) {
// Most operands without match rules, e.g. eFlagsReg, do not have a result operand
const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
// operand stackSlot does not have a match rule, but produces a stackSlot
if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
else fprintf(_cpp, " 0");
}
void map(InstructForm &inst) {
const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
else fprintf(_cpp, " 0");
}
void map(char *reduce) {
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
else fprintf(_cpp, " 0");
}
};
// Information needed to generate the LeftOp mapping for the DFA
class OutputLeftOp : public OutputMap {
public:
OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
: OutputMap(hpp, cpp, globals, AD, "leftOp") {};
void declaration() { fprintf(_hpp, "extern const int leftOp[];\n"); }
void definition() { fprintf(_cpp, "const int leftOp[] = {\n"); }
void closing() { fprintf(_cpp, " 0 // no trailing comma\n");
OutputMap::closing();
}
void map(OpClassForm &opc) { fprintf(_cpp, " 0"); }
void map(OperandForm &oper) {
const char *reduce = oper.reduce_left(_globals);
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
else fprintf(_cpp, " 0");
}
void map(char *name) {
const char *reduce = _AD.reduceLeft(name);
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
else fprintf(_cpp, " 0");
}
void map(InstructForm &inst) {
const char *reduce = inst.reduce_left(_globals);
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
else fprintf(_cpp, " 0");
}
};
// Information needed to generate the RightOp mapping for the DFA
class OutputRightOp : public OutputMap {
public:
OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
: OutputMap(hpp, cpp, globals, AD, "rightOp") {};
void declaration() { fprintf(_hpp, "extern const int rightOp[];\n"); }
void definition() { fprintf(_cpp, "const int rightOp[] = {\n"); }
void closing() { fprintf(_cpp, " 0 // no trailing comma\n");
OutputMap::closing();
}
void map(OpClassForm &opc) { fprintf(_cpp, " 0"); }
void map(OperandForm &oper) {
const char *reduce = oper.reduce_right(_globals);
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
else fprintf(_cpp, " 0");
}
void map(char *name) {
const char *reduce = _AD.reduceRight(name);
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
else fprintf(_cpp, " 0");
}
void map(InstructForm &inst) {
const char *reduce = inst.reduce_right(_globals);
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
else fprintf(_cpp, " 0");
}
};
// Information needed to generate the Rule names for the DFA
class OutputRuleName : public OutputMap {
public:
OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
: OutputMap(hpp, cpp, globals, AD, "ruleName") {};
void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
void definition() { fprintf(_cpp, "const char *ruleName[] = {\n"); }
void closing() { fprintf(_cpp, " \"invalid rule name\" // no trailing comma\n");
OutputMap::closing();
}
void map(OpClassForm &opc) { fprintf(_cpp, " \"%s\"", _AD.machOperEnum(opc._ident) ); }
void map(OperandForm &oper) { fprintf(_cpp, " \"%s\"", _AD.machOperEnum(oper._ident) ); }
void map(char *name) { fprintf(_cpp, " \"%s\"", name ? name : "0"); }
void map(InstructForm &inst){ fprintf(_cpp, " \"%s\"", inst._ident ? inst._ident : "0"); }
};
// Information needed to generate the swallowed mapping for the DFA
class OutputSwallowed : public OutputMap {
public:
OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
: OutputMap(hpp, cpp, globals, AD, "swallowed") {};
void declaration() { fprintf(_hpp, "extern const bool swallowed[];\n"); }
void definition() { fprintf(_cpp, "const bool swallowed[] = {\n"); }
void closing() { fprintf(_cpp, " false // no trailing comma\n");
OutputMap::closing();
}
void map(OperandForm &oper) { // Generate the entry for this opcode
const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
fprintf(_cpp, " %s", swallowed);
}
void map(OpClassForm &opc) { fprintf(_cpp, " false"); }
void map(char *name) { fprintf(_cpp, " false"); }
void map(InstructForm &inst){ fprintf(_cpp, " false"); }
};
// Information needed to generate the decision array for instruction chain rule
class OutputInstChainRule : public OutputMap {
public:
OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
: OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
void declaration() { fprintf(_hpp, "extern const bool instruction_chain_rule[];\n"); }
void definition() { fprintf(_cpp, "const bool instruction_chain_rule[] = {\n"); }
void closing() { fprintf(_cpp, " false // no trailing comma\n");
OutputMap::closing();
}
void map(OpClassForm &opc) { fprintf(_cpp, " false"); }
void map(OperandForm &oper) { fprintf(_cpp, " false"); }
void map(char *name) { fprintf(_cpp, " false"); }
void map(InstructForm &inst) { // Check for simple chain rule
const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
fprintf(_cpp, " %s", chain);
}
};
//---------------------------build_map------------------------------------
// Build mapping from enumeration for densely packed operands
// TO result and child types.
void ArchDesc::build_map(OutputMap &map) {
FILE *fp_hpp = map.decl_file();
FILE *fp_cpp = map.def_file();
int idx = 0;
OperandForm *op;
OpClassForm *opc;
InstructForm *inst;
// Construct this mapping
map.declaration();
fprintf(fp_cpp,"\n");
map.definition();
// Output the mapping for operands
map.record_position(OutputMap::BEGIN_OPERANDS, idx );
_operands.reset();
for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
// Ensure this is a machine-world instruction
if ( op->ideal_only() ) continue;
// Generate the entry for this opcode
fprintf(fp_cpp, " /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
++idx;
};
fprintf(fp_cpp, " // last operand\n");
// Place all user-defined operand classes into the mapping
map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
_opclass.reset();
for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
fprintf(fp_cpp, " /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
++idx;
};
fprintf(fp_cpp, " // last operand class\n");
// Place all internally defined operands into the mapping
map.record_position(OutputMap::BEGIN_INTERNALS, idx );
_internalOpNames.reset();
char *name = NULL;
for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
fprintf(fp_cpp, " /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
++idx;
};
fprintf(fp_cpp, " // last internally defined operand\n");
// Place all user-defined instructions into the mapping
if( map.do_instructions() ) {
map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
// Output all simple instruction chain rules first
map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
{
_instructions.reset();
for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
// Ensure this is a machine-world instruction
if ( inst->ideal_only() ) continue;
if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
++idx;
};
map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
_instructions.reset();
for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
// Ensure this is a machine-world instruction
if ( inst->ideal_only() ) continue;
if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
++idx;
};
map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
}
// Output all instructions that are NOT simple chain rules
{
_instructions.reset();
for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
// Ensure this is a machine-world instruction
if ( inst->ideal_only() ) continue;
if ( inst->is_simple_chain_rule(_globalNames) ) continue;
if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
++idx;
};
map.record_position(OutputMap::END_REMATERIALIZE, idx );
_instructions.reset();
for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
// Ensure this is a machine-world instruction
if ( inst->ideal_only() ) continue;
if ( inst->is_simple_chain_rule(_globalNames) ) continue;
if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
++idx;
};
}
fprintf(fp_cpp, " // last instruction\n");
map.record_position(OutputMap::END_INSTRUCTIONS, idx );
}
// Finish defining table
map.closing();
};
// Helper function for buildReduceMaps
char reg_save_policy(const char *calling_convention) {
char callconv;
if (!strcmp(calling_convention, "NS")) callconv = 'N';
else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
else if (!strcmp(calling_convention, "AS")) callconv = 'A';
else callconv = 'Z';
return callconv;
}
void ArchDesc::generate_needs_clone_jvms(FILE *fp_cpp) {
fprintf(fp_cpp, "bool Compile::needs_clone_jvms() { return %s; }\n\n",
_needs_clone_jvms ? "true" : "false");
}
//---------------------------generate_assertion_checks-------------------
void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, "#ifndef PRODUCT\n");
fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
globalDefs().print_asserts(fp_cpp);
fprintf(fp_cpp, "}\n");
fprintf(fp_cpp, "#endif\n");
fprintf(fp_cpp, "\n");
}
//---------------------------addSourceBlocks-----------------------------
void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
if (_source.count() > 0)
_source.output(fp_cpp);
generate_adlc_verification(fp_cpp);
}
//---------------------------addHeaderBlocks-----------------------------
void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
if (_header.count() > 0)
_header.output(fp_hpp);
}
//-------------------------addPreHeaderBlocks----------------------------
void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
// Output #defines from definition block
globalDefs().print_defines(fp_hpp);
if (_pre_header.count() > 0)
_pre_header.output(fp_hpp);
}
//---------------------------buildReduceMaps-----------------------------
// Build mapping from enumeration for densely packed operands
// TO result and child types.
void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
RegDef *rdef;
RegDef *next;
// The emit bodies currently require functions defined in the source block.
// Build external declarations for mappings
fprintf(fp_hpp, "\n");
fprintf(fp_hpp, "extern const char register_save_policy[];\n");
fprintf(fp_hpp, "extern const char c_reg_save_policy[];\n");
fprintf(fp_hpp, "extern const int register_save_type[];\n");
fprintf(fp_hpp, "\n");
// Construct Save-Policy array
fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
fprintf(fp_cpp, "const char register_save_policy[] = {\n");
_register->reset_RegDefs();
for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
next = _register->iter_RegDefs();
char policy = reg_save_policy(rdef->_callconv);
const char *comma = (next != NULL) ? "," : " // no trailing comma";
fprintf(fp_cpp, " '%c'%s // %s\n", policy, comma, rdef->_regname);
}
fprintf(fp_cpp, "};\n\n");
// Construct Native Save-Policy array
fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
fprintf(fp_cpp, "const char c_reg_save_policy[] = {\n");
_register->reset_RegDefs();
for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
next = _register->iter_RegDefs();
char policy = reg_save_policy(rdef->_c_conv);
const char *comma = (next != NULL) ? "," : " // no trailing comma";
fprintf(fp_cpp, " '%c'%s // %s\n", policy, comma, rdef->_regname);
}
fprintf(fp_cpp, "};\n\n");
// Construct Register Save Type array
fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
fprintf(fp_cpp, "const int register_save_type[] = {\n");
_register->reset_RegDefs();
for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
next = _register->iter_RegDefs();
const char *comma = (next != NULL) ? "," : " // no trailing comma";
fprintf(fp_cpp, " %s%s\n", rdef->_idealtype, comma);
}
fprintf(fp_cpp, "};\n\n");
// Construct the table for reduceOp
OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
build_map(output_reduce_op);
// Construct the table for leftOp
OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
build_map(output_left_op);
// Construct the table for rightOp
OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
build_map(output_right_op);
// Construct the table of rule names
OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
build_map(output_rule_name);
// Construct the boolean table for subsumed operands
OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
build_map(output_swallowed);
// // // Preserve in case we decide to use this table instead of another
//// Construct the boolean table for instruction chain rules
//OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
//build_map(output_inst_chain);
}
//---------------------------buildMachOperGenerator---------------------------
// Recurse through match tree, building path through corresponding state tree,
// Until we reach the constant we are looking for.
static void path_to_constant(FILE *fp, FormDict &globals,
MatchNode *mnode, uint idx) {
if ( ! mnode) return;
unsigned position = 0;
const char *result = NULL;
const char *name = NULL;
const char *optype = NULL;
// Base Case: access constant in ideal node linked to current state node
// Each type of constant has its own access function
if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
&& mnode->base_operand(position, globals, result, name, optype) ) {
if ( strcmp(optype,"ConI") == 0 ) {
fprintf(fp, "_leaf->get_int()");
} else if ( (strcmp(optype,"ConP") == 0) ) {
fprintf(fp, "_leaf->bottom_type()->is_ptr()");
} else if ( (strcmp(optype,"ConN") == 0) ) {
fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
} else if ( (strcmp(optype,"ConNKlass") == 0) ) {
fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
} else if ( (strcmp(optype,"ConF") == 0) ) {
fprintf(fp, "_leaf->getf()");
} else if ( (strcmp(optype,"ConD") == 0) ) {
fprintf(fp, "_leaf->getd()");
} else if ( (strcmp(optype,"ConL") == 0) ) {
fprintf(fp, "_leaf->get_long()");
} else if ( (strcmp(optype,"Con")==0) ) {
// !!!!! - Update if adding a machine-independent constant type
fprintf(fp, "_leaf->get_int()");
assert( false, "Unsupported constant type, pointer or indefinite");
} else if ( (strcmp(optype,"Bool") == 0) ) {
fprintf(fp, "_leaf->as_Bool()->_test._test");
} else {
assert( false, "Unsupported constant type");
}
return;
}
// If constant is in left child, build path and recurse
uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
if ( (mnode->_lChild) && (lConsts > idx) ) {
fprintf(fp, "_kids[0]->");
path_to_constant(fp, globals, mnode->_lChild, idx);
return;
}
// If constant is in right child, build path and recurse
if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
idx = idx - lConsts;
fprintf(fp, "_kids[1]->");
path_to_constant(fp, globals, mnode->_rChild, idx);
return;
}
assert( false, "ShouldNotReachHere()");
}
// Generate code that is executed when generating a specific Machine Operand
static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
OperandForm &op) {
const char *opName = op._ident;
const char *opEnumName = AD.machOperEnum(opName);
uint num_consts = op.num_consts(globalNames);
// Generate the case statement for this opcode
fprintf(fp, " case %s:", opEnumName);
fprintf(fp, "\n return new (C) %sOper(", opName);
// Access parameters for constructor from the stat object
//
// Build access to condition code value
if ( (num_consts > 0) ) {
uint i = 0;
path_to_constant(fp, globalNames, op._matrule, i);
for ( i = 1; i < num_consts; ++i ) {
fprintf(fp, ", ");
path_to_constant(fp, globalNames, op._matrule, i);
}
}
fprintf(fp, " );\n");
}
// Build switch to invoke "new" MachNode or MachOper
void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
int idx = 0;
// Build switch to invoke 'new' for a specific MachOper
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, "\n");
fprintf(fp_cpp,
"//------------------------- MachOper Generator ---------------\n");
fprintf(fp_cpp,
"// A switch statement on the dense-packed user-defined type system\n"
"// that invokes 'new' on the corresponding class constructor.\n");
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
fprintf(fp_cpp, "(int opcode, Compile* C)");
fprintf(fp_cpp, "{\n");
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, " switch(opcode) {\n");
// Place all user-defined operands into the mapping
_operands.reset();
int opIndex = 0;
OperandForm *op;
for( ; (op = (OperandForm*)_operands.iter()) != NULL; ) {
// Ensure this is a machine-world instruction
if ( op->ideal_only() ) continue;
genMachOperCase(fp_cpp, _globalNames, *this, *op);
};
// Do not iterate over operand classes for the operand generator!!!
// Place all internal operands into the mapping
_internalOpNames.reset();
const char *iopn;
for( ; (iopn = _internalOpNames.iter()) != NULL; ) {
const char *opEnumName = machOperEnum(iopn);
// Generate the case statement for this opcode
fprintf(fp_cpp, " case %s:", opEnumName);
fprintf(fp_cpp, " return NULL;\n");
};
// Generate the default case for switch(opcode)
fprintf(fp_cpp, " \n");
fprintf(fp_cpp, " default:\n");
fprintf(fp_cpp, " fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
fprintf(fp_cpp, " fprintf(stderr, \" opcode = %cd\\n\", opcode);\n", '%');
fprintf(fp_cpp, " break;\n");
fprintf(fp_cpp, " }\n");
// Generate the closing for method Matcher::MachOperGenerator
fprintf(fp_cpp, " return NULL;\n");
fprintf(fp_cpp, "};\n");
}
//---------------------------buildMachNode-------------------------------------
// Build a new MachNode, for MachNodeGenerator or cisc-spilling
void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
const char *opType = NULL;
const char *opClass = inst->_ident;
// Create the MachNode object
fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass);
if ( (inst->num_post_match_opnds() != 0) ) {
// Instruction that contains operands which are not in match rule.
//
// Check if the first post-match component may be an interesting def
bool dont_care = false;
ComponentList &comp_list = inst->_components;
Component *comp = NULL;
comp_list.reset();
if ( comp_list.match_iter() != NULL ) dont_care = true;
// Insert operands that are not in match-rule.
// Only insert a DEF if the do_care flag is set
comp_list.reset();
while ( comp = comp_list.post_match_iter() ) {
// Check if we don't care about DEFs or KILLs that are not USEs
if ( dont_care && (! comp->isa(Component::USE)) ) {
continue;
}
dont_care = true;
// For each operand not in the match rule, call MachOperGenerator
// with the enum for the opcode that needs to be built.
ComponentList clist = inst->_components;
int index = clist.operand_position(comp->_name, comp->_usedef, inst);
const char *opcode = machOperEnum(comp->_type);
fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode);
}
}
else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
// An instruction that chains from a constant!
// In this case, we need to subsume the constant into the node
// at operand position, oper_input_base().
//
// Fill in the constant
fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
inst->oper_input_base(_globalNames));
// #####
// Check for multiple constants and then fill them in.
// Just like MachOperGenerator
const char *opName = inst->_matrule->_rChild->_opType;
fprintf(fp_cpp, "new (C) %sOper(", opName);
// Grab operand form
OperandForm *op = (_globalNames[opName])->is_operand();
// Look up the number of constants
uint num_consts = op->num_consts(_globalNames);
if ( (num_consts > 0) ) {
uint i = 0;
path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
for ( i = 1; i < num_consts; ++i ) {
fprintf(fp_cpp, ", ");
path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
}
}
fprintf(fp_cpp, " );\n");
// #####
}
// Fill in the bottom_type where requested
if (inst->captures_bottom_type(_globalNames)) {
if (strncmp("MachCall", inst->mach_base_class(_globalNames), strlen("MachCall"))) {
fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
}
}
if( inst->is_ideal_if() ) {
fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
}
if( inst->is_ideal_fastlock() ) {
fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
fprintf(fp_cpp, "%s node->_rtm_counters = _leaf->as_FastLock()->rtm_counters();\n", indent);
fprintf(fp_cpp, "%s node->_stack_rtm_counters = _leaf->as_FastLock()->stack_rtm_counters();\n", indent);
}
}
//---------------------------declare_cisc_version------------------------------
// Build CISC version of this instruction
void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
if( AD.can_cisc_spill() ) {
InstructForm *inst_cisc = cisc_spill_alternate();
if (inst_cisc != NULL) {
fprintf(fp_hpp, " virtual int cisc_operand() const { return %d; }\n", cisc_spill_operand());
fprintf(fp_hpp, " virtual MachNode *cisc_version(int offset, Compile* C);\n");
fprintf(fp_hpp, " virtual void use_cisc_RegMask();\n");
fprintf(fp_hpp, " virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
}
}
}
//---------------------------define_cisc_version-------------------------------
// Build CISC version of this instruction
bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
InstructForm *inst_cisc = this->cisc_spill_alternate();
if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
const char *name = inst_cisc->_ident;
assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
OperandForm *cisc_oper = AD.cisc_spill_operand();
assert( cisc_oper != NULL, "insanity check");
const char *cisc_oper_name = cisc_oper->_ident;
assert( cisc_oper_name != NULL, "insanity check");
//
// Set the correct reg_mask_or_stack for the cisc operand
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
// Lookup the correct reg_mask_or_stack
const char *reg_mask_name = cisc_reg_mask_name();
fprintf(fp_cpp, " _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
fprintf(fp_cpp, "}\n");
//
// Construct CISC version of this instruction
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, "// Build CISC version of this instruction\n");
fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident);
// Create the MachNode object
fprintf(fp_cpp, " %sNode *node = new (C) %sNode();\n", name, name);
// Fill in the bottom_type where requested
if ( this->captures_bottom_type(AD.globalNames()) ) {
fprintf(fp_cpp, " node->_bottom_type = bottom_type();\n");
}
uint cur_num_opnds = num_opnds();
if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
fprintf(fp_cpp," node->_num_opnds = %d;\n", num_unique_opnds());
}
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, " // Copy _idx, inputs and operands to new node\n");
fprintf(fp_cpp, " fill_new_machnode(node, C);\n");
// Construct operand to access [stack_pointer + offset]
fprintf(fp_cpp, " // Construct operand to access [stack_pointer + offset]\n");
fprintf(fp_cpp, " node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name);
fprintf(fp_cpp, "\n");
// Return result and exit scope
fprintf(fp_cpp, " return node;\n");
fprintf(fp_cpp, "}\n");
fprintf(fp_cpp, "\n");
return true;
}
return false;
}
//---------------------------declare_short_branch_methods----------------------
// Build prototypes for short branch methods
void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
if (has_short_branch_form()) {
fprintf(fp_hpp, " virtual MachNode *short_branch_version(Compile* C);\n");
}
}
//---------------------------define_short_branch_methods-----------------------
// Build definitions for short branch methods
bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
if (has_short_branch_form()) {
InstructForm *short_branch = short_branch_form();
const char *name = short_branch->_ident;
// Construct short_branch_version() method.
fprintf(fp_cpp, "// Build short branch version of this instruction\n");
fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident);
// Create the MachNode object
fprintf(fp_cpp, " %sNode *node = new (C) %sNode();\n", name, name);
if( is_ideal_if() ) {
fprintf(fp_cpp, " node->_prob = _prob;\n");
fprintf(fp_cpp, " node->_fcnt = _fcnt;\n");
}
// Fill in the bottom_type where requested
if ( this->captures_bottom_type(AD.globalNames()) ) {
fprintf(fp_cpp, " node->_bottom_type = bottom_type();\n");
}
fprintf(fp_cpp, "\n");
// Short branch version must use same node index for access
// through allocator's tables
fprintf(fp_cpp, " // Copy _idx, inputs and operands to new node\n");
fprintf(fp_cpp, " fill_new_machnode(node, C);\n");
// Return result and exit scope
fprintf(fp_cpp, " return node;\n");
fprintf(fp_cpp, "}\n");
fprintf(fp_cpp,"\n");
return true;
}
return false;
}
//---------------------------buildMachNodeGenerator----------------------------
// Build switch to invoke appropriate "new" MachNode for an opcode
void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
// Build switch to invoke 'new' for a specific MachNode
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, "\n");
fprintf(fp_cpp,
"//------------------------- MachNode Generator ---------------\n");
fprintf(fp_cpp,
"// A switch statement on the dense-packed user-defined type system\n"
"// that invokes 'new' on the corresponding class constructor.\n");
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
fprintf(fp_cpp, "(int opcode, Compile* C)");
fprintf(fp_cpp, "{\n");
fprintf(fp_cpp, " switch(opcode) {\n");
// Provide constructor for all user-defined instructions
_instructions.reset();
int opIndex = operandFormCount();
InstructForm *inst;
for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
// Ensure that matrule is defined.
if ( inst->_matrule == NULL ) continue;
int opcode = opIndex++;
const char *opClass = inst->_ident;
char *opType = NULL;
// Generate the case statement for this instruction
fprintf(fp_cpp, " case %s_rule:", opClass);
// Start local scope
fprintf(fp_cpp, " {\n");
// Generate code to construct the new MachNode
buildMachNode(fp_cpp, inst, " ");
// Return result and exit scope
fprintf(fp_cpp, " return node;\n");
fprintf(fp_cpp, " }\n");
}
// Generate the default case for switch(opcode)
fprintf(fp_cpp, " \n");
fprintf(fp_cpp, " default:\n");
fprintf(fp_cpp, " fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
fprintf(fp_cpp, " fprintf(stderr, \" opcode = %cd\\n\", opcode);\n", '%');
fprintf(fp_cpp, " break;\n");
fprintf(fp_cpp, " };\n");
// Generate the closing for method Matcher::MachNodeGenerator
fprintf(fp_cpp, " return NULL;\n");
fprintf(fp_cpp, "}\n");
}
//---------------------------buildInstructMatchCheck--------------------------
// Output the method to Matcher which checks whether or not a specific
// instruction has a matching rule for the host architecture.
void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
fprintf(fp_cpp, "\n\n");
fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
fprintf(fp_cpp, " assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
fprintf(fp_cpp, " return _hasMatchRule[opcode];\n");
fprintf(fp_cpp, "}\n\n");
fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
int i;
for (i = 0; i < _last_opcode - 1; i++) {
fprintf(fp_cpp, " %-5s, // %s\n",
_has_match_rule[i] ? "true" : "false",
NodeClassNames[i]);
}
fprintf(fp_cpp, " %-5s // %s\n",
_has_match_rule[i] ? "true" : "false",
NodeClassNames[i]);
fprintf(fp_cpp, "};\n");
}
//---------------------------buildFrameMethods---------------------------------
// Output the methods to Matcher which specify frame behavior
void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
fprintf(fp_cpp,"\n\n");
// Stack Direction
fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
_frame->_direction ? "true" : "false");
// Sync Stack Slots
fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
_frame->_sync_stack_slots);
// Java Stack Alignment
fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
_frame->_alignment);
// Java Return Address Location
fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
if (_frame->_return_addr_loc) {
fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
_frame->_return_addr);
}
else {
fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
_frame->_return_addr);
}
// Java Stack Slot Preservation
fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
// Top Of Stack Slot Preservation, for both Java and C
fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
// varargs C out slots killed
fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
// Java Argument Position
fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
fprintf(fp_cpp,"}\n\n");
// Native Argument Position
fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
fprintf(fp_cpp,"}\n\n");
// Java Return Value Location
fprintf(fp_cpp,"OptoRegPair Matcher::return_value(int ideal_reg, bool is_outgoing) {\n");
fprintf(fp_cpp,"%s\n", _frame->_return_value);
fprintf(fp_cpp,"}\n\n");
// Native Return Value Location
fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(int ideal_reg, bool is_outgoing) {\n");
fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
fprintf(fp_cpp,"}\n\n");
// Inline Cache Register, mask definition, and encoding
fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
_frame->_inline_cache_reg);
fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
// Interpreter's Method Oop Register, mask definition, and encoding
fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
_frame->_interpreter_method_oop_reg);
fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
// Interpreter's Frame Pointer Register, mask definition, and encoding
fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
if (_frame->_interpreter_frame_pointer_reg == NULL)
fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
else
fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
_frame->_interpreter_frame_pointer_reg);
// Frame Pointer definition
/* CNC - I can not contemplate having a different frame pointer between
Java and native code; makes my head hurt to think about it.
fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
_frame->_frame_pointer);
*/
// (Native) Frame Pointer definition
fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
_frame->_frame_pointer);
// Number of callee-save + always-save registers for calling convention
fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
fprintf(fp_cpp, "int Matcher::number_of_saved_registers() {\n");
RegDef *rdef;
int nof_saved_registers = 0;
_register->reset_RegDefs();
while( (rdef = _register->iter_RegDefs()) != NULL ) {
if( !strcmp(rdef->_callconv, "SOE") || !strcmp(rdef->_callconv, "AS") )
++nof_saved_registers;
}
fprintf(fp_cpp, " return %d;\n", nof_saved_registers);
fprintf(fp_cpp, "};\n\n");
}
static int PrintAdlcCisc = 0;
//---------------------------identify_cisc_spilling----------------------------
// Get info for the CISC_oracle and MachNode::cisc_version()
void ArchDesc::identify_cisc_spill_instructions() {
if (_frame == NULL)
return;
// Find the user-defined operand for cisc-spilling
if( _frame->_cisc_spilling_operand_name != NULL ) {
const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
OperandForm *oper = form ? form->is_operand() : NULL;
// Verify the user's suggestion
if( oper != NULL ) {
// Ensure that match field is defined.
if ( oper->_matrule != NULL ) {
MatchRule &mrule = *oper->_matrule;
if( strcmp(mrule._opType,"AddP") == 0 ) {
MatchNode *left = mrule._lChild;
MatchNode *right= mrule._rChild;
if( left != NULL && right != NULL ) {
const Form *left_op = _globalNames[left->_opType]->is_operand();
const Form *right_op = _globalNames[right->_opType]->is_operand();
if( (left_op != NULL && right_op != NULL)
&& (left_op->interface_type(_globalNames) == Form::register_interface)
&& (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
// Successfully verified operand
set_cisc_spill_operand( oper );
if( _cisc_spill_debug ) {
fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
}
}
}
}
}
}
}
if( cisc_spill_operand() != NULL ) {
// N^2 comparison of instructions looking for a cisc-spilling version
_instructions.reset();
InstructForm *instr;
for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
// Ensure that match field is defined.
if ( instr->_matrule == NULL ) continue;
MatchRule &mrule = *instr->_matrule;
Predicate *pred = instr->build_predicate();
// Grab the machine type of the operand
const char *rootOp = instr->_ident;
mrule._machType = rootOp;
// Find result type for match
const char *result = instr->reduce_result();
if( PrintAdlcCisc ) fprintf(stderr, " new instruction %s \n", instr->_ident ? instr->_ident : " ");
bool found_cisc_alternate = false;
_instructions.reset2();
InstructForm *instr2;
for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
// Ensure that match field is defined.
if( PrintAdlcCisc ) fprintf(stderr, " instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
if ( instr2->_matrule != NULL
&& (instr != instr2 ) // Skip self
&& (instr2->reduce_result() != NULL) // want same result
&& (strcmp(result, instr2->reduce_result()) == 0)) {
MatchRule &mrule2 = *instr2->_matrule;
Predicate *pred2 = instr2->build_predicate();
found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
}
}
}
}
}
//---------------------------build_cisc_spilling-------------------------------
// Get info for the CISC_oracle and MachNode::cisc_version()
void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
// Output the table for cisc spilling
fprintf(fp_cpp, "// The following instructions can cisc-spill\n");
_instructions.reset();
InstructForm *inst = NULL;
for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
// Ensure this is a machine-world instruction
if ( inst->ideal_only() ) continue;
const char *inst_name = inst->_ident;
int operand = inst->cisc_spill_operand();
if( operand != AdlcVMDeps::Not_cisc_spillable ) {
InstructForm *inst2 = inst->cisc_spill_alternate();
fprintf(fp_cpp, "// %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
}
}
fprintf(fp_cpp, "\n\n");
}
//---------------------------identify_short_branches----------------------------
// Get info for our short branch replacement oracle.
void ArchDesc::identify_short_branches() {
// Walk over all instructions, checking to see if they match a short
// branching alternate.
_instructions.reset();
InstructForm *instr;
while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
// The instruction must have a match rule.
if (instr->_matrule != NULL &&
instr->is_short_branch()) {
_instructions.reset2();
InstructForm *instr2;
while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
instr2->check_branch_variant(*this, instr);
}
}
}
}
//---------------------------identify_unique_operands---------------------------
// Identify unique operands.
void ArchDesc::identify_unique_operands() {
// Walk over all instructions.
_instructions.reset();
InstructForm *instr;
while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
// Ensure this is a machine-world instruction
if (!instr->ideal_only()) {
instr->set_unique_opnds();
}
}
}