blob: 303106b0e7ae062e82a3c24a38c4ebf754cab927 [file] [log] [blame]
//
// Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
//
// archDesc.cpp - Internal format for architecture definition
#include "adlc.hpp"
static FILE *errfile = stderr;
//--------------------------- utility functions -----------------------------
inline char toUpper(char lower) {
return (('a' <= lower && lower <= 'z') ? ((char) (lower + ('A'-'a'))) : lower);
}
char *toUpper(const char *str) {
char *upper = new char[strlen(str)+1];
char *result = upper;
const char *end = str + strlen(str);
for (; str < end; ++str, ++upper) {
*upper = toUpper(*str);
}
*upper = '\0';
return result;
}
// Utilities to characterize effect statements
static bool is_def(int usedef) {
switch(usedef) {
case Component::DEF:
case Component::USE_DEF: return true; break;
}
return false;
}
static bool is_use(int usedef) {
switch(usedef) {
case Component::USE:
case Component::USE_DEF:
case Component::USE_KILL: return true; break;
}
return false;
}
static bool is_kill(int usedef) {
switch(usedef) {
case Component::KILL:
case Component::USE_KILL: return true; break;
}
return false;
}
//---------------------------ChainList Methods-------------------------------
ChainList::ChainList() {
}
void ChainList::insert(const char *name, const char *cost, const char *rule) {
_name.addName(name);
_cost.addName(cost);
_rule.addName(rule);
}
bool ChainList::search(const char *name) {
return _name.search(name);
}
void ChainList::reset() {
_name.reset();
_cost.reset();
_rule.reset();
}
bool ChainList::iter(const char * &name, const char * &cost, const char * &rule) {
bool notDone = false;
const char *n = _name.iter();
const char *c = _cost.iter();
const char *r = _rule.iter();
if (n && c && r) {
notDone = true;
name = n;
cost = c;
rule = r;
}
return notDone;
}
void ChainList::dump() {
output(stderr);
}
void ChainList::output(FILE *fp) {
fprintf(fp, "\nChain Rules: output resets iterator\n");
const char *cost = NULL;
const char *name = NULL;
const char *rule = NULL;
bool chains_exist = false;
for(reset(); (iter(name,cost,rule)) == true; ) {
fprintf(fp, "Chain to <%s> at cost #%s using %s_rule\n",name, cost ? cost : "0", rule);
// // Check for transitive chain rules
// Form *form = (Form *)_globalNames[rule];
// if (form->is_instruction()) {
// // chain_rule(fp, indent, name, cost, rule);
// chain_rule(fp, indent, name, cost, rule);
// }
}
reset();
if( ! chains_exist ) {
fprintf(fp, "No entries in this ChainList\n");
}
}
//---------------------------MatchList Methods-------------------------------
bool MatchList::search(const char *opc, const char *res, const char *lch,
const char *rch, Predicate *pr) {
bool tmp = false;
if ((res == _resultStr) || (res && _resultStr && !strcmp(res, _resultStr))) {
if ((lch == _lchild) || (lch && _lchild && !strcmp(lch, _lchild))) {
if ((rch == _rchild) || (rch && _rchild && !strcmp(rch, _rchild))) {
char * predStr = get_pred();
char * prStr = pr?pr->_pred:NULL;
if (ADLParser::equivalent_expressions(prStr, predStr)) {
return true;
}
}
}
}
if (_next) {
tmp = _next->search(opc, res, lch, rch, pr);
}
return tmp;
}
void MatchList::dump() {
output(stderr);
}
void MatchList::output(FILE *fp) {
fprintf(fp, "\nMatchList output is Unimplemented();\n");
}
//---------------------------ArchDesc Constructor and Destructor-------------
ArchDesc::ArchDesc()
: _globalNames(cmpstr,hashstr, Form::arena),
_globalDefs(cmpstr,hashstr, Form::arena),
_preproc_table(cmpstr,hashstr, Form::arena),
_idealIndex(cmpstr,hashstr, Form::arena),
_internalOps(cmpstr,hashstr, Form::arena),
_internalMatch(cmpstr,hashstr, Form::arena),
_chainRules(cmpstr,hashstr, Form::arena),
_cisc_spill_operand(NULL),
_needs_clone_jvms(false) {
// Initialize the opcode to MatchList table with NULLs
for( int i=0; i<_last_opcode; ++i ) {
_mlistab[i] = NULL;
}
// Set-up the global tables
initKeywords(_globalNames); // Initialize the Name Table with keywords
// Prime user-defined types with predefined types: Set, RegI, RegF, ...
initBaseOpTypes();
// Initialize flags & counters
_TotalLines = 0;
_no_output = 0;
_quiet_mode = 0;
_disable_warnings = 0;
_dfa_debug = 0;
_dfa_small = 0;
_adl_debug = 0;
_adlocation_debug = 0;
_internalOpCounter = 0;
_cisc_spill_debug = false;
_short_branch_debug = false;
// Initialize match rule flags
for (int i = 0; i < _last_opcode; i++) {
_has_match_rule[i] = false;
}
// Error/Warning Counts
_syntax_errs = 0;
_semantic_errs = 0;
_warnings = 0;
_internal_errs = 0;
// Initialize I/O Files
_ADL_file._name = NULL; _ADL_file._fp = NULL;
// Machine dependent output files
_DFA_file._name = NULL; _DFA_file._fp = NULL;
_HPP_file._name = NULL; _HPP_file._fp = NULL;
_CPP_file._name = NULL; _CPP_file._fp = NULL;
_bug_file._name = "bugs.out"; _bug_file._fp = NULL;
// Initialize Register & Pipeline Form Pointers
_register = NULL;
_encode = NULL;
_pipeline = NULL;
_frame = NULL;
}
ArchDesc::~ArchDesc() {
// Clean-up and quit
}
//---------------------------ArchDesc methods: Public ----------------------
// Store forms according to type
void ArchDesc::addForm(PreHeaderForm *ptr) { _pre_header.addForm(ptr); };
void ArchDesc::addForm(HeaderForm *ptr) { _header.addForm(ptr); };
void ArchDesc::addForm(SourceForm *ptr) { _source.addForm(ptr); };
void ArchDesc::addForm(EncodeForm *ptr) { _encode = ptr; };
void ArchDesc::addForm(InstructForm *ptr) { _instructions.addForm(ptr); };
void ArchDesc::addForm(MachNodeForm *ptr) { _machnodes.addForm(ptr); };
void ArchDesc::addForm(OperandForm *ptr) { _operands.addForm(ptr); };
void ArchDesc::addForm(OpClassForm *ptr) { _opclass.addForm(ptr); };
void ArchDesc::addForm(AttributeForm *ptr) { _attributes.addForm(ptr); };
void ArchDesc::addForm(RegisterForm *ptr) { _register = ptr; };
void ArchDesc::addForm(FrameForm *ptr) { _frame = ptr; };
void ArchDesc::addForm(PipelineForm *ptr) { _pipeline = ptr; };
// Build MatchList array and construct MatchLists
void ArchDesc::generateMatchLists() {
// Call inspection routines to populate array
inspectOperands();
inspectInstructions();
}
// Build MatchList structures for operands
void ArchDesc::inspectOperands() {
// Iterate through all operands
_operands.reset();
OperandForm *op;
for( ; (op = (OperandForm*)_operands.iter()) != NULL;) {
// Construct list of top-level operands (components)
op->build_components();
// Ensure that match field is defined.
if ( op->_matrule == NULL ) continue;
// Type check match rules
check_optype(op->_matrule);
// Construct chain rules
build_chain_rule(op);
MatchRule &mrule = *op->_matrule;
Predicate *pred = op->_predicate;
// Grab the machine type of the operand
const char *rootOp = op->_ident;
mrule._machType = rootOp;
// Check for special cases
if (strcmp(rootOp,"Universe")==0) continue;
if (strcmp(rootOp,"label")==0) continue;
// !!!!! !!!!!
assert( strcmp(rootOp,"sReg") != 0, "Disable untyped 'sReg'");
if (strcmp(rootOp,"sRegI")==0) continue;
if (strcmp(rootOp,"sRegP")==0) continue;
if (strcmp(rootOp,"sRegF")==0) continue;
if (strcmp(rootOp,"sRegD")==0) continue;
if (strcmp(rootOp,"sRegL")==0) continue;
// Cost for this match
const char *costStr = op->cost();
const char *defaultCost =
((AttributeForm*)_globalNames[AttributeForm::_op_cost])->_attrdef;
const char *cost = costStr? costStr : defaultCost;
// Find result type for match.
const char *result = op->reduce_result();
bool has_root = false;
// Construct a MatchList for this entry
buildMatchList(op->_matrule, result, rootOp, pred, cost);
}
}
// Build MatchList structures for instructions
void ArchDesc::inspectInstructions() {
// Iterate through all instructions
_instructions.reset();
InstructForm *instr;
for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
// Construct list of top-level operands (components)
instr->build_components();
// Ensure that match field is defined.
if ( instr->_matrule == NULL ) continue;
MatchRule &mrule = *instr->_matrule;
Predicate *pred = instr->build_predicate();
// Grab the machine type of the operand
const char *rootOp = instr->_ident;
mrule._machType = rootOp;
// Cost for this match
const char *costStr = instr->cost();
const char *defaultCost =
((AttributeForm*)_globalNames[AttributeForm::_ins_cost])->_attrdef;
const char *cost = costStr? costStr : defaultCost;
// Find result type for match
const char *result = instr->reduce_result();
if ( instr->is_ideal_branch() && instr->label_position() == -1 ||
!instr->is_ideal_branch() && instr->label_position() != -1) {
syntax_err(instr->_linenum, "%s: Only branches to a label are supported\n", rootOp);
}
Attribute *attr = instr->_attribs;
while (attr != NULL) {
if (strcmp(attr->_ident,"ins_short_branch") == 0 &&
attr->int_val(*this) != 0) {
if (!instr->is_ideal_branch() || instr->label_position() == -1) {
syntax_err(instr->_linenum, "%s: Only short branch to a label is supported\n", rootOp);
}
instr->set_short_branch(true);
} else if (strcmp(attr->_ident,"ins_alignment") == 0 &&
attr->int_val(*this) != 0) {
instr->set_alignment(attr->int_val(*this));
}
attr = (Attribute *)attr->_next;
}
if (!instr->is_short_branch()) {
buildMatchList(instr->_matrule, result, mrule._machType, pred, cost);
}
}
}
static int setsResult(MatchRule &mrule) {
if (strcmp(mrule._name,"Set") == 0) return 1;
return 0;
}
const char *ArchDesc::getMatchListIndex(MatchRule &mrule) {
if (setsResult(mrule)) {
// right child
return mrule._rChild->_opType;
} else {
// first entry
return mrule._opType;
}
}
//------------------------------result of reduction----------------------------
//------------------------------left reduction---------------------------------
// Return the left reduction associated with an internal name
const char *ArchDesc::reduceLeft(char *internalName) {
const char *left = NULL;
MatchNode *mnode = (MatchNode*)_internalMatch[internalName];
if (mnode->_lChild) {
mnode = mnode->_lChild;
left = mnode->_internalop ? mnode->_internalop : mnode->_opType;
}
return left;
}
//------------------------------right reduction--------------------------------
const char *ArchDesc::reduceRight(char *internalName) {
const char *right = NULL;
MatchNode *mnode = (MatchNode*)_internalMatch[internalName];
if (mnode->_rChild) {
mnode = mnode->_rChild;
right = mnode->_internalop ? mnode->_internalop : mnode->_opType;
}
return right;
}
//------------------------------check_optype-----------------------------------
void ArchDesc::check_optype(MatchRule *mrule) {
MatchRule *rule = mrule;
// !!!!!
// // Cycle through the list of match rules
// while(mrule) {
// // Check for a filled in type field
// if (mrule->_opType == NULL) {
// const Form *form = operands[_result];
// OpClassForm *opcForm = form ? form->is_opclass() : NULL;
// assert(opcForm != NULL, "Match Rule contains invalid operand name.");
// }
// char *opType = opcForm->_ident;
// }
}
//------------------------------add_chain_rule_entry--------------------------
void ArchDesc::add_chain_rule_entry(const char *src, const char *cost,
const char *result) {
// Look-up the operation in chain rule table
ChainList *lst = (ChainList *)_chainRules[src];
if (lst == NULL) {
lst = new ChainList();
_chainRules.Insert(src, lst);
}
if (!lst->search(result)) {
if (cost == NULL) {
cost = ((AttributeForm*)_globalNames[AttributeForm::_op_cost])->_attrdef;
}
lst->insert(result, cost, result);
}
}
//------------------------------build_chain_rule-------------------------------
void ArchDesc::build_chain_rule(OperandForm *oper) {
MatchRule *rule;
// Check for chain rules here
// If this is only a chain rule
if ((oper->_matrule) && (oper->_matrule->_lChild == NULL) &&
(oper->_matrule->_rChild == NULL)) {
{
const Form *form = _globalNames[oper->_matrule->_opType];
if ((form) && form->is_operand() &&
(form->ideal_only() == false)) {
add_chain_rule_entry(oper->_matrule->_opType, oper->cost(), oper->_ident);
}
}
// Check for additional chain rules
if (oper->_matrule->_next) {
rule = oper->_matrule;
do {
rule = rule->_next;
// Any extra match rules after the first must be chain rules
const Form *form = _globalNames[rule->_opType];
if ((form) && form->is_operand() &&
(form->ideal_only() == false)) {
add_chain_rule_entry(rule->_opType, oper->cost(), oper->_ident);
}
} while(rule->_next != NULL);
}
}
else if ((oper->_matrule) && (oper->_matrule->_next)) {
// Regardles of whether the first matchrule is a chain rule, check the list
rule = oper->_matrule;
do {
rule = rule->_next;
// Any extra match rules after the first must be chain rules
const Form *form = _globalNames[rule->_opType];
if ((form) && form->is_operand() &&
(form->ideal_only() == false)) {
assert( oper->cost(), "This case expects NULL cost, not default cost");
add_chain_rule_entry(rule->_opType, oper->cost(), oper->_ident);
}
} while(rule->_next != NULL);
}
}
//------------------------------buildMatchList---------------------------------
// operands and instructions provide the result
void ArchDesc::buildMatchList(MatchRule *mrule, const char *resultStr,
const char *rootOp, Predicate *pred,
const char *cost) {
const char *leftstr, *rightstr;
MatchNode *mnode;
leftstr = rightstr = NULL;
// Check for chain rule, and do not generate a match list for it
if ( mrule->is_chain_rule(_globalNames) ) {
return;
}
// Identify index position among ideal operands
intptr_t index = _last_opcode;
const char *indexStr = getMatchListIndex(*mrule);
index = (intptr_t)_idealIndex[indexStr];
if (index == 0) {
fprintf(stderr, "Ideal node missing: %s\n", indexStr);
assert(index != 0, "Failed lookup of ideal node\n");
}
// Check that this will be placed appropriately in the DFA
if (index >= _last_opcode) {
fprintf(stderr, "Invalid match rule %s <-- ( %s )\n",
resultStr ? resultStr : " ",
rootOp ? rootOp : " ");
assert(index < _last_opcode, "Matching item not in ideal graph\n");
return;
}
// Walk the MatchRule, generating MatchList entries for each level
// of the rule (each nesting of parentheses)
// Check for "Set"
if (!strcmp(mrule->_opType, "Set")) {
mnode = mrule->_rChild;
buildMList(mnode, rootOp, resultStr, pred, cost);
return;
}
// Build MatchLists for children
// Check each child for an internal operand name, and use that name
// for the parent's matchlist entry if it exists
mnode = mrule->_lChild;
if (mnode) {
buildMList(mnode, NULL, NULL, NULL, NULL);
leftstr = mnode->_internalop ? mnode->_internalop : mnode->_opType;
}
mnode = mrule->_rChild;
if (mnode) {
buildMList(mnode, NULL, NULL, NULL, NULL);
rightstr = mnode->_internalop ? mnode->_internalop : mnode->_opType;
}
// Search for an identical matchlist entry already on the list
if ((_mlistab[index] == NULL) ||
(_mlistab[index] &&
!_mlistab[index]->search(rootOp, resultStr, leftstr, rightstr, pred))) {
// Place this match rule at front of list
MatchList *mList =
new MatchList(_mlistab[index], pred, cost,
rootOp, resultStr, leftstr, rightstr);
_mlistab[index] = mList;
}
}
// Recursive call for construction of match lists
void ArchDesc::buildMList(MatchNode *node, const char *rootOp,
const char *resultOp, Predicate *pred,
const char *cost) {
const char *leftstr, *rightstr;
const char *resultop;
const char *opcode;
MatchNode *mnode;
Form *form;
leftstr = rightstr = NULL;
// Do not process leaves of the Match Tree if they are not ideal
if ((node) && (node->_lChild == NULL) && (node->_rChild == NULL) &&
((form = (Form *)_globalNames[node->_opType]) != NULL) &&
(!form->ideal_only())) {
return;
}
// Identify index position among ideal operands
intptr_t index = _last_opcode;
const char *indexStr = node ? node->_opType : (char *) " ";
index = (intptr_t)_idealIndex[indexStr];
if (index == 0) {
fprintf(stderr, "error: operand \"%s\" not found\n", indexStr);
assert(0, "fatal error");
}
// Build MatchLists for children
// Check each child for an internal operand name, and use that name
// for the parent's matchlist entry if it exists
mnode = node->_lChild;
if (mnode) {
buildMList(mnode, NULL, NULL, NULL, NULL);
leftstr = mnode->_internalop ? mnode->_internalop : mnode->_opType;
}
mnode = node->_rChild;
if (mnode) {
buildMList(mnode, NULL, NULL, NULL, NULL);
rightstr = mnode->_internalop ? mnode->_internalop : mnode->_opType;
}
// Grab the string for the opcode of this list entry
if (rootOp == NULL) {
opcode = (node->_internalop) ? node->_internalop : node->_opType;
} else {
opcode = rootOp;
}
// Grab the string for the result of this list entry
if (resultOp == NULL) {
resultop = (node->_internalop) ? node->_internalop : node->_opType;
}
else resultop = resultOp;
// Search for an identical matchlist entry already on the list
if ((_mlistab[index] == NULL) || (_mlistab[index] &&
!_mlistab[index]->search(opcode, resultop, leftstr, rightstr, pred))) {
// Place this match rule at front of list
MatchList *mList =
new MatchList(_mlistab[index],pred,cost,
opcode, resultop, leftstr, rightstr);
_mlistab[index] = mList;
}
}
// Count number of OperandForms defined
int ArchDesc::operandFormCount() {
// Only interested in ones with non-NULL match rule
int count = 0; _operands.reset();
OperandForm *cur;
for( ; (cur = (OperandForm*)_operands.iter()) != NULL; ) {
if (cur->_matrule != NULL) ++count;
};
return count;
}
// Count number of OpClassForms defined
int ArchDesc::opclassFormCount() {
// Only interested in ones with non-NULL match rule
int count = 0; _operands.reset();
OpClassForm *cur;
for( ; (cur = (OpClassForm*)_opclass.iter()) != NULL; ) {
++count;
};
return count;
}
// Count number of InstructForms defined
int ArchDesc::instructFormCount() {
// Only interested in ones with non-NULL match rule
int count = 0; _instructions.reset();
InstructForm *cur;
for( ; (cur = (InstructForm*)_instructions.iter()) != NULL; ) {
if (cur->_matrule != NULL) ++count;
};
return count;
}
//------------------------------get_preproc_def--------------------------------
// Return the textual binding for a given CPP flag name.
// Return NULL if there is no binding, or it has been #undef-ed.
char* ArchDesc::get_preproc_def(const char* flag) {
// In case of syntax errors, flag may take the value NULL.
SourceForm* deff = NULL;
if (flag != NULL)
deff = (SourceForm*) _preproc_table[flag];
return (deff == NULL) ? NULL : deff->_code;
}
//------------------------------set_preproc_def--------------------------------
// Change or create a textual binding for a given CPP flag name.
// Giving NULL means the flag name is to be #undef-ed.
// In any case, _preproc_list collects all names either #defined or #undef-ed.
void ArchDesc::set_preproc_def(const char* flag, const char* def) {
SourceForm* deff = (SourceForm*) _preproc_table[flag];
if (deff == NULL) {
deff = new SourceForm(NULL);
_preproc_table.Insert(flag, deff);
_preproc_list.addName(flag); // this supports iteration
}
deff->_code = (char*) def;
}
bool ArchDesc::verify() {
if (_register)
assert( _register->verify(), "Register declarations failed verification");
if (!_quiet_mode)
fprintf(stderr,"\n");
// fprintf(stderr,"---------------------------- Verify Operands ---------------\n");
// _operands.verify();
// fprintf(stderr,"\n");
// fprintf(stderr,"---------------------------- Verify Operand Classes --------\n");
// _opclass.verify();
// fprintf(stderr,"\n");
// fprintf(stderr,"---------------------------- Verify Attributes ------------\n");
// _attributes.verify();
// fprintf(stderr,"\n");
if (!_quiet_mode)
fprintf(stderr,"---------------------------- Verify Instructions ----------------------------\n");
_instructions.verify();
if (!_quiet_mode)
fprintf(stderr,"\n");
// if ( _encode ) {
// fprintf(stderr,"---------------------------- Verify Encodings --------------\n");
// _encode->verify();
// }
//if (_pipeline) _pipeline->verify();
return true;
}
void ArchDesc::dump() {
_pre_header.dump();
_header.dump();
_source.dump();
if (_register) _register->dump();
fprintf(stderr,"\n");
fprintf(stderr,"------------------ Dump Operands ---------------------\n");
_operands.dump();
fprintf(stderr,"\n");
fprintf(stderr,"------------------ Dump Operand Classes --------------\n");
_opclass.dump();
fprintf(stderr,"\n");
fprintf(stderr,"------------------ Dump Attributes ------------------\n");
_attributes.dump();
fprintf(stderr,"\n");
fprintf(stderr,"------------------ Dump Instructions -----------------\n");
_instructions.dump();
if ( _encode ) {
fprintf(stderr,"------------------ Dump Encodings --------------------\n");
_encode->dump();
}
if (_pipeline) _pipeline->dump();
}
//------------------------------init_keywords----------------------------------
// Load the kewords into the global name table
void ArchDesc::initKeywords(FormDict& names) {
// Insert keyword strings into Global Name Table. Keywords have a NULL value
// field for quick easy identification when checking identifiers.
names.Insert("instruct", NULL);
names.Insert("operand", NULL);
names.Insert("attribute", NULL);
names.Insert("source", NULL);
names.Insert("register", NULL);
names.Insert("pipeline", NULL);
names.Insert("constraint", NULL);
names.Insert("predicate", NULL);
names.Insert("encode", NULL);
names.Insert("enc_class", NULL);
names.Insert("interface", NULL);
names.Insert("opcode", NULL);
names.Insert("ins_encode", NULL);
names.Insert("match", NULL);
names.Insert("effect", NULL);
names.Insert("expand", NULL);
names.Insert("rewrite", NULL);
names.Insert("reg_def", NULL);
names.Insert("reg_class", NULL);
names.Insert("alloc_class", NULL);
names.Insert("resource", NULL);
names.Insert("pipe_class", NULL);
names.Insert("pipe_desc", NULL);
}
//------------------------------internal_err----------------------------------
// Issue a parser error message, and skip to the end of the current line
void ArchDesc::internal_err(const char *fmt, ...) {
va_list args;
va_start(args, fmt);
_internal_errs += emit_msg(0, INTERNAL_ERR, 0, fmt, args);
va_end(args);
_no_output = 1;
}
//------------------------------syntax_err----------------------------------
// Issue a parser error message, and skip to the end of the current line
void ArchDesc::syntax_err(int lineno, const char *fmt, ...) {
va_list args;
va_start(args, fmt);
_internal_errs += emit_msg(0, SYNERR, lineno, fmt, args);
va_end(args);
_no_output = 1;
}
//------------------------------emit_msg---------------------------------------
// Emit a user message, typically a warning or error
int ArchDesc::emit_msg(int quiet, int flag, int line, const char *fmt,
va_list args) {
static int last_lineno = -1;
int i;
const char *pref;
switch(flag) {
case 0: pref = "Warning: "; break;
case 1: pref = "Syntax Error: "; break;
case 2: pref = "Semantic Error: "; break;
case 3: pref = "Internal Error: "; break;
default: assert(0, ""); break;
}
if (line == last_lineno) return 0;
last_lineno = line;
if (!quiet) { /* no output if in quiet mode */
i = fprintf(errfile, "%s(%d) ", _ADL_file._name, line);
while (i++ <= 15) fputc(' ', errfile);
fprintf(errfile, "%-8s:", pref);
vfprintf(errfile, fmt, args);
fprintf(errfile, "\n");
fflush(errfile);
}
return 1;
}
// ---------------------------------------------------------------------------
//--------Utilities to build mappings for machine registers ------------------
// ---------------------------------------------------------------------------
// Construct the name of the register mask.
static const char *getRegMask(const char *reg_class_name) {
if( reg_class_name == NULL ) return "RegMask::Empty";
if (strcmp(reg_class_name,"Universe")==0) {
return "RegMask::Empty";
} else if (strcmp(reg_class_name,"stack_slots")==0) {
return "(Compile::current()->FIRST_STACK_mask())";
} else {
char *rc_name = toUpper(reg_class_name);
const char *mask = "_mask";
int length = (int)strlen(rc_name) + (int)strlen(mask) + 5;
char *regMask = new char[length];
sprintf(regMask,"%s%s()", rc_name, mask);
delete[] rc_name;
return regMask;
}
}
// Convert a register class name to its register mask.
const char *ArchDesc::reg_class_to_reg_mask(const char *rc_name) {
const char *reg_mask = "RegMask::Empty";
if( _register ) {
RegClass *reg_class = _register->getRegClass(rc_name);
if (reg_class == NULL) {
syntax_err(0, "Use of an undefined register class %s", rc_name);
return reg_mask;
}
// Construct the name of the register mask.
reg_mask = getRegMask(rc_name);
}
return reg_mask;
}
// Obtain the name of the RegMask for an OperandForm
const char *ArchDesc::reg_mask(OperandForm &opForm) {
const char *regMask = "RegMask::Empty";
// Check constraints on result's register class
const char *result_class = opForm.constrained_reg_class();
if (result_class == NULL) {
opForm.dump();
syntax_err(opForm._linenum,
"Use of an undefined result class for operand: %s",
opForm._ident);
abort();
}
regMask = reg_class_to_reg_mask( result_class );
return regMask;
}
// Obtain the name of the RegMask for an InstructForm
const char *ArchDesc::reg_mask(InstructForm &inForm) {
const char *result = inForm.reduce_result();
if (result == NULL) {
syntax_err(inForm._linenum,
"Did not find result operand or RegMask"
" for this instruction: %s",
inForm._ident);
abort();
}
// Instructions producing 'Universe' use RegMask::Empty
if( strcmp(result,"Universe")==0 ) {
return "RegMask::Empty";
}
// Lookup this result operand and get its register class
Form *form = (Form*)_globalNames[result];
if (form == NULL) {
syntax_err(inForm._linenum,
"Did not find result operand for result: %s", result);
abort();
}
OperandForm *oper = form->is_operand();
if (oper == NULL) {
syntax_err(inForm._linenum, "Form is not an OperandForm:");
form->dump();
abort();
}
return reg_mask( *oper );
}
// Obtain the STACK_OR_reg_mask name for an OperandForm
char *ArchDesc::stack_or_reg_mask(OperandForm &opForm) {
// name of cisc_spillable version
const char *reg_mask_name = reg_mask(opForm);
if (reg_mask_name == NULL) {
syntax_err(opForm._linenum,
"Did not find reg_mask for opForm: %s",
opForm._ident);
abort();
}
const char *stack_or = "STACK_OR_";
int length = (int)strlen(stack_or) + (int)strlen(reg_mask_name) + 1;
char *result = new char[length];
sprintf(result,"%s%s", stack_or, reg_mask_name);
return result;
}
// Record that the register class must generate a stack_or_reg_mask
void ArchDesc::set_stack_or_reg(const char *reg_class_name) {
if( _register ) {
RegClass *reg_class = _register->getRegClass(reg_class_name);
reg_class->set_stack_version(true);
}
}
// Return the type signature for the ideal operation
const char *ArchDesc::getIdealType(const char *idealOp) {
// Find last character in idealOp, it specifies the type
char last_char = 0;
const char *ptr = idealOp;
for (; *ptr != '\0'; ++ptr) {
last_char = *ptr;
}
// Match Vector types.
if (strncmp(idealOp, "Vec",3)==0) {
switch(last_char) {
case 'S': return "TypeVect::VECTS";
case 'D': return "TypeVect::VECTD";
case 'X': return "TypeVect::VECTX";
case 'Y': return "TypeVect::VECTY";
default:
internal_err("Vector type %s with unrecognized type\n",idealOp);
}
}
// !!!!!
switch(last_char) {
case 'I': return "TypeInt::INT";
case 'P': return "TypePtr::BOTTOM";
case 'N': return "TypeNarrowOop::BOTTOM";
case 'F': return "Type::FLOAT";
case 'D': return "Type::DOUBLE";
case 'L': return "TypeLong::LONG";
case 's': return "TypeInt::CC /*flags*/";
default:
return NULL;
// !!!!!
// internal_err("Ideal type %s with unrecognized type\n",idealOp);
break;
}
return NULL;
}
OperandForm *ArchDesc::constructOperand(const char *ident,
bool ideal_only) {
OperandForm *opForm = new OperandForm(ident, ideal_only);
_globalNames.Insert(ident, opForm);
addForm(opForm);
return opForm;
}
// Import predefined base types: Set = 1, RegI, RegP, ...
void ArchDesc::initBaseOpTypes() {
// Create OperandForm and assign type for each opcode.
for (int i = 1; i < _last_machine_leaf; ++i) {
char *ident = (char *)NodeClassNames[i];
constructOperand(ident, true);
}
// Create InstructForm and assign type for each ideal instruction.
for ( int j = _last_machine_leaf+1; j < _last_opcode; ++j) {
char *ident = (char *)NodeClassNames[j];
if(!strcmp(ident, "ConI") || !strcmp(ident, "ConP") ||
!strcmp(ident, "ConN") || !strcmp(ident, "ConNKlass") ||
!strcmp(ident, "ConF") || !strcmp(ident, "ConD") ||
!strcmp(ident, "ConL") || !strcmp(ident, "Con" ) ||
!strcmp(ident, "Bool") ) {
constructOperand(ident, true);
}
else {
InstructForm *insForm = new InstructForm(ident, true);
// insForm->_opcode = nextUserOpType(ident);
_globalNames.Insert(ident,insForm);
addForm(insForm);
}
}
{ OperandForm *opForm;
// Create operand type "Universe" for return instructions.
const char *ident = "Universe";
opForm = constructOperand(ident, false);
// Create operand type "label" for branch targets
ident = "label";
opForm = constructOperand(ident, false);
// !!!!! Update - when adding a new sReg/stackSlot type
// Create operand types "sReg[IPFDL]" for stack slot registers
opForm = constructOperand("sRegI", false);
opForm->_constraint = new Constraint("ALLOC_IN_RC", "stack_slots");
opForm = constructOperand("sRegP", false);
opForm->_constraint = new Constraint("ALLOC_IN_RC", "stack_slots");
opForm = constructOperand("sRegF", false);
opForm->_constraint = new Constraint("ALLOC_IN_RC", "stack_slots");
opForm = constructOperand("sRegD", false);
opForm->_constraint = new Constraint("ALLOC_IN_RC", "stack_slots");
opForm = constructOperand("sRegL", false);
opForm->_constraint = new Constraint("ALLOC_IN_RC", "stack_slots");
// Create operand type "method" for call targets
ident = "method";
opForm = constructOperand(ident, false);
}
// Create Effect Forms for each of the legal effects
// USE, DEF, USE_DEF, KILL, USE_KILL
{
const char *ident = "USE";
Effect *eForm = new Effect(ident);
_globalNames.Insert(ident, eForm);
ident = "DEF";
eForm = new Effect(ident);
_globalNames.Insert(ident, eForm);
ident = "USE_DEF";
eForm = new Effect(ident);
_globalNames.Insert(ident, eForm);
ident = "KILL";
eForm = new Effect(ident);
_globalNames.Insert(ident, eForm);
ident = "USE_KILL";
eForm = new Effect(ident);
_globalNames.Insert(ident, eForm);
ident = "TEMP";
eForm = new Effect(ident);
_globalNames.Insert(ident, eForm);
ident = "CALL";
eForm = new Effect(ident);
_globalNames.Insert(ident, eForm);
}
//
// Build mapping from ideal names to ideal indices
int idealIndex = 0;
for (idealIndex = 1; idealIndex < _last_machine_leaf; ++idealIndex) {
const char *idealName = NodeClassNames[idealIndex];
_idealIndex.Insert((void*) idealName, (void*) (intptr_t) idealIndex);
}
for ( idealIndex = _last_machine_leaf+1;
idealIndex < _last_opcode; ++idealIndex) {
const char *idealName = NodeClassNames[idealIndex];
_idealIndex.Insert((void*) idealName, (void*) (intptr_t) idealIndex);
}
}
//---------------------------addSUNcopyright-------------------------------
// output SUN copyright info
void ArchDesc::addSunCopyright(char* legal, int size, FILE *fp) {
size_t count = fwrite(legal, 1, size, fp);
assert(count == (size_t) size, "copyright info truncated");
fprintf(fp,"\n");
fprintf(fp,"// Machine Generated File. Do Not Edit!\n");
fprintf(fp,"\n");
}
//---------------------------addIncludeGuardStart--------------------------
// output the start of an include guard.
void ArchDesc::addIncludeGuardStart(ADLFILE &adlfile, const char* guardString) {
// Build #include lines
fprintf(adlfile._fp, "\n");
fprintf(adlfile._fp, "#ifndef %s\n", guardString);
fprintf(adlfile._fp, "#define %s\n", guardString);
fprintf(adlfile._fp, "\n");
}
//---------------------------addIncludeGuardEnd--------------------------
// output the end of an include guard.
void ArchDesc::addIncludeGuardEnd(ADLFILE &adlfile, const char* guardString) {
// Build #include lines
fprintf(adlfile._fp, "\n");
fprintf(adlfile._fp, "#endif // %s\n", guardString);
}
//---------------------------addInclude--------------------------
// output the #include line for this file.
void ArchDesc::addInclude(ADLFILE &adlfile, const char* fileName) {
fprintf(adlfile._fp, "#include \"%s\"\n", fileName);
}
void ArchDesc::addInclude(ADLFILE &adlfile, const char* includeDir, const char* fileName) {
fprintf(adlfile._fp, "#include \"%s/%s\"\n", includeDir, fileName);
}
//---------------------------addPreprocessorChecks-----------------------------
// Output C preprocessor code to verify the backend compilation environment.
// The idea is to force code produced by "adlc -DHS64" to be compiled by a
// command of the form "CC ... -DHS64 ...", so that any #ifdefs in the source
// blocks select C code that is consistent with adlc's selections of AD code.
void ArchDesc::addPreprocessorChecks(FILE *fp) {
const char* flag;
_preproc_list.reset();
if (_preproc_list.count() > 0 && !_preproc_list.current_is_signal()) {
fprintf(fp, "// Check consistency of C++ compilation with ADLC options:\n");
}
for (_preproc_list.reset(); (flag = _preproc_list.iter()) != NULL; ) {
if (_preproc_list.current_is_signal()) break;
char* def = get_preproc_def(flag);
fprintf(fp, "// Check adlc ");
if (def)
fprintf(fp, "-D%s=%s\n", flag, def);
else fprintf(fp, "-U%s\n", flag);
fprintf(fp, "#%s %s\n",
def ? "ifndef" : "ifdef", flag);
fprintf(fp, "# error \"%s %s be defined\"\n",
flag, def ? "must" : "must not");
fprintf(fp, "#endif // %s\n", flag);
}
}
// Convert operand name into enum name
const char *ArchDesc::machOperEnum(const char *opName) {
return ArchDesc::getMachOperEnum(opName);
}
// Convert operand name into enum name
const char *ArchDesc::getMachOperEnum(const char *opName) {
return (opName ? toUpper(opName) : opName);
}
//---------------------------buildMustCloneMap-----------------------------
// Flag cases when machine needs cloned values or instructions
void ArchDesc::buildMustCloneMap(FILE *fp_hpp, FILE *fp_cpp) {
// Build external declarations for mappings
fprintf(fp_hpp, "// Mapping from machine-independent opcode to boolean\n");
fprintf(fp_hpp, "// Flag cases where machine needs cloned values or instructions\n");
fprintf(fp_hpp, "extern const char must_clone[];\n");
fprintf(fp_hpp, "\n");
// Build mapping from ideal names to ideal indices
fprintf(fp_cpp, "\n");
fprintf(fp_cpp, "// Mapping from machine-independent opcode to boolean\n");
fprintf(fp_cpp, "const char must_clone[] = {\n");
for (int idealIndex = 0; idealIndex < _last_opcode; ++idealIndex) {
int must_clone = 0;
const char *idealName = NodeClassNames[idealIndex];
// Previously selected constants for cloning
// !!!!!
// These are the current machine-dependent clones
if ( strcmp(idealName,"CmpI") == 0
|| strcmp(idealName,"CmpU") == 0
|| strcmp(idealName,"CmpP") == 0
|| strcmp(idealName,"CmpN") == 0
|| strcmp(idealName,"CmpL") == 0
|| strcmp(idealName,"CmpUL") == 0
|| strcmp(idealName,"CmpD") == 0
|| strcmp(idealName,"CmpF") == 0
|| strcmp(idealName,"FastLock") == 0
|| strcmp(idealName,"FastUnlock") == 0
|| strcmp(idealName,"OverflowAddI") == 0
|| strcmp(idealName,"OverflowAddL") == 0
|| strcmp(idealName,"OverflowSubI") == 0
|| strcmp(idealName,"OverflowSubL") == 0
|| strcmp(idealName,"OverflowMulI") == 0
|| strcmp(idealName,"OverflowMulL") == 0
|| strcmp(idealName,"Bool") == 0
|| strcmp(idealName,"Binary") == 0 ) {
// Removed ConI from the must_clone list. CPUs that cannot use
// large constants as immediates manifest the constant as an
// instruction. The must_clone flag prevents the constant from
// floating up out of loops.
must_clone = 1;
}
fprintf(fp_cpp, " %d%s // %s: %d\n", must_clone,
(idealIndex != (_last_opcode - 1)) ? "," : " // no trailing comma",
idealName, idealIndex);
}
// Finish defining table
fprintf(fp_cpp, "};\n");
}