blob: b09f418757135841f0b8c4187f3de70cf96f7a23 [file] [log] [blame]
/*
* Copyright (c) 2006, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "runtime/os.hpp"
#include "vm_version_sparc.hpp"
#include <sys/auxv.h>
#include <sys/auxv_SPARC.h>
#include <sys/systeminfo.h>
#include <kstat.h>
#include <picl.h>
#include <dlfcn.h>
#include <link.h>
extern "C" static int PICL_visit_cpu_helper(picl_nodehdl_t nodeh, void *result);
// Functions from the library we need (signatures should match those in picl.h)
extern "C" {
typedef int (*picl_initialize_func_t)(void);
typedef int (*picl_shutdown_func_t)(void);
typedef int (*picl_get_root_func_t)(picl_nodehdl_t *nodehandle);
typedef int (*picl_walk_tree_by_class_func_t)(picl_nodehdl_t rooth,
const char *classname, void *c_args,
int (*callback_fn)(picl_nodehdl_t hdl, void *args));
typedef int (*picl_get_prop_by_name_func_t)(picl_nodehdl_t nodeh, const char *nm,
picl_prophdl_t *ph);
typedef int (*picl_get_propval_func_t)(picl_prophdl_t proph, void *valbuf, size_t sz);
typedef int (*picl_get_propinfo_func_t)(picl_prophdl_t proph, picl_propinfo_t *pi);
}
class PICL {
// Pointers to functions in the library
picl_initialize_func_t _picl_initialize;
picl_shutdown_func_t _picl_shutdown;
picl_get_root_func_t _picl_get_root;
picl_walk_tree_by_class_func_t _picl_walk_tree_by_class;
picl_get_prop_by_name_func_t _picl_get_prop_by_name;
picl_get_propval_func_t _picl_get_propval;
picl_get_propinfo_func_t _picl_get_propinfo;
// Handle to the library that is returned by dlopen
void *_dl_handle;
bool open_library();
void close_library();
template<typename FuncType> bool bind(FuncType& func, const char* name);
bool bind_library_functions();
// Get a value of the integer property. The value in the tree can be either 32 or 64 bit
// depending on the platform. The result is converted to int.
int get_int_property(picl_nodehdl_t nodeh, const char* name, int* result) {
picl_propinfo_t pinfo;
picl_prophdl_t proph;
if (_picl_get_prop_by_name(nodeh, name, &proph) != PICL_SUCCESS ||
_picl_get_propinfo(proph, &pinfo) != PICL_SUCCESS) {
return PICL_FAILURE;
}
if (pinfo.type != PICL_PTYPE_INT && pinfo.type != PICL_PTYPE_UNSIGNED_INT) {
assert(false, "Invalid property type");
return PICL_FAILURE;
}
if (pinfo.size == sizeof(int64_t)) {
int64_t val;
if (_picl_get_propval(proph, &val, sizeof(int64_t)) != PICL_SUCCESS) {
return PICL_FAILURE;
}
*result = static_cast<int>(val);
} else if (pinfo.size == sizeof(int32_t)) {
int32_t val;
if (_picl_get_propval(proph, &val, sizeof(int32_t)) != PICL_SUCCESS) {
return PICL_FAILURE;
}
*result = static_cast<int>(val);
} else {
assert(false, "Unexpected integer property size");
return PICL_FAILURE;
}
return PICL_SUCCESS;
}
// Visitor and a state machine that visits integer properties and verifies that the
// values are the same. Stores the unique value observed.
class UniqueValueVisitor {
PICL *_picl;
enum {
INITIAL, // Start state, no assignments happened
ASSIGNED, // Assigned a value
INCONSISTENT // Inconsistent value seen
} _state;
int _value;
public:
UniqueValueVisitor(PICL* picl) : _picl(picl), _state(INITIAL) { }
int value() {
assert(_state == ASSIGNED, "Precondition");
return _value;
}
void set_value(int value) {
assert(_state == INITIAL, "Precondition");
_value = value;
_state = ASSIGNED;
}
bool is_initial() { return _state == INITIAL; }
bool is_assigned() { return _state == ASSIGNED; }
bool is_inconsistent() { return _state == INCONSISTENT; }
void set_inconsistent() { _state = INCONSISTENT; }
bool visit(picl_nodehdl_t nodeh, const char* name) {
assert(!is_inconsistent(), "Precondition");
int curr;
if (_picl->get_int_property(nodeh, name, &curr) == PICL_SUCCESS) {
if (!is_assigned()) { // first iteration
set_value(curr);
} else if (curr != value()) { // following iterations
set_inconsistent();
}
return true;
}
return false;
}
};
class CPUVisitor {
UniqueValueVisitor _l1_visitor;
UniqueValueVisitor _l2_visitor;
int _limit; // number of times visit() can be run
public:
CPUVisitor(PICL *picl, int limit) : _l1_visitor(picl), _l2_visitor(picl), _limit(limit) {}
static int visit(picl_nodehdl_t nodeh, void *arg) {
CPUVisitor *cpu_visitor = static_cast<CPUVisitor*>(arg);
UniqueValueVisitor* l1_visitor = cpu_visitor->l1_visitor();
UniqueValueVisitor* l2_visitor = cpu_visitor->l2_visitor();
if (!l1_visitor->is_inconsistent()) {
l1_visitor->visit(nodeh, "l1-dcache-line-size");
}
static const char* l2_data_cache_line_property_name = NULL;
// On the first visit determine the name of the l2 cache line size property and memoize it.
if (l2_data_cache_line_property_name == NULL) {
assert(!l2_visitor->is_inconsistent(), "First iteration cannot be inconsistent");
l2_data_cache_line_property_name = "l2-cache-line-size";
if (!l2_visitor->visit(nodeh, l2_data_cache_line_property_name)) {
l2_data_cache_line_property_name = "l2-dcache-line-size";
l2_visitor->visit(nodeh, l2_data_cache_line_property_name);
}
} else {
if (!l2_visitor->is_inconsistent()) {
l2_visitor->visit(nodeh, l2_data_cache_line_property_name);
}
}
if (l1_visitor->is_inconsistent() && l2_visitor->is_inconsistent()) {
return PICL_WALK_TERMINATE;
}
cpu_visitor->_limit--;
if (cpu_visitor->_limit <= 0) {
return PICL_WALK_TERMINATE;
}
return PICL_WALK_CONTINUE;
}
UniqueValueVisitor* l1_visitor() { return &_l1_visitor; }
UniqueValueVisitor* l2_visitor() { return &_l2_visitor; }
};
int _L1_data_cache_line_size;
int _L2_data_cache_line_size;
public:
static int visit_cpu(picl_nodehdl_t nodeh, void *state) {
return CPUVisitor::visit(nodeh, state);
}
PICL(bool is_fujitsu, bool is_sun4v) : _L1_data_cache_line_size(0), _L2_data_cache_line_size(0), _dl_handle(NULL) {
if (!open_library()) {
return;
}
if (_picl_initialize() == PICL_SUCCESS) {
picl_nodehdl_t rooth;
if (_picl_get_root(&rooth) == PICL_SUCCESS) {
const char* cpu_class = "cpu";
// If it's a Fujitsu machine, it's a "core"
if (is_fujitsu) {
cpu_class = "core";
}
CPUVisitor cpu_visitor(this, (is_sun4v && !is_fujitsu) ? 1 : os::processor_count());
_picl_walk_tree_by_class(rooth, cpu_class, &cpu_visitor, PICL_visit_cpu_helper);
if (cpu_visitor.l1_visitor()->is_assigned()) { // Is there a value?
_L1_data_cache_line_size = cpu_visitor.l1_visitor()->value();
}
if (cpu_visitor.l2_visitor()->is_assigned()) {
_L2_data_cache_line_size = cpu_visitor.l2_visitor()->value();
}
}
_picl_shutdown();
}
close_library();
}
unsigned int L1_data_cache_line_size() const { return _L1_data_cache_line_size; }
unsigned int L2_data_cache_line_size() const { return _L2_data_cache_line_size; }
};
extern "C" static int PICL_visit_cpu_helper(picl_nodehdl_t nodeh, void *result) {
return PICL::visit_cpu(nodeh, result);
}
template<typename FuncType>
bool PICL::bind(FuncType& func, const char* name) {
func = reinterpret_cast<FuncType>(dlsym(_dl_handle, name));
return func != NULL;
}
bool PICL::bind_library_functions() {
assert(_dl_handle != NULL, "library should be open");
return bind(_picl_initialize, "picl_initialize" ) &&
bind(_picl_shutdown, "picl_shutdown" ) &&
bind(_picl_get_root, "picl_get_root" ) &&
bind(_picl_walk_tree_by_class, "picl_walk_tree_by_class") &&
bind(_picl_get_prop_by_name, "picl_get_prop_by_name" ) &&
bind(_picl_get_propval, "picl_get_propval" ) &&
bind(_picl_get_propinfo, "picl_get_propinfo" );
}
bool PICL::open_library() {
_dl_handle = dlopen("libpicl.so.1", RTLD_LAZY);
if (_dl_handle == NULL) {
return false;
}
if (!bind_library_functions()) {
assert(false, "unexpected PICL API change");
close_library();
return false;
}
return true;
}
void PICL::close_library() {
assert(_dl_handle != NULL, "library should be open");
dlclose(_dl_handle);
_dl_handle = NULL;
}
// We need to keep these here as long as we have to build on Solaris
// versions before 10.
#ifndef SI_ARCHITECTURE_32
#define SI_ARCHITECTURE_32 516 /* basic 32-bit SI_ARCHITECTURE */
#endif
#ifndef SI_ARCHITECTURE_64
#define SI_ARCHITECTURE_64 517 /* basic 64-bit SI_ARCHITECTURE */
#endif
#ifndef SI_CPUBRAND
#define SI_CPUBRAND 523 /* return cpu brand string */
#endif
class Sysinfo {
char* _string;
public:
Sysinfo(int si) : _string(NULL) {
char tmp;
size_t bufsize = sysinfo(si, &tmp, 1);
if (bufsize != -1) {
char* buf = (char*) os::malloc(bufsize, mtInternal);
if (buf != NULL) {
if (sysinfo(si, buf, bufsize) == bufsize) {
_string = buf;
} else {
os::free(buf);
}
}
}
}
~Sysinfo() {
if (_string != NULL) {
os::free(_string);
}
}
const char* value() const {
return _string;
}
bool valid() const {
return _string != NULL;
}
bool match(const char* s) const {
return valid() ? strcmp(_string, s) == 0 : false;
}
bool match_substring(const char* s) const {
return valid() ? strstr(_string, s) != NULL : false;
}
};
class Sysconf {
int _value;
public:
Sysconf(int sc) : _value(-1) {
_value = sysconf(sc);
}
bool valid() const {
return _value != -1;
}
int value() const {
return _value;
}
};
#ifndef _SC_DCACHE_LINESZ
#define _SC_DCACHE_LINESZ 508 /* Data cache line size */
#endif
#ifndef _SC_L2CACHE_LINESZ
#define _SC_L2CACHE_LINESZ 527 /* Size of L2 cache line */
#endif
int VM_Version::platform_features(int features) {
assert(os::Solaris::supports_getisax(), "getisax() must be available");
// Check 32-bit architecture.
if (Sysinfo(SI_ARCHITECTURE_32).match("sparc")) {
features |= v8_instructions_m;
}
// Check 64-bit architecture.
if (Sysinfo(SI_ARCHITECTURE_64).match("sparcv9")) {
features |= generic_v9_m;
}
// Extract valid instruction set extensions.
uint_t avs[2];
uint_t avn = os::Solaris::getisax(avs, 2);
assert(avn <= 2, "should return two or less av's");
uint_t av = avs[0];
#ifndef PRODUCT
if (PrintMiscellaneous && Verbose) {
tty->print("getisax(2) returned: " PTR32_FORMAT, av);
if (avn > 1) {
tty->print(", " PTR32_FORMAT, avs[1]);
}
tty->cr();
}
#endif
if (av & AV_SPARC_MUL32) features |= hardware_mul32_m;
if (av & AV_SPARC_DIV32) features |= hardware_div32_m;
if (av & AV_SPARC_FSMULD) features |= hardware_fsmuld_m;
if (av & AV_SPARC_V8PLUS) features |= v9_instructions_m;
if (av & AV_SPARC_POPC) features |= hardware_popc_m;
if (av & AV_SPARC_VIS) features |= vis1_instructions_m;
if (av & AV_SPARC_VIS2) features |= vis2_instructions_m;
if (avn > 1) {
uint_t av2 = avs[1];
#ifndef AV2_SPARC_SPARC5
#define AV2_SPARC_SPARC5 0x00000008 /* The 29 new fp and sub instructions */
#endif
if (av2 & AV2_SPARC_SPARC5) features |= sparc5_instructions_m;
}
// We only build on Solaris 10 and up, but some of the values below
// are not defined on all versions of Solaris 10, so we define them,
// if necessary.
#ifndef AV_SPARC_ASI_BLK_INIT
#define AV_SPARC_ASI_BLK_INIT 0x0080 /* ASI_BLK_INIT_xxx ASI */
#endif
if (av & AV_SPARC_ASI_BLK_INIT) features |= blk_init_instructions_m;
#ifndef AV_SPARC_FMAF
#define AV_SPARC_FMAF 0x0100 /* Fused Multiply-Add */
#endif
if (av & AV_SPARC_FMAF) features |= fmaf_instructions_m;
#ifndef AV_SPARC_FMAU
#define AV_SPARC_FMAU 0x0200 /* Unfused Multiply-Add */
#endif
if (av & AV_SPARC_FMAU) features |= fmau_instructions_m;
#ifndef AV_SPARC_VIS3
#define AV_SPARC_VIS3 0x0400 /* VIS3 instruction set extensions */
#endif
if (av & AV_SPARC_VIS3) features |= vis3_instructions_m;
#ifndef AV_SPARC_CBCOND
#define AV_SPARC_CBCOND 0x10000000 /* compare and branch instrs supported */
#endif
if (av & AV_SPARC_CBCOND) features |= cbcond_instructions_m;
#ifndef AV_SPARC_AES
#define AV_SPARC_AES 0x00020000 /* aes instrs supported */
#endif
if (av & AV_SPARC_AES) features |= aes_instructions_m;
#ifndef AV_SPARC_SHA1
#define AV_SPARC_SHA1 0x00400000 /* sha1 instruction supported */
#endif
if (av & AV_SPARC_SHA1) features |= sha1_instruction_m;
#ifndef AV_SPARC_SHA256
#define AV_SPARC_SHA256 0x00800000 /* sha256 instruction supported */
#endif
if (av & AV_SPARC_SHA256) features |= sha256_instruction_m;
#ifndef AV_SPARC_SHA512
#define AV_SPARC_SHA512 0x01000000 /* sha512 instruction supported */
#endif
if (av & AV_SPARC_SHA512) features |= sha512_instruction_m;
// Determine the machine type.
if (Sysinfo(SI_MACHINE).match("sun4v")) {
features |= sun4v_m;
}
// If SI_CPUBRAND works, that means Solaris 12 API to get the cache line sizes
// is available to us as well
Sysinfo cpu_info(SI_CPUBRAND);
bool use_solaris_12_api = cpu_info.valid();
const char* impl = "unknown";
int impl_m = 0;
if (use_solaris_12_api) {
impl = cpu_info.value();
#ifndef PRODUCT
if (PrintMiscellaneous && Verbose) {
tty->print_cr("Parsing CPU implementation from %s", impl);
}
#endif
impl_m = parse_features(impl);
} else {
// Otherwise use kstat to determine the machine type.
kstat_ctl_t* kc = kstat_open();
if (kc != NULL) {
kstat_t* ksp = kstat_lookup(kc, (char*)"cpu_info", -1, NULL);
if (ksp != NULL) {
if (kstat_read(kc, ksp, NULL) != -1 && ksp->ks_data != NULL) {
kstat_named_t* knm = (kstat_named_t *)ksp->ks_data;
for (int i = 0; i < ksp->ks_ndata; i++) {
if (strcmp((const char*)&(knm[i].name), "implementation") == 0) {
impl = KSTAT_NAMED_STR_PTR(&knm[i]);
#ifndef PRODUCT
if (PrintMiscellaneous && Verbose) {
tty->print_cr("Parsing CPU implementation from %s", impl);
}
#endif
impl_m = parse_features(impl);
break;
}
}
}
}
kstat_close(kc);
}
}
assert(impl_m != 0, err_msg("Unrecognized CPU implementation %s", impl));
features |= impl_m;
bool is_sun4v = (features & sun4v_m) != 0;
if (use_solaris_12_api && is_sun4v) {
// If Solaris 12 API is supported and it's sun4v use sysconf() to get the cache line sizes
Sysconf l1_dcache_line_size(_SC_DCACHE_LINESZ);
if (l1_dcache_line_size.valid()) {
_L1_data_cache_line_size = l1_dcache_line_size.value();
}
Sysconf l2_dcache_line_size(_SC_L2CACHE_LINESZ);
if (l2_dcache_line_size.valid()) {
_L2_data_cache_line_size = l2_dcache_line_size.value();
}
} else {
// Otherwise figure out the cache line sizes using PICL
bool is_fujitsu = (features & sparc64_family_m) != 0;
PICL picl(is_fujitsu, is_sun4v);
_L1_data_cache_line_size = picl.L1_data_cache_line_size();
_L2_data_cache_line_size = picl.L2_data_cache_line_size();
}
return features;
}