blob: 2f1326a62e860c6d5ee138a5ed327c62177737de [file] [log] [blame]
/*
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "memory/allocation.inline.hpp"
#include "prims/methodHandles.hpp"
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
#define __ _masm->
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#define STOP(error) stop(error)
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#define STOP(error) block_comment(error); __ stop(error)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg) {
if (VerifyMethodHandles)
verify_klass(_masm, klass_reg, SystemDictionary::WK_KLASS_ENUM_NAME(java_lang_Class),
"MH argument is a Class");
__ movptr(klass_reg, Address(klass_reg, java_lang_Class::klass_offset_in_bytes()));
}
#ifdef ASSERT
static int check_nonzero(const char* xname, int x) {
assert(x != 0, err_msg("%s should be nonzero", xname));
return x;
}
#define NONZERO(x) check_nonzero(#x, x)
#else //ASSERT
#define NONZERO(x) (x)
#endif //ASSERT
#ifdef ASSERT
void MethodHandles::verify_klass(MacroAssembler* _masm,
Register obj, SystemDictionary::WKID klass_id,
const char* error_message) {
Klass** klass_addr = SystemDictionary::well_known_klass_addr(klass_id);
KlassHandle klass = SystemDictionary::well_known_klass(klass_id);
Register temp = rdi;
Register temp2 = noreg;
LP64_ONLY(temp2 = rscratch1); // used by MacroAssembler::cmpptr
Label L_ok, L_bad;
BLOCK_COMMENT("verify_klass {");
__ verify_oop(obj);
__ testptr(obj, obj);
__ jcc(Assembler::zero, L_bad);
__ push(temp); if (temp2 != noreg) __ push(temp2);
#define UNPUSH { if (temp2 != noreg) __ pop(temp2); __ pop(temp); }
__ load_klass(temp, obj);
__ cmpptr(temp, ExternalAddress((address) klass_addr));
__ jcc(Assembler::equal, L_ok);
intptr_t super_check_offset = klass->super_check_offset();
__ movptr(temp, Address(temp, super_check_offset));
__ cmpptr(temp, ExternalAddress((address) klass_addr));
__ jcc(Assembler::equal, L_ok);
UNPUSH;
__ bind(L_bad);
__ STOP(error_message);
__ BIND(L_ok);
UNPUSH;
BLOCK_COMMENT("} verify_klass");
}
void MethodHandles::verify_ref_kind(MacroAssembler* _masm, int ref_kind, Register member_reg, Register temp) {
Label L;
BLOCK_COMMENT("verify_ref_kind {");
__ movl(temp, Address(member_reg, NONZERO(java_lang_invoke_MemberName::flags_offset_in_bytes())));
__ shrl(temp, java_lang_invoke_MemberName::MN_REFERENCE_KIND_SHIFT);
__ andl(temp, java_lang_invoke_MemberName::MN_REFERENCE_KIND_MASK);
__ cmpl(temp, ref_kind);
__ jcc(Assembler::equal, L);
{ char* buf = NEW_C_HEAP_ARRAY(char, 100, mtInternal);
jio_snprintf(buf, 100, "verify_ref_kind expected %x", ref_kind);
if (ref_kind == JVM_REF_invokeVirtual ||
ref_kind == JVM_REF_invokeSpecial)
// could do this for all ref_kinds, but would explode assembly code size
trace_method_handle(_masm, buf);
__ STOP(buf);
}
BLOCK_COMMENT("} verify_ref_kind");
__ bind(L);
}
#endif //ASSERT
void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register temp,
bool for_compiler_entry) {
assert(method == rbx, "interpreter calling convention");
Label L_no_such_method;
__ testptr(rbx, rbx);
__ jcc(Assembler::zero, L_no_such_method);
__ verify_method_ptr(method);
if (!for_compiler_entry && JvmtiExport::can_post_interpreter_events()) {
Label run_compiled_code;
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
// compiled code in threads for which the event is enabled. Check here for
// interp_only_mode if these events CAN be enabled.
#ifdef _LP64
Register rthread = r15_thread;
#else
Register rthread = temp;
__ get_thread(rthread);
#endif
// interp_only is an int, on little endian it is sufficient to test the byte only
// Is a cmpl faster?
__ cmpb(Address(rthread, JavaThread::interp_only_mode_offset()), 0);
__ jccb(Assembler::zero, run_compiled_code);
__ jmp(Address(method, Method::interpreter_entry_offset()));
__ BIND(run_compiled_code);
}
const ByteSize entry_offset = for_compiler_entry ? Method::from_compiled_offset() :
Method::from_interpreted_offset();
__ jmp(Address(method, entry_offset));
__ bind(L_no_such_method);
__ jump(RuntimeAddress(StubRoutines::throw_AbstractMethodError_entry()));
}
void MethodHandles::jump_to_lambda_form(MacroAssembler* _masm,
Register recv, Register method_temp,
Register temp2,
bool for_compiler_entry) {
BLOCK_COMMENT("jump_to_lambda_form {");
// This is the initial entry point of a lazy method handle.
// After type checking, it picks up the invoker from the LambdaForm.
assert_different_registers(recv, method_temp, temp2);
assert(recv != noreg, "required register");
assert(method_temp == rbx, "required register for loading method");
//NOT_PRODUCT({ FlagSetting fs(TraceMethodHandles, true); trace_method_handle(_masm, "LZMH"); });
// Load the invoker, as MH -> MH.form -> LF.vmentry
__ verify_oop(recv);
__ load_heap_oop(method_temp, Address(recv, NONZERO(java_lang_invoke_MethodHandle::form_offset_in_bytes())));
__ verify_oop(method_temp);
__ load_heap_oop(method_temp, Address(method_temp, NONZERO(java_lang_invoke_LambdaForm::vmentry_offset_in_bytes())));
__ verify_oop(method_temp);
// the following assumes that a Method* is normally compressed in the vmtarget field:
__ movptr(method_temp, Address(method_temp, NONZERO(java_lang_invoke_MemberName::vmtarget_offset_in_bytes())));
if (VerifyMethodHandles && !for_compiler_entry) {
// make sure recv is already on stack
__ movptr(temp2, Address(method_temp, Method::const_offset()));
__ load_sized_value(temp2,
Address(temp2, ConstMethod::size_of_parameters_offset()),
sizeof(u2), /*is_signed*/ false);
// assert(sizeof(u2) == sizeof(Method::_size_of_parameters), "");
Label L;
__ cmpptr(recv, __ argument_address(temp2, -1));
__ jcc(Assembler::equal, L);
__ movptr(rax, __ argument_address(temp2, -1));
__ STOP("receiver not on stack");
__ BIND(L);
}
jump_from_method_handle(_masm, method_temp, temp2, for_compiler_entry);
BLOCK_COMMENT("} jump_to_lambda_form");
}
// Code generation
address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm,
vmIntrinsics::ID iid) {
const bool not_for_compiler_entry = false; // this is the interpreter entry
assert(is_signature_polymorphic(iid), "expected invoke iid");
if (iid == vmIntrinsics::_invokeGeneric ||
iid == vmIntrinsics::_compiledLambdaForm) {
// Perhaps surprisingly, the symbolic references visible to Java are not directly used.
// They are linked to Java-generated adapters via MethodHandleNatives.linkMethod.
// They all allow an appendix argument.
__ hlt(); // empty stubs make SG sick
return NULL;
}
// rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
// rbx: Method*
// rdx: argument locator (parameter slot count, added to rsp)
// rcx: used as temp to hold mh or receiver
// rax, rdi: garbage temps, blown away
Register rdx_argp = rdx; // argument list ptr, live on error paths
Register rax_temp = rax;
Register rcx_mh = rcx; // MH receiver; dies quickly and is recycled
Register rbx_method = rbx; // eventual target of this invocation
// here's where control starts out:
__ align(CodeEntryAlignment);
address entry_point = __ pc();
if (VerifyMethodHandles) {
Label L;
BLOCK_COMMENT("verify_intrinsic_id {");
__ cmpb(Address(rbx_method, Method::intrinsic_id_offset_in_bytes()), (int) iid);
__ jcc(Assembler::equal, L);
if (iid == vmIntrinsics::_linkToVirtual ||
iid == vmIntrinsics::_linkToSpecial) {
// could do this for all kinds, but would explode assembly code size
trace_method_handle(_masm, "bad Method*::intrinsic_id");
}
__ STOP("bad Method*::intrinsic_id");
__ bind(L);
BLOCK_COMMENT("} verify_intrinsic_id");
}
// First task: Find out how big the argument list is.
Address rdx_first_arg_addr;
int ref_kind = signature_polymorphic_intrinsic_ref_kind(iid);
assert(ref_kind != 0 || iid == vmIntrinsics::_invokeBasic, "must be _invokeBasic or a linkTo intrinsic");
if (ref_kind == 0 || MethodHandles::ref_kind_has_receiver(ref_kind)) {
__ movptr(rdx_argp, Address(rbx_method, Method::const_offset()));
__ load_sized_value(rdx_argp,
Address(rdx_argp, ConstMethod::size_of_parameters_offset()),
sizeof(u2), /*is_signed*/ false);
// assert(sizeof(u2) == sizeof(Method::_size_of_parameters), "");
rdx_first_arg_addr = __ argument_address(rdx_argp, -1);
} else {
DEBUG_ONLY(rdx_argp = noreg);
}
if (!is_signature_polymorphic_static(iid)) {
__ movptr(rcx_mh, rdx_first_arg_addr);
DEBUG_ONLY(rdx_argp = noreg);
}
// rdx_first_arg_addr is live!
trace_method_handle_interpreter_entry(_masm, iid);
if (iid == vmIntrinsics::_invokeBasic) {
generate_method_handle_dispatch(_masm, iid, rcx_mh, noreg, not_for_compiler_entry);
} else {
// Adjust argument list by popping the trailing MemberName argument.
Register rcx_recv = noreg;
if (MethodHandles::ref_kind_has_receiver(ref_kind)) {
// Load the receiver (not the MH; the actual MemberName's receiver) up from the interpreter stack.
__ movptr(rcx_recv = rcx, rdx_first_arg_addr);
}
DEBUG_ONLY(rdx_argp = noreg);
Register rbx_member = rbx_method; // MemberName ptr; incoming method ptr is dead now
__ pop(rax_temp); // return address
__ pop(rbx_member); // extract last argument
__ push(rax_temp); // re-push return address
generate_method_handle_dispatch(_masm, iid, rcx_recv, rbx_member, not_for_compiler_entry);
}
return entry_point;
}
void MethodHandles::generate_method_handle_dispatch(MacroAssembler* _masm,
vmIntrinsics::ID iid,
Register receiver_reg,
Register member_reg,
bool for_compiler_entry) {
assert(is_signature_polymorphic(iid), "expected invoke iid");
Register rbx_method = rbx; // eventual target of this invocation
// temps used in this code are not used in *either* compiled or interpreted calling sequences
#ifdef _LP64
Register temp1 = rscratch1;
Register temp2 = rscratch2;
Register temp3 = rax;
if (for_compiler_entry) {
assert(receiver_reg == (iid == vmIntrinsics::_linkToStatic ? noreg : j_rarg0), "only valid assignment");
assert_different_registers(temp1, j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5);
assert_different_registers(temp2, j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5);
assert_different_registers(temp3, j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5);
}
#else
Register temp1 = (for_compiler_entry ? rsi : rdx);
Register temp2 = rdi;
Register temp3 = rax;
if (for_compiler_entry) {
assert(receiver_reg == (iid == vmIntrinsics::_linkToStatic ? noreg : rcx), "only valid assignment");
assert_different_registers(temp1, rcx, rdx);
assert_different_registers(temp2, rcx, rdx);
assert_different_registers(temp3, rcx, rdx);
}
#endif
else {
assert_different_registers(temp1, temp2, temp3, saved_last_sp_register()); // don't trash lastSP
}
assert_different_registers(temp1, temp2, temp3, receiver_reg);
assert_different_registers(temp1, temp2, temp3, member_reg);
if (iid == vmIntrinsics::_invokeBasic) {
// indirect through MH.form.vmentry.vmtarget
jump_to_lambda_form(_masm, receiver_reg, rbx_method, temp1, for_compiler_entry);
} else {
// The method is a member invoker used by direct method handles.
if (VerifyMethodHandles) {
// make sure the trailing argument really is a MemberName (caller responsibility)
verify_klass(_masm, member_reg, SystemDictionary::WK_KLASS_ENUM_NAME(java_lang_invoke_MemberName),
"MemberName required for invokeVirtual etc.");
}
Address member_clazz( member_reg, NONZERO(java_lang_invoke_MemberName::clazz_offset_in_bytes()));
Address member_vmindex( member_reg, NONZERO(java_lang_invoke_MemberName::vmindex_offset_in_bytes()));
Address member_vmtarget( member_reg, NONZERO(java_lang_invoke_MemberName::vmtarget_offset_in_bytes()));
Register temp1_recv_klass = temp1;
if (iid != vmIntrinsics::_linkToStatic) {
__ verify_oop(receiver_reg);
if (iid == vmIntrinsics::_linkToSpecial) {
// Don't actually load the klass; just null-check the receiver.
__ null_check(receiver_reg);
} else {
// load receiver klass itself
__ null_check(receiver_reg, oopDesc::klass_offset_in_bytes());
__ load_klass(temp1_recv_klass, receiver_reg);
__ verify_klass_ptr(temp1_recv_klass);
}
BLOCK_COMMENT("check_receiver {");
// The receiver for the MemberName must be in receiver_reg.
// Check the receiver against the MemberName.clazz
if (VerifyMethodHandles && iid == vmIntrinsics::_linkToSpecial) {
// Did not load it above...
__ load_klass(temp1_recv_klass, receiver_reg);
__ verify_klass_ptr(temp1_recv_klass);
}
if (VerifyMethodHandles && iid != vmIntrinsics::_linkToInterface) {
Label L_ok;
Register temp2_defc = temp2;
__ load_heap_oop(temp2_defc, member_clazz);
load_klass_from_Class(_masm, temp2_defc);
__ verify_klass_ptr(temp2_defc);
__ check_klass_subtype(temp1_recv_klass, temp2_defc, temp3, L_ok);
// If we get here, the type check failed!
__ STOP("receiver class disagrees with MemberName.clazz");
__ bind(L_ok);
}
BLOCK_COMMENT("} check_receiver");
}
if (iid == vmIntrinsics::_linkToSpecial ||
iid == vmIntrinsics::_linkToStatic) {
DEBUG_ONLY(temp1_recv_klass = noreg); // these guys didn't load the recv_klass
}
// Live registers at this point:
// member_reg - MemberName that was the trailing argument
// temp1_recv_klass - klass of stacked receiver, if needed
// rsi/r13 - interpreter linkage (if interpreted)
// rcx, rdx, rsi, rdi, r8 - compiler arguments (if compiled)
Label L_incompatible_class_change_error;
switch (iid) {
case vmIntrinsics::_linkToSpecial:
if (VerifyMethodHandles) {
verify_ref_kind(_masm, JVM_REF_invokeSpecial, member_reg, temp3);
}
__ movptr(rbx_method, member_vmtarget);
break;
case vmIntrinsics::_linkToStatic:
if (VerifyMethodHandles) {
verify_ref_kind(_masm, JVM_REF_invokeStatic, member_reg, temp3);
}
__ movptr(rbx_method, member_vmtarget);
break;
case vmIntrinsics::_linkToVirtual:
{
// same as TemplateTable::invokevirtual,
// minus the CP setup and profiling:
if (VerifyMethodHandles) {
verify_ref_kind(_masm, JVM_REF_invokeVirtual, member_reg, temp3);
}
// pick out the vtable index from the MemberName, and then we can discard it:
Register temp2_index = temp2;
__ movptr(temp2_index, member_vmindex);
if (VerifyMethodHandles) {
Label L_index_ok;
__ cmpl(temp2_index, 0);
__ jcc(Assembler::greaterEqual, L_index_ok);
__ STOP("no virtual index");
__ BIND(L_index_ok);
}
// Note: The verifier invariants allow us to ignore MemberName.clazz and vmtarget
// at this point. And VerifyMethodHandles has already checked clazz, if needed.
// get target Method* & entry point
__ lookup_virtual_method(temp1_recv_klass, temp2_index, rbx_method);
break;
}
case vmIntrinsics::_linkToInterface:
{
// same as TemplateTable::invokeinterface
// (minus the CP setup and profiling, with different argument motion)
if (VerifyMethodHandles) {
verify_ref_kind(_masm, JVM_REF_invokeInterface, member_reg, temp3);
}
Register temp3_intf = temp3;
__ load_heap_oop(temp3_intf, member_clazz);
load_klass_from_Class(_masm, temp3_intf);
__ verify_klass_ptr(temp3_intf);
Register rbx_index = rbx_method;
__ movptr(rbx_index, member_vmindex);
if (VerifyMethodHandles) {
Label L;
__ cmpl(rbx_index, 0);
__ jcc(Assembler::greaterEqual, L);
__ STOP("invalid vtable index for MH.invokeInterface");
__ bind(L);
}
// given intf, index, and recv klass, dispatch to the implementation method
__ lookup_interface_method(temp1_recv_klass, temp3_intf,
// note: next two args must be the same:
rbx_index, rbx_method,
temp2,
L_incompatible_class_change_error);
break;
}
default:
fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
break;
}
// Live at this point:
// rbx_method
// rsi/r13 (if interpreted)
// After figuring out which concrete method to call, jump into it.
// Note that this works in the interpreter with no data motion.
// But the compiled version will require that rcx_recv be shifted out.
__ verify_method_ptr(rbx_method);
jump_from_method_handle(_masm, rbx_method, temp1, for_compiler_entry);
if (iid == vmIntrinsics::_linkToInterface) {
__ bind(L_incompatible_class_change_error);
__ jump(RuntimeAddress(StubRoutines::throw_IncompatibleClassChangeError_entry()));
}
}
}
#ifndef PRODUCT
void trace_method_handle_stub(const char* adaptername,
oop mh,
intptr_t* saved_regs,
intptr_t* entry_sp) {
// called as a leaf from native code: do not block the JVM!
bool has_mh = (strstr(adaptername, "/static") == NULL &&
strstr(adaptername, "linkTo") == NULL); // static linkers don't have MH
const char* mh_reg_name = has_mh ? "rcx_mh" : "rcx";
tty->print_cr("MH %s %s="PTR_FORMAT" sp="PTR_FORMAT,
adaptername, mh_reg_name,
(void *)mh, entry_sp);
if (Verbose) {
tty->print_cr("Registers:");
const int saved_regs_count = RegisterImpl::number_of_registers;
for (int i = 0; i < saved_regs_count; i++) {
Register r = as_Register(i);
// The registers are stored in reverse order on the stack (by pusha).
tty->print("%3s=" PTR_FORMAT, r->name(), saved_regs[((saved_regs_count - 1) - i)]);
if ((i + 1) % 4 == 0) {
tty->cr();
} else {
tty->print(", ");
}
}
tty->cr();
{
// dumping last frame with frame::describe
JavaThread* p = JavaThread::active();
ResourceMark rm;
PRESERVE_EXCEPTION_MARK; // may not be needed by safer and unexpensive here
FrameValues values;
// Note: We want to allow trace_method_handle from any call site.
// While trace_method_handle creates a frame, it may be entered
// without a PC on the stack top (e.g. not just after a call).
// Walking that frame could lead to failures due to that invalid PC.
// => carefully detect that frame when doing the stack walking
// Current C frame
frame cur_frame = os::current_frame();
// Robust search of trace_calling_frame (independant of inlining).
// Assumes saved_regs comes from a pusha in the trace_calling_frame.
assert(cur_frame.sp() < saved_regs, "registers not saved on stack ?");
frame trace_calling_frame = os::get_sender_for_C_frame(&cur_frame);
while (trace_calling_frame.fp() < saved_regs) {
trace_calling_frame = os::get_sender_for_C_frame(&trace_calling_frame);
}
// safely create a frame and call frame::describe
intptr_t *dump_sp = trace_calling_frame.sender_sp();
intptr_t *dump_fp = trace_calling_frame.link();
bool walkable = has_mh; // whether the traced frame shoud be walkable
if (walkable) {
// The previous definition of walkable may have to be refined
// if new call sites cause the next frame constructor to start
// failing. Alternatively, frame constructors could be
// modified to support the current or future non walkable
// frames (but this is more intrusive and is not considered as
// part of this RFE, which will instead use a simpler output).
frame dump_frame = frame(dump_sp, dump_fp);
dump_frame.describe(values, 1);
} else {
// Stack may not be walkable (invalid PC above FP):
// Add descriptions without building a Java frame to avoid issues
values.describe(-1, dump_fp, "fp for #1 <not parsed, cannot trust pc>");
values.describe(-1, dump_sp, "sp for #1");
}
values.describe(-1, entry_sp, "raw top of stack");
tty->print_cr("Stack layout:");
values.print(p);
}
if (has_mh && mh->is_oop()) {
mh->print();
if (java_lang_invoke_MethodHandle::is_instance(mh)) {
if (java_lang_invoke_MethodHandle::form_offset_in_bytes() != 0)
java_lang_invoke_MethodHandle::form(mh)->print();
}
}
}
}
// The stub wraps the arguments in a struct on the stack to avoid
// dealing with the different calling conventions for passing 6
// arguments.
struct MethodHandleStubArguments {
const char* adaptername;
oopDesc* mh;
intptr_t* saved_regs;
intptr_t* entry_sp;
};
void trace_method_handle_stub_wrapper(MethodHandleStubArguments* args) {
trace_method_handle_stub(args->adaptername,
args->mh,
args->saved_regs,
args->entry_sp);
}
void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
if (!TraceMethodHandles) return;
BLOCK_COMMENT("trace_method_handle {");
__ enter();
__ andptr(rsp, -16); // align stack if needed for FPU state
__ pusha();
__ mov(rbx, rsp); // for retreiving saved_regs
// Note: saved_regs must be in the entered frame for the
// robust stack walking implemented in trace_method_handle_stub.
// save FP result, valid at some call sites (adapter_opt_return_float, ...)
__ increment(rsp, -2 * wordSize);
if (UseSSE >= 2) {
__ movdbl(Address(rsp, 0), xmm0);
} else if (UseSSE == 1) {
__ movflt(Address(rsp, 0), xmm0);
} else {
__ fst_d(Address(rsp, 0));
}
// Incoming state:
// rcx: method handle
//
// To avoid calling convention issues, build a record on the stack
// and pass the pointer to that instead.
__ push(rbp); // entry_sp (with extra align space)
__ push(rbx); // pusha saved_regs
__ push(rcx); // mh
__ push(rcx); // slot for adaptername
__ movptr(Address(rsp, 0), (intptr_t) adaptername);
__ super_call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub_wrapper), rsp);
__ increment(rsp, sizeof(MethodHandleStubArguments));
if (UseSSE >= 2) {
__ movdbl(xmm0, Address(rsp, 0));
} else if (UseSSE == 1) {
__ movflt(xmm0, Address(rsp, 0));
} else {
__ fld_d(Address(rsp, 0));
}
__ increment(rsp, 2 * wordSize);
__ popa();
__ leave();
BLOCK_COMMENT("} trace_method_handle");
}
#endif //PRODUCT