blob: 0a38a24a50122ec097ee50e3cd4f4429885f8fd6 [file] [log] [blame]
/*
* Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_ADLC_FORMSSEL_HPP
#define SHARE_VM_ADLC_FORMSSEL_HPP
// FORMSSEL.HPP - ADL Parser Instruction Selection Forms Classes
// Class List
class Form;
class InstructForm;
class MachNodeForm;
class OperandForm;
class OpClassForm;
class AttributeForm;
class RegisterForm;
class PipelineForm;
class SourceForm;
class EncodeForm;
class Component;
class Constraint;
class Predicate;
class MatchRule;
class Attribute;
class Effect;
class ExpandRule;
class RewriteRule;
class ConstructRule;
class FormatRule;
class Peephole;
class EncClass;
class Interface;
class RegInterface;
class ConstInterface;
class MemInterface;
class CondInterface;
class Opcode;
class InsEncode;
class RegDef;
class RegClass;
class CodeSnippetRegClass;
class ConditionalRegClass;
class AllocClass;
class ResourceForm;
class PipeDesc;
class PipeClass;
class PeepMatch;
class PeepConstraint;
class PeepReplace;
class MatchList;
class ArchDesc;
//==============================Instructions===================================
//------------------------------InstructForm-----------------------------------
class InstructForm : public Form {
private:
bool _ideal_only; // Not a user-defined instruction
// Members used for tracking CISC-spilling
int _cisc_spill_operand;// Which operand may cisc-spill
void set_cisc_spill_operand(uint op_index) { _cisc_spill_operand = op_index; }
bool _is_cisc_alternate;
InstructForm *_cisc_spill_alternate;// cisc possible replacement
const char *_cisc_reg_mask_name;
InstructForm *_short_branch_form;
bool _is_short_branch;
bool _is_mach_constant; // True if Node is a MachConstantNode.
bool _needs_constant_base; // True if Node needs the mach_constant_base input.
uint _alignment;
public:
// Public Data
const char *_ident; // Name of this instruction
NameList _parameters; // Locally defined names
FormDict _localNames; // Table of operands & their types
MatchRule *_matrule; // Matching rule for this instruction
Opcode *_opcode; // Encoding of the opcode for instruction
char *_size; // Size of instruction
InsEncode *_insencode; // Encoding class instruction belongs to
InsEncode *_constant; // Encoding class constant value belongs to
bool _is_postalloc_expand; // Indicates that encoding just does a lateExpand.
Attribute *_attribs; // List of Attribute rules
Predicate *_predicate; // Predicate test for this instruction
FormDict _effects; // Dictionary of effect rules
ExpandRule *_exprule; // Expand rule for this instruction
RewriteRule *_rewrule; // Rewrite rule for this instruction
FormatRule *_format; // Format for assembly generation
Peephole *_peephole; // List of peephole rules for instruction
const char *_ins_pipe; // Instruction Scheduling description class
uint *_uniq_idx; // Indexes of unique operands
uint _uniq_idx_length; // Length of _uniq_idx array
uint _num_uniq; // Number of unique operands
ComponentList _components; // List of Components matches MachNode's
// operand structure
bool _has_call; // contain a call and caller save registers should be saved?
// Public Methods
InstructForm(const char *id, bool ideal_only = false);
InstructForm(const char *id, InstructForm *instr, MatchRule *rule);
~InstructForm();
// Dynamic type check
virtual InstructForm *is_instruction() const;
virtual bool ideal_only() const;
// This instruction sets a result
virtual bool sets_result() const;
// This instruction needs projections for additional DEFs or KILLs
virtual bool needs_projections();
// This instruction needs extra nodes for temporary inputs
virtual bool has_temps();
// This instruction defines or kills more than one object
virtual uint num_defs_or_kills();
// This instruction has an expand rule?
virtual bool expands() const ;
// This instruction has a late expand rule?
virtual bool postalloc_expands() const;
// Return this instruction's first peephole rule, or NULL
virtual Peephole *peepholes() const;
// Add a peephole rule to this instruction
virtual void append_peephole(Peephole *peep);
virtual bool is_pinned(FormDict &globals); // should be pinned inside block
virtual bool is_projection(FormDict &globals); // node requires projection
virtual bool is_parm(FormDict &globals); // node matches ideal 'Parm'
// ideal opcode enumeration
virtual const char *ideal_Opcode(FormDict &globals) const;
virtual int is_expensive() const; // node matches ideal 'CosD'
virtual int is_empty_encoding() const; // _size=0 and/or _insencode empty
virtual int is_tls_instruction() const; // tlsLoadP rule or ideal ThreadLocal
virtual int is_ideal_copy() const; // node matches ideal 'Copy*'
virtual bool is_ideal_negD() const; // node matches ideal 'NegD'
virtual bool is_ideal_if() const; // node matches ideal 'If'
virtual bool is_ideal_fastlock() const; // node matches 'FastLock'
virtual bool is_ideal_membar() const; // node matches ideal 'MemBarXXX'
virtual bool is_ideal_loadPC() const; // node matches ideal 'LoadPC'
virtual bool is_ideal_box() const; // node matches ideal 'Box'
virtual bool is_ideal_goto() const; // node matches ideal 'Goto'
virtual bool is_ideal_branch() const; // "" 'If' | 'Goto' | 'LoopEnd' | 'Jump'
virtual bool is_ideal_jump() const; // node matches ideal 'Jump'
virtual bool is_ideal_return() const; // node matches ideal 'Return'
virtual bool is_ideal_halt() const; // node matches ideal 'Halt'
virtual bool is_ideal_safepoint() const; // node matches 'SafePoint'
virtual bool is_ideal_nop() const; // node matches 'Nop'
virtual bool is_ideal_control() const; // control node
virtual bool is_vector() const; // vector instruction
virtual Form::CallType is_ideal_call() const; // matches ideal 'Call'
virtual Form::DataType is_ideal_load() const; // node matches ideal 'LoadXNode'
// Should antidep checks be disabled for this Instruct
// See definition of MatchRule::skip_antidep_check
bool skip_antidep_check() const;
virtual Form::DataType is_ideal_store() const;// node matches ideal 'StoreXNode'
bool is_ideal_mem() const { return is_ideal_load() != Form::none || is_ideal_store() != Form::none; }
virtual uint two_address(FormDict &globals); // output reg must match input reg
// when chaining a constant to an instruction, return 'true' and set opType
virtual Form::DataType is_chain_of_constant(FormDict &globals);
virtual Form::DataType is_chain_of_constant(FormDict &globals, const char * &opType);
virtual Form::DataType is_chain_of_constant(FormDict &globals, const char * &opType, const char * &result_type);
// Check if a simple chain rule
virtual bool is_simple_chain_rule(FormDict &globals) const;
// check for structural rematerialization
virtual bool rematerialize(FormDict &globals, RegisterForm *registers);
// loads from memory, so must check for anti-dependence
virtual bool needs_anti_dependence_check(FormDict &globals) const;
virtual int memory_operand(FormDict &globals) const;
bool is_wide_memory_kill(FormDict &globals) const;
enum memory_operand_type {
NO_MEMORY_OPERAND = -1,
MANY_MEMORY_OPERANDS = 999999
};
// This instruction captures the machine-independent bottom_type
// Expected use is for pointer vs oop determination for LoadP
virtual bool captures_bottom_type(FormDict& globals) const;
virtual const char *cost(); // Access ins_cost attribute
virtual uint num_opnds(); // Count of num_opnds for MachNode class
// Counts USE_DEF opnds twice. See also num_unique_opnds().
virtual uint num_post_match_opnds();
virtual uint num_consts(FormDict &globals) const;// Constants in match rule
// Constants in match rule with specified type
virtual uint num_consts(FormDict &globals, Form::DataType type) const;
// Return the register class associated with 'leaf'.
virtual const char *out_reg_class(FormDict &globals);
// number of ideal node inputs to skip
virtual uint oper_input_base(FormDict &globals);
// Does this instruction need a base-oop edge?
int needs_base_oop_edge(FormDict &globals) const;
// Build instruction predicates. If the user uses the same operand name
// twice, we need to check that the operands are pointer-eequivalent in
// the DFA during the labeling process.
Predicate *build_predicate();
virtual void build_components(); // top-level operands
// Return zero-based position in component list; -1 if not in list.
virtual int operand_position(const char *name, int usedef);
virtual int operand_position_format(const char *name);
// Return zero-based position in component list; -1 if not in list.
virtual int label_position();
virtual int method_position();
// Return number of relocation entries needed for this instruction.
virtual uint reloc(FormDict &globals);
const char *opnd_ident(int idx); // Name of operand #idx.
const char *reduce_result();
// Return the name of the operand on the right hand side of the binary match
// Return NULL if there is no right hand side
const char *reduce_right(FormDict &globals) const;
const char *reduce_left(FormDict &globals) const;
// Base class for this instruction, MachNode except for calls
virtual const char *mach_base_class(FormDict &globals) const;
// Check if this instruction can cisc-spill to 'alternate'
bool cisc_spills_to(ArchDesc &AD, InstructForm *alternate);
InstructForm *cisc_spill_alternate() { return _cisc_spill_alternate; }
int cisc_spill_operand() const { return _cisc_spill_operand; }
bool is_cisc_alternate() const { return _is_cisc_alternate; }
void set_cisc_alternate(bool val) { _is_cisc_alternate = val; }
const char *cisc_reg_mask_name() const { return _cisc_reg_mask_name; }
void set_cisc_reg_mask_name(const char *rm_name) { _cisc_reg_mask_name = rm_name; }
// Output cisc-method prototypes and method bodies
void declare_cisc_version(ArchDesc &AD, FILE *fp_cpp);
bool define_cisc_version (ArchDesc &AD, FILE *fp_cpp);
bool check_branch_variant(ArchDesc &AD, InstructForm *short_branch);
bool is_short_branch() { return _is_short_branch; }
void set_short_branch(bool val) { _is_short_branch = val; }
bool is_mach_constant() const { return _is_mach_constant; }
void set_is_mach_constant(bool x) { _is_mach_constant = x; }
bool needs_constant_base() const { return _needs_constant_base; }
void set_needs_constant_base(bool x) { _needs_constant_base = x; }
InstructForm *short_branch_form() { return _short_branch_form; }
bool has_short_branch_form() { return _short_branch_form != NULL; }
// Output short branch prototypes and method bodies
void declare_short_branch_methods(FILE *fp_cpp);
bool define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp);
uint alignment() { return _alignment; }
void set_alignment(uint val) { _alignment = val; }
// Seach through operands to determine operands unique positions.
void set_unique_opnds();
uint num_unique_opnds() { return _num_uniq; }
uint unique_opnds_idx(int idx) {
if (_uniq_idx != NULL && idx > 0) {
assert((uint)idx < _uniq_idx_length, "out of bounds");
return _uniq_idx[idx];
} else {
return idx;
}
}
const char *unique_opnd_ident(uint idx); // Name of operand at unique idx.
// Operands which are only KILLs aren't part of the input array and
// require special handling in some cases. Their position in this
// operand list is higher than the number of unique operands.
bool is_noninput_operand(uint idx) {
return (idx >= num_unique_opnds());
}
// --------------------------- FILE *output_routines
//
// Generate the format call for the replacement variable
void rep_var_format(FILE *fp, const char *rep_var);
// Generate index values needed for determining the operand position
void index_temps (FILE *fp, FormDict &globals, const char *prefix = "", const char *receiver = "");
// ---------------------------
virtual bool verify(); // Check consistency after parsing
virtual void dump(); // Debug printer
virtual void output(FILE *fp); // Write to output files
};
//------------------------------EncodeForm-------------------------------------
class EncodeForm : public Form {
private:
public:
// Public Data
NameList _eclasses; // List of encode class names
Dict _encClass; // Map encode class names to EncClass objects
// Public Methods
EncodeForm();
~EncodeForm();
EncClass *add_EncClass(const char *className);
EncClass *encClass(const char *className);
const char *encClassPrototype(const char *className);
const char *encClassBody(const char *className);
void dump(); // Debug printer
void output(FILE *fp); // Write info to output files
};
//------------------------------EncClass---------------------------------------
class EncClass : public Form {
public:
// NameList for parameter type and name
NameList _parameter_type;
NameList _parameter_name;
// Breakdown the encoding into strings separated by $replacement_variables
// There is an entry in _strings, perhaps NULL, that precedes each _rep_vars
NameList _code; // Strings passed through to tty->print
NameList _rep_vars; // replacement variables
NameList _parameters; // Locally defined names
FormDict _localNames; // Table of components & their types
public:
// Public Data
const char *_name; // encoding class name
// Public Methods
EncClass(const char *name);
~EncClass();
// --------------------------- Parameters
// Add a parameter <type,name> pair
void add_parameter(const char *parameter_type, const char *parameter_name);
// Verify operand types in parameter list
bool check_parameter_types(FormDict &globals);
// Obtain the zero-based index corresponding to a replacement variable
int rep_var_index(const char *rep_var);
int num_args() { return _parameter_name.count(); }
// --------------------------- Code Block
// Add code
void add_code(const char *string_preceding_replacement_var);
// Add a replacement variable or one of its subfields
// Subfields are stored with a leading '$'
void add_rep_var(char *replacement_var);
bool verify();
void dump();
void output(FILE *fp);
};
//------------------------------MachNode---------------------------------------
class MachNodeForm: public Form {
private:
public:
char *_ident; // Name of this instruction
const char *_machnode_pipe; // Instruction Scheduline description class
// Public Methods
MachNodeForm(char *id);
~MachNodeForm();
virtual MachNodeForm *is_machnode() const;
void dump(); // Debug printer
void output(FILE *fp); // Write info to output files
};
//------------------------------Opcode-----------------------------------------
class Opcode : public Form {
private:
public:
// Public Data
// Strings representing instruction opcodes, user defines placement in emit
char *_primary;
char *_secondary;
char *_tertiary;
enum opcode_type {
NOT_AN_OPCODE = -1,
PRIMARY = 1,
SECONDARY = 2,
TERTIARY = 3
};
// Public Methods
Opcode(char *primary, char *secondary, char *tertiary);
~Opcode();
static Opcode::opcode_type as_opcode_type(const char *designator);
void dump();
void output(FILE *fp);
// --------------------------- FILE *output_routines
bool print_opcode(FILE *fp, Opcode::opcode_type desired_opcode);
};
//------------------------------InsEncode--------------------------------------
class InsEncode : public Form {
private:
// Public Data (access directly only for reads)
// The encodings can only have the values predefined by the ADLC:
// blank, RegReg, RegMem, MemReg, ...
NameList _encoding;
// NameList _parameter;
// The parameters for each encoding are preceeded by a NameList::_signal
// and follow the parameters for the previous encoding.
// char *_encode; // Type of instruction encoding
public:
// Public Methods
InsEncode();
~InsEncode();
// Add "encode class name" and its parameters
NameAndList *add_encode(char *encode_method_name);
// Parameters are added to the returned "NameAndList" by the parser
// Access the list of encodings
void reset();
const char *encode_class_iter();
// Returns the number of arguments to the current encoding in the iteration
int current_encoding_num_args() {
return ((NameAndList*)_encoding.current())->count();
}
// --------------------------- Parameters
// The following call depends upon position within encode_class_iteration
//
// Obtain parameter name from zero based index
const char *rep_var_name(InstructForm &inst, uint param_no);
// ---------------------------
void dump();
void output(FILE *fp);
};
//------------------------------Effect-----------------------------------------
class Effect : public Form {
private:
public:
// Public Data
const char *_name; // Pre-defined name for effect
int _use_def; // Enumeration value of effect
// Public Methods
Effect(const char *name); // Constructor
~Effect(); // Destructor
// Dynamic type check
virtual Effect *is_effect() const;
// Return 'true' if this use def info equals the parameter
bool is(int use_def_kill_enum) const;
// Return 'true' if this use def info is a superset of parameter
bool isa(int use_def_kill_enum) const;
void dump(); // Debug printer
void output(FILE *fp); // Write info to output files
};
//------------------------------ExpandRule-------------------------------------
class ExpandRule : public Form {
private:
NameList _expand_instrs; // ordered list of instructions and operands
public:
// Public Data
NameList _newopers; // List of newly created operands
Dict _newopconst; // Map new operands to their constructors
void add_instruction(NameAndList *instruction_name_and_operand_list);
void reset_instructions();
NameAndList *iter_instructions();
// Public Methods
ExpandRule(); // Constructor
~ExpandRule(); // Destructor
void dump(); // Debug printer
void output(FILE *fp); // Write info to output files
};
//------------------------------RewriteRule------------------------------------
class RewriteRule : public Form {
private:
public:
// Public Data
SourceForm *_condition; // Rewrite condition code
InstructForm *_instrs; // List of instructions to expand to
OperandForm *_opers; // List of operands generated by expand
char *_tempParams; // Hold string until parser is finished.
char *_tempBlock; // Hold string until parser is finished.
// Public Methods
RewriteRule(char* params, char* block) ;
~RewriteRule(); // Destructor
void dump(); // Debug printer
void output(FILE *fp); // Write info to output files
};
//==============================Operands=======================================
//------------------------------OpClassForm------------------------------------
class OpClassForm : public Form {
public:
// Public Data
const char *_ident; // Name of this operand
NameList _oplst; // List of operand forms included in class
// Public Methods
OpClassForm(const char *id);
~OpClassForm();
// dynamic type check
virtual OpClassForm *is_opclass() const;
virtual Form::InterfaceType interface_type(FormDict &globals) const;
virtual bool stack_slots_only(FormDict &globals) const;
virtual bool is_cisc_mem(FormDict &globals) const;
// Min and Max opcodes of operands in this operand class
int _minCode;
int _maxCode;
virtual bool ideal_only() const;
virtual void dump(); // Debug printer
virtual void output(FILE *fp); // Write to output files
};
//------------------------------OperandForm------------------------------------
class OperandForm : public OpClassForm {
private:
bool _ideal_only; // Not a user-defined instruction
public:
// Public Data
NameList _parameters; // Locally defined names
FormDict _localNames; // Table of components & their types
MatchRule *_matrule; // Matching rule for this operand
Interface *_interface; // Encoding interface for this operand
Attribute *_attribs; // List of Attribute rules
Predicate *_predicate; // Predicate test for this operand
Constraint *_constraint; // Constraint Rule for this operand
ConstructRule *_construct; // Construction of operand data after matching
FormatRule *_format; // Format for assembly generation
NameList _classes; // List of opclasses which contain this oper
ComponentList _components; //
// Public Methods
OperandForm(const char *id);
OperandForm(const char *id, bool ideal_only);
~OperandForm();
// Dynamic type check
virtual OperandForm *is_operand() const;
virtual bool ideal_only() const;
virtual Form::InterfaceType interface_type(FormDict &globals) const;
virtual bool stack_slots_only(FormDict &globals) const;
virtual const char *cost(); // Access ins_cost attribute
virtual uint num_leaves() const;// Leaves in complex operand
// Constants in operands' match rules
virtual uint num_consts(FormDict &globals) const;
// Constants in operand's match rule with specified type
virtual uint num_consts(FormDict &globals, Form::DataType type) const;
// Pointer Constants in operands' match rules
virtual uint num_const_ptrs(FormDict &globals) const;
// The number of input edges in the machine world == num_leaves - num_consts
virtual uint num_edges(FormDict &globals) const;
// Check if this operand is usable for cisc-spilling
virtual bool is_cisc_reg(FormDict &globals) const;
// node matches ideal 'Bool', grab condition codes from the ideal world
virtual bool is_ideal_bool() const;
// Has an integer constant suitable for spill offsets
bool has_conI(FormDict &globals) const {
return (num_consts(globals,idealI) == 1) && !is_ideal_bool(); }
bool has_conL(FormDict &globals) const {
return (num_consts(globals,idealL) == 1) && !is_ideal_bool(); }
// Node is user-defined operand for an sRegX
virtual Form::DataType is_user_name_for_sReg() const;
// Return ideal type, if there is a single ideal type for this operand
virtual const char *ideal_type(FormDict &globals, RegisterForm *registers = NULL) const;
// If there is a single ideal type for this interface field, return it.
virtual const char *interface_ideal_type(FormDict &globals,
const char *field_name) const;
// Return true if this operand represents a bound register class
bool is_bound_register() const;
// Return the Register class for this operand. Returns NULL if
// operand isn't a register form.
RegClass* get_RegClass() const;
virtual bool is_interface_field(const char *field_name,
const char * &value) const;
// If this operand has a single ideal type, return its type
virtual Form::DataType simple_type(FormDict &globals) const;
// If this operand is an ideal constant, return its type
virtual Form::DataType is_base_constant(FormDict &globals) const;
// "true" if this operand is a simple type that is swallowed
virtual bool swallowed(FormDict &globals) const;
// Return register class name if a constraint specifies the register class.
virtual const char *constrained_reg_class() const;
// Return the register class associated with 'leaf'.
virtual const char *in_reg_class(uint leaf, FormDict &globals);
// Build component list from MatchRule and operand's parameter list
virtual void build_components(); // top-level operands
// Return zero-based position in component list; -1 if not in list.
virtual int operand_position(const char *name, int usedef);
// Return zero-based position in component list; -1 if not in list.
virtual int constant_position(FormDict &globals, const Component *comp);
virtual int constant_position(FormDict &globals, const char *local_name);
// Return the operand form corresponding to the given index, else NULL.
virtual OperandForm *constant_operand(FormDict &globals, uint const_index);
// Return zero-based position in component list; -1 if not in list.
virtual int register_position(FormDict &globals, const char *regname);
const char *reduce_result() const;
// Return the name of the operand on the right hand side of the binary match
// Return NULL if there is no right hand side
const char *reduce_right(FormDict &globals) const;
const char *reduce_left(FormDict &globals) const;
// --------------------------- FILE *output_routines
//
// Output code for disp_is_oop, if true.
void disp_is_oop(FILE *fp, FormDict &globals);
// Generate code for internal and external format methods
void int_format(FILE *fp, FormDict &globals, uint index);
void ext_format(FILE *fp, FormDict &globals, uint index);
void format_constant(FILE *fp, uint con_index, uint con_type);
// Output code to access the value of the index'th constant
void access_constant(FILE *fp, FormDict &globals,
uint con_index);
// ---------------------------
virtual void dump(); // Debug printer
virtual void output(FILE *fp); // Write to output files
};
//------------------------------Constraint-------------------------------------
class Constraint : public Form {
private:
public:
const char *_func; // Constraint function
const char *_arg; // function's argument
// Public Methods
Constraint(const char *func, const char *arg); // Constructor
~Constraint();
bool stack_slots_only() const;
void dump(); // Debug printer
void output(FILE *fp); // Write info to output files
};
//------------------------------Predicate--------------------------------------
class Predicate : public Form {
private:
public:
// Public Data
char *_pred; // C++ source string for predicate
// Public Methods
Predicate(char *pr);
~Predicate();
void dump();
void output(FILE *fp);
};
//------------------------------Interface--------------------------------------
class Interface : public Form {
private:
public:
// Public Data
const char *_name; // String representing the interface name
// Public Methods
Interface(const char *name);
~Interface();
virtual Form::InterfaceType interface_type(FormDict &globals) const;
RegInterface *is_RegInterface();
MemInterface *is_MemInterface();
ConstInterface *is_ConstInterface();
CondInterface *is_CondInterface();
void dump();
void output(FILE *fp);
};
//------------------------------RegInterface-----------------------------------
class RegInterface : public Interface {
private:
public:
// Public Methods
RegInterface();
~RegInterface();
void dump();
void output(FILE *fp);
};
//------------------------------ConstInterface---------------------------------
class ConstInterface : public Interface {
private:
public:
// Public Methods
ConstInterface();
~ConstInterface();
void dump();
void output(FILE *fp);
};
//------------------------------MemInterface-----------------------------------
class MemInterface : public Interface {
private:
public:
// Public Data
char *_base; // Base address
char *_index; // index
char *_scale; // scaling factor
char *_disp; // displacement
// Public Methods
MemInterface(char *base, char *index, char *scale, char *disp);
~MemInterface();
void dump();
void output(FILE *fp);
};
//------------------------------CondInterface----------------------------------
class CondInterface : public Interface {
private:
public:
const char *_equal;
const char *_not_equal;
const char *_less;
const char *_greater_equal;
const char *_less_equal;
const char *_greater;
const char *_overflow;
const char *_no_overflow;
const char *_equal_format;
const char *_not_equal_format;
const char *_less_format;
const char *_greater_equal_format;
const char *_less_equal_format;
const char *_greater_format;
const char *_overflow_format;
const char *_no_overflow_format;
// Public Methods
CondInterface(const char* equal, const char* equal_format,
const char* not_equal, const char* not_equal_format,
const char* less, const char* less_format,
const char* greater_equal, const char* greater_equal_format,
const char* less_equal, const char* less_equal_format,
const char* greater, const char* greater_format,
const char* overflow, const char* overflow_format,
const char* no_overflow, const char* no_overflow_format);
~CondInterface();
void dump();
void output(FILE *fp);
};
//------------------------------ConstructRule----------------------------------
class ConstructRule : public Form {
private:
public:
// Public Data
char *_expr; // String representing the match expression
char *_construct; // String representing C++ constructor code
// Public Methods
ConstructRule(char *cnstr);
~ConstructRule();
void dump();
void output(FILE *fp);
};
//==============================Shared=========================================
//------------------------------AttributeForm----------------------------------
class AttributeForm : public Form {
private:
// counters for unique instruction or operand ID
static int _insId; // user-defined machine instruction types
static int _opId; // user-defined operand types
int id; // hold type for this object
public:
// Public Data
char *_attrname; // Name of attribute
int _atype; // Either INS_ATTR or OP_ATTR
char *_attrdef; // C++ source which evaluates to constant
// Public Methods
AttributeForm(char *attr, int type, char *attrdef);
~AttributeForm();
// Dynamic type check
virtual AttributeForm *is_attribute() const;
int type() { return id;} // return this object's "id"
static const char* _ins_cost; // "ins_cost"
static const char* _op_cost; // "op_cost"
void dump(); // Debug printer
void output(FILE *fp); // Write output files
};
//------------------------------Component--------------------------------------
class Component : public Form {
private:
public:
// Public Data
const char *_name; // Name of this component
const char *_type; // Type of this component
int _usedef; // Value of component
// Public Methods
Component(const char *name, const char *type, int usedef);
~Component();
// Return 'true' if this use def info equals the parameter
bool is(int use_def_kill_enum) const;
// Return 'true' if this use def info is a superset of parameter
bool isa(int use_def_kill_enum) const;
int promote_use_def_info(int new_use_def);
const char *base_type(FormDict &globals);
// Form::DataType is_base_constant(FormDict &globals);
void dump(); // Debug printer
void output(FILE *fp); // Write to output files
const char* getUsedefName();
public:
// Implementation depends upon working bit intersection and union.
enum use_def_enum {
INVALID = 0x0,
USE = 0x1,
DEF = 0x2, USE_DEF = 0x3,
KILL = 0x4, USE_KILL = 0x5,
SYNTHETIC = 0x8,
TEMP = USE | SYNTHETIC,
CALL = 0x10
};
};
//------------------------------MatchNode--------------------------------------
class MatchNode : public Form {
private:
public:
// Public Data
const char *_result; // The name of the output of this node
const char *_name; // The name that appeared in the match rule
const char *_opType; // The Operation/Type matched
MatchNode *_lChild; // Left child in expression tree
MatchNode *_rChild; // Right child in expression tree
int _numleaves; // Sum of numleaves for all direct children
ArchDesc &_AD; // Reference to ArchDesc object
char *_internalop; // String representing internal operand
int _commutative_id; // id of commutative operation
// Public Methods
MatchNode(ArchDesc &ad, const char *result = 0, const char *expr = 0,
const char *opType=0, MatchNode *lChild=NULL,
MatchNode *rChild=NULL);
MatchNode(ArchDesc &ad, MatchNode& mNode); // Shallow copy constructor;
MatchNode(ArchDesc &ad, MatchNode& mNode, int clone); // Construct clone
~MatchNode();
// return 0 if not found:
// return 1 if found and position is incremented by operand offset in rule
bool find_name(const char *str, int &position) const;
bool find_type(const char *str, int &position) const;
virtual void append_components(FormDict& locals, ComponentList& components,
bool def_flag = false) const;
bool base_operand(uint &position, FormDict &globals,
const char * &result, const char * &name,
const char * &opType) const;
// recursive count on operands
uint num_consts(FormDict &globals) const;
uint num_const_ptrs(FormDict &globals) const;
// recursive count of constants with specified type
uint num_consts(FormDict &globals, Form::DataType type) const;
// uint num_consts() const; // Local inspection only
int needs_ideal_memory_edge(FormDict &globals) const;
int needs_base_oop_edge() const;
// Help build instruction predicates. Search for operand names.
void count_instr_names( Dict &names );
int build_instr_pred( char *buf, const char *name, int cnt );
void build_internalop( );
// Return the name of the operands associated with reducing to this operand:
// The result type, plus the left and right sides of the binary match
// Return NULL if there is no left or right hand side
bool sets_result() const; // rule "Set"s result of match
const char *reduce_right(FormDict &globals) const;
const char *reduce_left (FormDict &globals) const;
// Recursive version of check in MatchRule
int cisc_spill_match(FormDict& globals, RegisterForm* registers,
MatchNode* mRule2, const char* &operand,
const char* &reg_type);
int cisc_spill_merge(int left_result, int right_result);
virtual bool equivalent(FormDict& globals, MatchNode* mNode2);
void count_commutative_op(int& count);
void swap_commutative_op(bool atroot, int count);
void dump();
void output(FILE *fp);
};
//------------------------------MatchRule--------------------------------------
class MatchRule : public MatchNode {
private:
public:
// Public Data
const char *_machType; // Machine type index
int _depth; // Expression tree depth
char *_construct; // String representing C++ constructor code
int _numchilds; // Number of direct children
MatchRule *_next; // Pointer to next match rule
// Public Methods
MatchRule(ArchDesc &ad);
MatchRule(ArchDesc &ad, MatchRule* mRule); // Shallow copy constructor;
MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char* construct, int numleaves);
~MatchRule();
virtual void append_components(FormDict& locals, ComponentList& components, bool def_flag = false) const;
// Recursive call on all operands' match rules in my match rule.
bool base_operand(uint &position, FormDict &globals,
const char * &result, const char * &name,
const char * &opType) const;
bool is_base_register(FormDict &globals) const;
Form::DataType is_base_constant(FormDict &globals) const;
bool is_chain_rule(FormDict &globals) const;
int is_ideal_copy() const;
int is_expensive() const; // node matches ideal 'CosD'
bool is_ideal_if() const; // node matches ideal 'If'
bool is_ideal_fastlock() const; // node matches ideal 'FastLock'
bool is_ideal_jump() const; // node matches ideal 'Jump'
bool is_ideal_membar() const; // node matches ideal 'MemBarXXX'
bool is_ideal_loadPC() const; // node matches ideal 'LoadPC'
bool is_ideal_box() const; // node matches ideal 'Box'
bool is_ideal_goto() const; // node matches ideal 'Goto'
bool is_ideal_loopEnd() const; // node matches ideal 'LoopEnd'
bool is_ideal_bool() const; // node matches ideal 'Bool'
bool is_vector() const; // vector instruction
Form::DataType is_ideal_load() const;// node matches ideal 'LoadXNode'
// Should antidep checks be disabled for this rule
// See definition of MatchRule::skip_antidep_check
bool skip_antidep_check() const;
Form::DataType is_ideal_store() const;// node matches ideal 'StoreXNode'
// Check if 'mRule2' is a cisc-spill variant of this MatchRule
int matchrule_cisc_spill_match(FormDict &globals, RegisterForm* registers,
MatchRule* mRule2, const char* &operand,
const char* &reg_type);
// Check if 'mRule2' is equivalent to this MatchRule
virtual bool equivalent(FormDict& globals, MatchNode* mRule2);
void matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt);
void dump();
void output_short(FILE *fp);
void output(FILE *fp);
};
//------------------------------Attribute--------------------------------------
class Attribute : public Form {
private:
public:
// Public Data
char *_ident; // Name of predefined attribute
char *_val; // C++ source which evaluates to constant
int _atype; // Either INS_ATTR or OP_ATTR
int int_val(ArchDesc &ad); // Return atoi(_val), ensuring syntax.
// Public Methods
Attribute(char *id, char* val, int type);
~Attribute();
void dump();
void output(FILE *fp);
};
//------------------------------FormatRule-------------------------------------
class FormatRule : public Form {
private:
public:
// Public Data
// There is an entry in _strings, perhaps NULL, that precedes each _rep_vars
NameList _strings; // Strings passed through to tty->print
NameList _rep_vars; // replacement variables
char *_temp; // String representing the assembly code
// Public Methods
FormatRule(char *temp);
~FormatRule();
void dump();
void output(FILE *fp);
};
#endif // SHARE_VM_ADLC_FORMSSEL_HPP