blob: 48cab82b0a4339d04af058fd35ba8a3d1455b6ef [file] [log] [blame]
/*
* Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "c1/c1_Compilation.hpp"
#include "c1/c1_FrameMap.hpp"
#include "c1/c1_Instruction.hpp"
#include "c1/c1_LIRAssembler.hpp"
#include "c1/c1_LIRGenerator.hpp"
#include "c1/c1_Runtime1.hpp"
#include "c1/c1_ValueStack.hpp"
#include "ci/ciArray.hpp"
#include "ci/ciObjArrayKlass.hpp"
#include "ci/ciTypeArrayKlass.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "vmreg_x86.inline.hpp"
#ifdef ASSERT
#define __ gen()->lir(__FILE__, __LINE__)->
#else
#define __ gen()->lir()->
#endif
// Item will be loaded into a byte register; Intel only
void LIRItem::load_byte_item() {
load_item();
LIR_Opr res = result();
if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
// make sure that it is a byte register
assert(!value()->type()->is_float() && !value()->type()->is_double(),
"can't load floats in byte register");
LIR_Opr reg = _gen->rlock_byte(T_BYTE);
__ move(res, reg);
_result = reg;
}
}
void LIRItem::load_nonconstant() {
LIR_Opr r = value()->operand();
if (r->is_constant()) {
_result = r;
} else {
load_item();
}
}
//--------------------------------------------------------------
// LIRGenerator
//--------------------------------------------------------------
LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::rdx_opr; }
LIR_Opr LIRGenerator::divInOpr() { return FrameMap::rax_opr; }
LIR_Opr LIRGenerator::divOutOpr() { return FrameMap::rax_opr; }
LIR_Opr LIRGenerator::remOutOpr() { return FrameMap::rdx_opr; }
LIR_Opr LIRGenerator::shiftCountOpr() { return FrameMap::rcx_opr; }
LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::rax_opr; }
LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; }
LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
LIR_Opr opr;
switch (type->tag()) {
case intTag: opr = FrameMap::rax_opr; break;
case objectTag: opr = FrameMap::rax_oop_opr; break;
case longTag: opr = FrameMap::long0_opr; break;
case floatTag: opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr : FrameMap::fpu0_float_opr; break;
case doubleTag: opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr; break;
case addressTag:
default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
}
assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
return opr;
}
LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
LIR_Opr reg = new_register(T_INT);
set_vreg_flag(reg, LIRGenerator::byte_reg);
return reg;
}
//--------- loading items into registers --------------------------------
// i486 instructions can inline constants
bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
if (type == T_SHORT || type == T_CHAR) {
// there is no immediate move of word values in asembler_i486.?pp
return false;
}
Constant* c = v->as_Constant();
if (c && c->state_before() == NULL) {
// constants of any type can be stored directly, except for
// unloaded object constants.
return true;
}
return false;
}
bool LIRGenerator::can_inline_as_constant(Value v) const {
if (v->type()->tag() == longTag) return false;
return v->type()->tag() != objectTag ||
(v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
}
bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
if (c->type() == T_LONG) return false;
return c->type() != T_OBJECT || c->as_jobject() == NULL;
}
LIR_Opr LIRGenerator::safepoint_poll_register() {
return LIR_OprFact::illegalOpr;
}
LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
int shift, int disp, BasicType type) {
assert(base->is_register(), "must be");
if (index->is_constant()) {
return new LIR_Address(base,
(index->as_constant_ptr()->as_jint() << shift) + disp,
type);
} else {
return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
}
}
LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
BasicType type, bool needs_card_mark) {
int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
LIR_Address* addr;
if (index_opr->is_constant()) {
int elem_size = type2aelembytes(type);
addr = new LIR_Address(array_opr,
offset_in_bytes + index_opr->as_jint() * elem_size, type);
} else {
#ifdef _LP64
if (index_opr->type() == T_INT) {
LIR_Opr tmp = new_register(T_LONG);
__ convert(Bytecodes::_i2l, index_opr, tmp);
index_opr = tmp;
}
#endif // _LP64
addr = new LIR_Address(array_opr,
index_opr,
LIR_Address::scale(type),
offset_in_bytes, type);
}
if (needs_card_mark) {
// This store will need a precise card mark, so go ahead and
// compute the full adddres instead of computing once for the
// store and again for the card mark.
LIR_Opr tmp = new_pointer_register();
__ leal(LIR_OprFact::address(addr), tmp);
return new LIR_Address(tmp, type);
} else {
return addr;
}
}
LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
LIR_Opr r = NULL;
if (type == T_LONG) {
r = LIR_OprFact::longConst(x);
} else if (type == T_INT) {
r = LIR_OprFact::intConst(x);
} else {
ShouldNotReachHere();
}
return r;
}
void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
LIR_Opr pointer = new_pointer_register();
__ move(LIR_OprFact::intptrConst(counter), pointer);
LIR_Address* addr = new LIR_Address(pointer, type);
increment_counter(addr, step);
}
void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
__ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
}
void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
__ cmp_mem_int(condition, base, disp, c, info);
}
void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
__ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
}
void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
__ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
}
bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
if (tmp->is_valid()) {
if (is_power_of_2(c + 1)) {
__ move(left, tmp);
__ shift_left(left, log2_intptr(c + 1), left);
__ sub(left, tmp, result);
return true;
} else if (is_power_of_2(c - 1)) {
__ move(left, tmp);
__ shift_left(left, log2_intptr(c - 1), left);
__ add(left, tmp, result);
return true;
}
}
return false;
}
void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
BasicType type = item->type();
__ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
}
//----------------------------------------------------------------------
// visitor functions
//----------------------------------------------------------------------
void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
assert(x->is_pinned(),"");
bool needs_range_check = x->compute_needs_range_check();
bool use_length = x->length() != NULL;
bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
!get_jobject_constant(x->value())->is_null_object() ||
x->should_profile());
LIRItem array(x->array(), this);
LIRItem index(x->index(), this);
LIRItem value(x->value(), this);
LIRItem length(this);
array.load_item();
index.load_nonconstant();
if (use_length && needs_range_check) {
length.set_instruction(x->length());
length.load_item();
}
if (needs_store_check || x->check_boolean()) {
value.load_item();
} else {
value.load_for_store(x->elt_type());
}
set_no_result(x);
// the CodeEmitInfo must be duplicated for each different
// LIR-instruction because spilling can occur anywhere between two
// instructions and so the debug information must be different
CodeEmitInfo* range_check_info = state_for(x);
CodeEmitInfo* null_check_info = NULL;
if (x->needs_null_check()) {
null_check_info = new CodeEmitInfo(range_check_info);
}
// emit array address setup early so it schedules better
LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
if (GenerateRangeChecks && needs_range_check) {
if (use_length) {
__ cmp(lir_cond_belowEqual, length.result(), index.result());
__ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
} else {
array_range_check(array.result(), index.result(), null_check_info, range_check_info);
// range_check also does the null check
null_check_info = NULL;
}
}
if (GenerateArrayStoreCheck && needs_store_check) {
LIR_Opr tmp1 = new_register(objectType);
LIR_Opr tmp2 = new_register(objectType);
LIR_Opr tmp3 = new_register(objectType);
CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
__ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
}
if (obj_store) {
// Needs GC write barriers.
pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
true /* do_load */, false /* patch */, NULL);
__ move(value.result(), array_addr, null_check_info);
// Seems to be a precise
post_barrier(LIR_OprFact::address(array_addr), value.result());
} else {
LIR_Opr result = maybe_mask_boolean(x, array.result(), value.result(), null_check_info);
__ move(result, array_addr, null_check_info);
}
}
void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
assert(x->is_pinned(),"");
LIRItem obj(x->obj(), this);
obj.load_item();
set_no_result(x);
// "lock" stores the address of the monitor stack slot, so this is not an oop
LIR_Opr lock = new_register(T_INT);
// Need a scratch register for biased locking on x86
LIR_Opr scratch = LIR_OprFact::illegalOpr;
if (UseBiasedLocking) {
scratch = new_register(T_INT);
}
CodeEmitInfo* info_for_exception = NULL;
if (x->needs_null_check()) {
info_for_exception = state_for(x);
}
// this CodeEmitInfo must not have the xhandlers because here the
// object is already locked (xhandlers expect object to be unlocked)
CodeEmitInfo* info = state_for(x, x->state(), true);
monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
x->monitor_no(), info_for_exception, info);
}
void LIRGenerator::do_MonitorExit(MonitorExit* x) {
assert(x->is_pinned(),"");
LIRItem obj(x->obj(), this);
obj.dont_load_item();
LIR_Opr lock = new_register(T_INT);
LIR_Opr obj_temp = new_register(T_INT);
set_no_result(x);
monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
}
// _ineg, _lneg, _fneg, _dneg
void LIRGenerator::do_NegateOp(NegateOp* x) {
LIRItem value(x->x(), this);
value.set_destroys_register();
value.load_item();
LIR_Opr reg = rlock(x);
__ negate(value.result(), reg);
set_result(x, round_item(reg));
}
// for _fadd, _fmul, _fsub, _fdiv, _frem
// _dadd, _dmul, _dsub, _ddiv, _drem
void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
LIRItem* left_arg = &left;
LIRItem* right_arg = &right;
assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
left.load_item();
} else {
left.dont_load_item();
}
// do not load right operand if it is a constant. only 0 and 1 are
// loaded because there are special instructions for loading them
// without memory access (not needed for SSE2 instructions)
bool must_load_right = false;
if (right.is_constant()) {
LIR_Const* c = right.result()->as_constant_ptr();
assert(c != NULL, "invalid constant");
assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
if (c->type() == T_FLOAT) {
must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
} else {
must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
}
}
if (must_load_both) {
// frem and drem destroy also right operand, so move it to a new register
right.set_destroys_register();
right.load_item();
} else if (right.is_register() || must_load_right) {
right.load_item();
} else {
right.dont_load_item();
}
LIR_Opr reg = rlock(x);
LIR_Opr tmp = LIR_OprFact::illegalOpr;
if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
tmp = new_register(T_DOUBLE);
}
if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
// special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
LIR_Opr fpu0, fpu1;
if (x->op() == Bytecodes::_frem) {
fpu0 = LIR_OprFact::single_fpu(0);
fpu1 = LIR_OprFact::single_fpu(1);
} else {
fpu0 = LIR_OprFact::double_fpu(0);
fpu1 = LIR_OprFact::double_fpu(1);
}
__ move(right.result(), fpu1); // order of left and right operand is important!
__ move(left.result(), fpu0);
__ rem (fpu0, fpu1, fpu0);
__ move(fpu0, reg);
} else {
arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
}
set_result(x, round_item(reg));
}
// for _ladd, _lmul, _lsub, _ldiv, _lrem
void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
// long division is implemented as a direct call into the runtime
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
// the check for division by zero destroys the right operand
right.set_destroys_register();
BasicTypeList signature(2);
signature.append(T_LONG);
signature.append(T_LONG);
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
// check for division by zero (destroys registers of right operand!)
CodeEmitInfo* info = state_for(x);
const LIR_Opr result_reg = result_register_for(x->type());
left.load_item_force(cc->at(1));
right.load_item();
__ move(right.result(), cc->at(0));
__ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
__ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
address entry = NULL;
switch (x->op()) {
case Bytecodes::_lrem:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
break; // check if dividend is 0 is done elsewhere
case Bytecodes::_ldiv:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
break; // check if dividend is 0 is done elsewhere
case Bytecodes::_lmul:
entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
break;
default:
ShouldNotReachHere();
}
LIR_Opr result = rlock_result(x);
__ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
__ move(result_reg, result);
} else if (x->op() == Bytecodes::_lmul) {
// missing test if instr is commutative and if we should swap
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
// right register is destroyed by the long mul, so it must be
// copied to a new register.
right.set_destroys_register();
left.load_item();
right.load_item();
LIR_Opr reg = FrameMap::long0_opr;
arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
} else {
// missing test if instr is commutative and if we should swap
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
// don't load constants to save register
right.load_nonconstant();
rlock_result(x);
arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
}
}
// for: _iadd, _imul, _isub, _idiv, _irem
void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
// The requirements for division and modulo
// input : rax,: dividend min_int
// reg: divisor (may not be rax,/rdx) -1
//
// output: rax,: quotient (= rax, idiv reg) min_int
// rdx: remainder (= rax, irem reg) 0
// rax, and rdx will be destroyed
// Note: does this invalidate the spec ???
LIRItem right(x->y(), this);
LIRItem left(x->x() , this); // visit left second, so that the is_register test is valid
// call state_for before load_item_force because state_for may
// force the evaluation of other instructions that are needed for
// correct debug info. Otherwise the live range of the fix
// register might be too long.
CodeEmitInfo* info = state_for(x);
left.load_item_force(divInOpr());
right.load_item();
LIR_Opr result = rlock_result(x);
LIR_Opr result_reg;
if (x->op() == Bytecodes::_idiv) {
result_reg = divOutOpr();
} else {
result_reg = remOutOpr();
}
if (!ImplicitDiv0Checks) {
__ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
__ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
}
LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
if (x->op() == Bytecodes::_irem) {
__ irem(left.result(), right.result(), result_reg, tmp, info);
} else if (x->op() == Bytecodes::_idiv) {
__ idiv(left.result(), right.result(), result_reg, tmp, info);
} else {
ShouldNotReachHere();
}
__ move(result_reg, result);
} else {
// missing test if instr is commutative and if we should swap
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
LIRItem* left_arg = &left;
LIRItem* right_arg = &right;
if (x->is_commutative() && left.is_stack() && right.is_register()) {
// swap them if left is real stack (or cached) and right is real register(not cached)
left_arg = &right;
right_arg = &left;
}
left_arg->load_item();
// do not need to load right, as we can handle stack and constants
if (x->op() == Bytecodes::_imul ) {
// check if we can use shift instead
bool use_constant = false;
bool use_tmp = false;
if (right_arg->is_constant()) {
int iconst = right_arg->get_jint_constant();
if (iconst > 0) {
if (is_power_of_2(iconst)) {
use_constant = true;
} else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
use_constant = true;
use_tmp = true;
}
}
}
if (use_constant) {
right_arg->dont_load_item();
} else {
right_arg->load_item();
}
LIR_Opr tmp = LIR_OprFact::illegalOpr;
if (use_tmp) {
tmp = new_register(T_INT);
}
rlock_result(x);
arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
} else {
right_arg->dont_load_item();
rlock_result(x);
LIR_Opr tmp = LIR_OprFact::illegalOpr;
arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
}
}
}
void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
// when an operand with use count 1 is the left operand, then it is
// likely that no move for 2-operand-LIR-form is necessary
if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
x->swap_operands();
}
ValueTag tag = x->type()->tag();
assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
switch (tag) {
case floatTag:
case doubleTag: do_ArithmeticOp_FPU(x); return;
case longTag: do_ArithmeticOp_Long(x); return;
case intTag: do_ArithmeticOp_Int(x); return;
}
ShouldNotReachHere();
}
// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
void LIRGenerator::do_ShiftOp(ShiftOp* x) {
// count must always be in rcx
LIRItem value(x->x(), this);
LIRItem count(x->y(), this);
ValueTag elemType = x->type()->tag();
bool must_load_count = !count.is_constant() || elemType == longTag;
if (must_load_count) {
// count for long must be in register
count.load_item_force(shiftCountOpr());
} else {
count.dont_load_item();
}
value.load_item();
LIR_Opr reg = rlock_result(x);
shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
}
// _iand, _land, _ior, _lor, _ixor, _lxor
void LIRGenerator::do_LogicOp(LogicOp* x) {
// when an operand with use count 1 is the left operand, then it is
// likely that no move for 2-operand-LIR-form is necessary
if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
x->swap_operands();
}
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
left.load_item();
right.load_nonconstant();
LIR_Opr reg = rlock_result(x);
logic_op(x->op(), reg, left.result(), right.result());
}
// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
void LIRGenerator::do_CompareOp(CompareOp* x) {
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
ValueTag tag = x->x()->type()->tag();
if (tag == longTag) {
left.set_destroys_register();
}
left.load_item();
right.load_item();
LIR_Opr reg = rlock_result(x);
if (x->x()->type()->is_float_kind()) {
Bytecodes::Code code = x->op();
__ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
} else if (x->x()->type()->tag() == longTag) {
__ lcmp2int(left.result(), right.result(), reg);
} else {
Unimplemented();
}
}
void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
assert(x->number_of_arguments() == 4, "wrong type");
LIRItem obj (x->argument_at(0), this); // object
LIRItem offset(x->argument_at(1), this); // offset of field
LIRItem cmp (x->argument_at(2), this); // value to compare with field
LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
assert(obj.type()->tag() == objectTag, "invalid type");
// In 64bit the type can be long, sparc doesn't have this assert
// assert(offset.type()->tag() == intTag, "invalid type");
assert(cmp.type()->tag() == type->tag(), "invalid type");
assert(val.type()->tag() == type->tag(), "invalid type");
// get address of field
obj.load_item();
offset.load_nonconstant();
if (type == objectType) {
cmp.load_item_force(FrameMap::rax_oop_opr);
val.load_item();
} else if (type == intType) {
cmp.load_item_force(FrameMap::rax_opr);
val.load_item();
} else if (type == longType) {
cmp.load_item_force(FrameMap::long0_opr);
val.load_item_force(FrameMap::long1_opr);
} else {
ShouldNotReachHere();
}
LIR_Opr addr = new_pointer_register();
LIR_Address* a;
if(offset.result()->is_constant()) {
#ifdef _LP64
jlong c = offset.result()->as_jlong();
if ((jlong)((jint)c) == c) {
a = new LIR_Address(obj.result(),
(jint)c,
as_BasicType(type));
} else {
LIR_Opr tmp = new_register(T_LONG);
__ move(offset.result(), tmp);
a = new LIR_Address(obj.result(),
tmp,
as_BasicType(type));
}
#else
a = new LIR_Address(obj.result(),
offset.result()->as_jint(),
as_BasicType(type));
#endif
} else {
a = new LIR_Address(obj.result(),
offset.result(),
LIR_Address::times_1,
0,
as_BasicType(type));
}
__ leal(LIR_OprFact::address(a), addr);
if (type == objectType) { // Write-barrier needed for Object fields.
// Do the pre-write barrier, if any.
pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
true /* do_load */, false /* patch */, NULL);
}
LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience
if (type == objectType)
__ cas_obj(addr, cmp.result(), val.result(), ill, ill);
else if (type == intType)
__ cas_int(addr, cmp.result(), val.result(), ill, ill);
else if (type == longType)
__ cas_long(addr, cmp.result(), val.result(), ill, ill);
else {
ShouldNotReachHere();
}
// generate conditional move of boolean result
LIR_Opr result = rlock_result(x);
__ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
result, as_BasicType(type));
if (type == objectType) { // Write-barrier needed for Object fields.
// Seems to be precise
post_barrier(addr, val.result());
}
}
void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
LIRItem value(x->argument_at(0), this);
bool use_fpu = false;
if (UseSSE >= 2) {
switch(x->id()) {
case vmIntrinsics::_dsin:
case vmIntrinsics::_dcos:
case vmIntrinsics::_dtan:
case vmIntrinsics::_dlog:
case vmIntrinsics::_dlog10:
case vmIntrinsics::_dexp:
case vmIntrinsics::_dpow:
use_fpu = true;
}
} else {
value.set_destroys_register();
}
value.load_item();
LIR_Opr calc_input = value.result();
LIR_Opr calc_input2 = NULL;
if (x->id() == vmIntrinsics::_dpow) {
LIRItem extra_arg(x->argument_at(1), this);
if (UseSSE < 2) {
extra_arg.set_destroys_register();
}
extra_arg.load_item();
calc_input2 = extra_arg.result();
}
LIR_Opr calc_result = rlock_result(x);
// sin, cos, pow and exp need two free fpu stack slots, so register
// two temporary operands
LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
if (use_fpu) {
LIR_Opr tmp = FrameMap::fpu0_double_opr;
int tmp_start = 1;
if (calc_input2 != NULL) {
__ move(calc_input2, tmp);
tmp_start = 2;
calc_input2 = tmp;
}
__ move(calc_input, tmp);
calc_input = tmp;
calc_result = tmp;
tmp1 = FrameMap::caller_save_fpu_reg_at(tmp_start);
tmp2 = FrameMap::caller_save_fpu_reg_at(tmp_start + 1);
}
switch(x->id()) {
case vmIntrinsics::_dabs: __ abs (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
case vmIntrinsics::_dsqrt: __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
case vmIntrinsics::_dsin: __ sin (calc_input, calc_result, tmp1, tmp2); break;
case vmIntrinsics::_dcos: __ cos (calc_input, calc_result, tmp1, tmp2); break;
case vmIntrinsics::_dtan: __ tan (calc_input, calc_result, tmp1, tmp2); break;
case vmIntrinsics::_dlog: __ log (calc_input, calc_result, tmp1); break;
case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1); break;
case vmIntrinsics::_dexp: __ exp (calc_input, calc_result, tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
case vmIntrinsics::_dpow: __ pow (calc_input, calc_input2, calc_result, tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
default: ShouldNotReachHere();
}
if (use_fpu) {
__ move(calc_result, x->operand());
}
}
void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
assert(x->number_of_arguments() == 5, "wrong type");
// Make all state_for calls early since they can emit code
CodeEmitInfo* info = state_for(x, x->state());
LIRItem src(x->argument_at(0), this);
LIRItem src_pos(x->argument_at(1), this);
LIRItem dst(x->argument_at(2), this);
LIRItem dst_pos(x->argument_at(3), this);
LIRItem length(x->argument_at(4), this);
// operands for arraycopy must use fixed registers, otherwise
// LinearScan will fail allocation (because arraycopy always needs a
// call)
#ifndef _LP64
src.load_item_force (FrameMap::rcx_oop_opr);
src_pos.load_item_force (FrameMap::rdx_opr);
dst.load_item_force (FrameMap::rax_oop_opr);
dst_pos.load_item_force (FrameMap::rbx_opr);
length.load_item_force (FrameMap::rdi_opr);
LIR_Opr tmp = (FrameMap::rsi_opr);
#else
// The java calling convention will give us enough registers
// so that on the stub side the args will be perfect already.
// On the other slow/special case side we call C and the arg
// positions are not similar enough to pick one as the best.
// Also because the java calling convention is a "shifted" version
// of the C convention we can process the java args trivially into C
// args without worry of overwriting during the xfer
src.load_item_force (FrameMap::as_oop_opr(j_rarg0));
src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
dst.load_item_force (FrameMap::as_oop_opr(j_rarg2));
dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
length.load_item_force (FrameMap::as_opr(j_rarg4));
LIR_Opr tmp = FrameMap::as_opr(j_rarg5);
#endif // LP64
set_no_result(x);
int flags;
ciArrayKlass* expected_type;
arraycopy_helper(x, &flags, &expected_type);
__ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
}
void LIRGenerator::do_update_CRC32(Intrinsic* x) {
assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
// Make all state_for calls early since they can emit code
LIR_Opr result = rlock_result(x);
int flags = 0;
switch (x->id()) {
case vmIntrinsics::_updateCRC32: {
LIRItem crc(x->argument_at(0), this);
LIRItem val(x->argument_at(1), this);
// val is destroyed by update_crc32
val.set_destroys_register();
crc.load_item();
val.load_item();
__ update_crc32(crc.result(), val.result(), result);
break;
}
case vmIntrinsics::_updateBytesCRC32:
case vmIntrinsics::_updateByteBufferCRC32: {
bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
LIRItem crc(x->argument_at(0), this);
LIRItem buf(x->argument_at(1), this);
LIRItem off(x->argument_at(2), this);
LIRItem len(x->argument_at(3), this);
buf.load_item();
off.load_nonconstant();
LIR_Opr index = off.result();
int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
if(off.result()->is_constant()) {
index = LIR_OprFact::illegalOpr;
offset += off.result()->as_jint();
}
LIR_Opr base_op = buf.result();
#ifndef _LP64
if (!is_updateBytes) { // long b raw address
base_op = new_register(T_INT);
__ convert(Bytecodes::_l2i, buf.result(), base_op);
}
#else
if (index->is_valid()) {
LIR_Opr tmp = new_register(T_LONG);
__ convert(Bytecodes::_i2l, index, tmp);
index = tmp;
}
#endif
LIR_Address* a = new LIR_Address(base_op,
index,
LIR_Address::times_1,
offset,
T_BYTE);
BasicTypeList signature(3);
signature.append(T_INT);
signature.append(T_ADDRESS);
signature.append(T_INT);
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
const LIR_Opr result_reg = result_register_for(x->type());
LIR_Opr addr = new_pointer_register();
__ leal(LIR_OprFact::address(a), addr);
crc.load_item_force(cc->at(0));
__ move(addr, cc->at(1));
len.load_item_force(cc->at(2));
__ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
__ move(result_reg, result);
break;
}
default: {
ShouldNotReachHere();
}
}
}
// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
// _i2b, _i2c, _i2s
LIR_Opr fixed_register_for(BasicType type) {
switch (type) {
case T_FLOAT: return FrameMap::fpu0_float_opr;
case T_DOUBLE: return FrameMap::fpu0_double_opr;
case T_INT: return FrameMap::rax_opr;
case T_LONG: return FrameMap::long0_opr;
default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
}
}
void LIRGenerator::do_Convert(Convert* x) {
// flags that vary for the different operations and different SSE-settings
bool fixed_input = false, fixed_result = false, round_result = false, needs_stub = false;
switch (x->op()) {
case Bytecodes::_i2l: // fall through
case Bytecodes::_l2i: // fall through
case Bytecodes::_i2b: // fall through
case Bytecodes::_i2c: // fall through
case Bytecodes::_i2s: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break;
case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false; round_result = false; needs_stub = false; break;
case Bytecodes::_d2f: fixed_input = false; fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
case Bytecodes::_i2f: fixed_input = false; fixed_result = false; round_result = UseSSE < 1; needs_stub = false; break;
case Bytecodes::_i2d: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break;
case Bytecodes::_f2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break;
case Bytecodes::_d2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break;
case Bytecodes::_l2f: fixed_input = false; fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
case Bytecodes::_l2d: fixed_input = false; fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
case Bytecodes::_f2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break;
case Bytecodes::_d2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break;
default: ShouldNotReachHere();
}
LIRItem value(x->value(), this);
value.load_item();
LIR_Opr input = value.result();
LIR_Opr result = rlock(x);
// arguments of lir_convert
LIR_Opr conv_input = input;
LIR_Opr conv_result = result;
ConversionStub* stub = NULL;
if (fixed_input) {
conv_input = fixed_register_for(input->type());
__ move(input, conv_input);
}
assert(fixed_result == false || round_result == false, "cannot set both");
if (fixed_result) {
conv_result = fixed_register_for(result->type());
} else if (round_result) {
result = new_register(result->type());
set_vreg_flag(result, must_start_in_memory);
}
if (needs_stub) {
stub = new ConversionStub(x->op(), conv_input, conv_result);
}
__ convert(x->op(), conv_input, conv_result, stub);
if (result != conv_result) {
__ move(conv_result, result);
}
assert(result->is_virtual(), "result must be virtual register");
set_result(x, result);
}
void LIRGenerator::do_NewInstance(NewInstance* x) {
print_if_not_loaded(x);
CodeEmitInfo* info = state_for(x, x->state());
LIR_Opr reg = result_register_for(x->type());
new_instance(reg, x->klass(), x->is_unresolved(),
FrameMap::rcx_oop_opr,
FrameMap::rdi_oop_opr,
FrameMap::rsi_oop_opr,
LIR_OprFact::illegalOpr,
FrameMap::rdx_metadata_opr, info);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
CodeEmitInfo* info = state_for(x, x->state());
LIRItem length(x->length(), this);
length.load_item_force(FrameMap::rbx_opr);
LIR_Opr reg = result_register_for(x->type());
LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
LIR_Opr tmp4 = reg;
LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
LIR_Opr len = length.result();
BasicType elem_type = x->elt_type();
__ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
LIRItem length(x->length(), this);
// in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
// and therefore provide the state before the parameters have been consumed
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || PatchALot) {
patching_info = state_for(x, x->state_before());
}
CodeEmitInfo* info = state_for(x, x->state());
const LIR_Opr reg = result_register_for(x->type());
LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
LIR_Opr tmp4 = reg;
LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
length.load_item_force(FrameMap::rbx_opr);
LIR_Opr len = length.result();
CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
if (obj == ciEnv::unloaded_ciobjarrayklass()) {
BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
}
klass2reg_with_patching(klass_reg, obj, patching_info);
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
Values* dims = x->dims();
int i = dims->length();
LIRItemList* items = new LIRItemList(dims->length(), NULL);
while (i-- > 0) {
LIRItem* size = new LIRItem(dims->at(i), this);
items->at_put(i, size);
}
// Evaluate state_for early since it may emit code.
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || PatchALot) {
patching_info = state_for(x, x->state_before());
// Cannot re-use same xhandlers for multiple CodeEmitInfos, so
// clone all handlers (NOTE: Usually this is handled transparently
// by the CodeEmitInfo cloning logic in CodeStub constructors but
// is done explicitly here because a stub isn't being used).
x->set_exception_handlers(new XHandlers(x->exception_handlers()));
}
CodeEmitInfo* info = state_for(x, x->state());
i = dims->length();
while (i-- > 0) {
LIRItem* size = items->at(i);
size->load_nonconstant();
store_stack_parameter(size->result(), in_ByteSize(i*4));
}
LIR_Opr klass_reg = FrameMap::rax_metadata_opr;
klass2reg_with_patching(klass_reg, x->klass(), patching_info);
LIR_Opr rank = FrameMap::rbx_opr;
__ move(LIR_OprFact::intConst(x->rank()), rank);
LIR_Opr varargs = FrameMap::rcx_opr;
__ move(FrameMap::rsp_opr, varargs);
LIR_OprList* args = new LIR_OprList(3);
args->append(klass_reg);
args->append(rank);
args->append(varargs);
LIR_Opr reg = result_register_for(x->type());
__ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
LIR_OprFact::illegalOpr,
reg, args, info);
LIR_Opr result = rlock_result(x);
__ move(reg, result);
}
void LIRGenerator::do_BlockBegin(BlockBegin* x) {
// nothing to do for now
}
void LIRGenerator::do_CheckCast(CheckCast* x) {
LIRItem obj(x->obj(), this);
CodeEmitInfo* patching_info = NULL;
if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
// must do this before locking the destination register as an oop register,
// and before the obj is loaded (the latter is for deoptimization)
patching_info = state_for(x, x->state_before());
}
obj.load_item();
// info for exceptions
CodeEmitInfo* info_for_exception =
(x->needs_exception_state() ? state_for(x) :
state_for(x, x->state_before(), true /*ignore_xhandler*/));
CodeStub* stub;
if (x->is_incompatible_class_change_check()) {
assert(patching_info == NULL, "can't patch this");
stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
} else if (x->is_invokespecial_receiver_check()) {
assert(patching_info == NULL, "can't patch this");
stub = new DeoptimizeStub(info_for_exception);
} else {
stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
}
LIR_Opr reg = rlock_result(x);
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
tmp3 = new_register(objectType);
}
__ checkcast(reg, obj.result(), x->klass(),
new_register(objectType), new_register(objectType), tmp3,
x->direct_compare(), info_for_exception, patching_info, stub,
x->profiled_method(), x->profiled_bci());
}
void LIRGenerator::do_InstanceOf(InstanceOf* x) {
LIRItem obj(x->obj(), this);
// result and test object may not be in same register
LIR_Opr reg = rlock_result(x);
CodeEmitInfo* patching_info = NULL;
if ((!x->klass()->is_loaded() || PatchALot)) {
// must do this before locking the destination register as an oop register
patching_info = state_for(x, x->state_before());
}
obj.load_item();
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
tmp3 = new_register(objectType);
}
__ instanceof(reg, obj.result(), x->klass(),
new_register(objectType), new_register(objectType), tmp3,
x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
}
void LIRGenerator::do_If(If* x) {
assert(x->number_of_sux() == 2, "inconsistency");
ValueTag tag = x->x()->type()->tag();
bool is_safepoint = x->is_safepoint();
If::Condition cond = x->cond();
LIRItem xitem(x->x(), this);
LIRItem yitem(x->y(), this);
LIRItem* xin = &xitem;
LIRItem* yin = &yitem;
if (tag == longTag) {
// for longs, only conditions "eql", "neq", "lss", "geq" are valid;
// mirror for other conditions
if (cond == If::gtr || cond == If::leq) {
cond = Instruction::mirror(cond);
xin = &yitem;
yin = &xitem;
}
xin->set_destroys_register();
}
xin->load_item();
if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
// inline long zero
yin->dont_load_item();
} else if (tag == longTag || tag == floatTag || tag == doubleTag) {
// longs cannot handle constants at right side
yin->load_item();
} else {
yin->dont_load_item();
}
// add safepoint before generating condition code so it can be recomputed
if (x->is_safepoint()) {
// increment backedge counter if needed
increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
__ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
}
set_no_result(x);
LIR_Opr left = xin->result();
LIR_Opr right = yin->result();
__ cmp(lir_cond(cond), left, right);
// Generate branch profiling. Profiling code doesn't kill flags.
profile_branch(x, cond);
move_to_phi(x->state());
if (x->x()->type()->is_float_kind()) {
__ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
} else {
__ branch(lir_cond(cond), right->type(), x->tsux());
}
assert(x->default_sux() == x->fsux(), "wrong destination above");
__ jump(x->default_sux());
}
LIR_Opr LIRGenerator::getThreadPointer() {
#ifdef _LP64
return FrameMap::as_pointer_opr(r15_thread);
#else
LIR_Opr result = new_register(T_INT);
__ get_thread(result);
return result;
#endif //
}
void LIRGenerator::trace_block_entry(BlockBegin* block) {
store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
LIR_OprList* args = new LIR_OprList();
address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
__ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
}
void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
CodeEmitInfo* info) {
if (address->type() == T_LONG) {
address = new LIR_Address(address->base(),
address->index(), address->scale(),
address->disp(), T_DOUBLE);
// Transfer the value atomically by using FP moves. This means
// the value has to be moved between CPU and FPU registers. It
// always has to be moved through spill slot since there's no
// quick way to pack the value into an SSE register.
LIR_Opr temp_double = new_register(T_DOUBLE);
LIR_Opr spill = new_register(T_LONG);
set_vreg_flag(spill, must_start_in_memory);
__ move(value, spill);
__ volatile_move(spill, temp_double, T_LONG);
__ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
} else {
__ store(value, address, info);
}
}
void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
CodeEmitInfo* info) {
if (address->type() == T_LONG) {
address = new LIR_Address(address->base(),
address->index(), address->scale(),
address->disp(), T_DOUBLE);
// Transfer the value atomically by using FP moves. This means
// the value has to be moved between CPU and FPU registers. In
// SSE0 and SSE1 mode it has to be moved through spill slot but in
// SSE2+ mode it can be moved directly.
LIR_Opr temp_double = new_register(T_DOUBLE);
__ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
__ volatile_move(temp_double, result, T_LONG);
if (UseSSE < 2) {
// no spill slot needed in SSE2 mode because xmm->cpu register move is possible
set_vreg_flag(result, must_start_in_memory);
}
} else {
__ load(address, result, info);
}
}
void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
BasicType type, bool is_volatile) {
if (is_volatile && type == T_LONG) {
LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
LIR_Opr tmp = new_register(T_DOUBLE);
__ load(addr, tmp);
LIR_Opr spill = new_register(T_LONG);
set_vreg_flag(spill, must_start_in_memory);
__ move(tmp, spill);
__ move(spill, dst);
} else {
LIR_Address* addr = new LIR_Address(src, offset, type);
__ load(addr, dst);
}
}
void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
BasicType type, bool is_volatile) {
if (is_volatile && type == T_LONG) {
LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
LIR_Opr tmp = new_register(T_DOUBLE);
LIR_Opr spill = new_register(T_DOUBLE);
set_vreg_flag(spill, must_start_in_memory);
__ move(data, spill);
__ move(spill, tmp);
__ move(tmp, addr);
} else {
LIR_Address* addr = new LIR_Address(src, offset, type);
bool is_obj = (type == T_ARRAY || type == T_OBJECT);
if (is_obj) {
// Do the pre-write barrier, if any.
pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
true /* do_load */, false /* patch */, NULL);
__ move(data, addr);
assert(src->is_register(), "must be register");
// Seems to be a precise address
post_barrier(LIR_OprFact::address(addr), data);
} else {
__ move(data, addr);
}
}
}
void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
BasicType type = x->basic_type();
LIRItem src(x->object(), this);
LIRItem off(x->offset(), this);
LIRItem value(x->value(), this);
src.load_item();
value.load_item();
off.load_nonconstant();
LIR_Opr dst = rlock_result(x, type);
LIR_Opr data = value.result();
bool is_obj = (type == T_ARRAY || type == T_OBJECT);
LIR_Opr offset = off.result();
assert (type == T_INT || (!x->is_add() && is_obj) LP64_ONLY( || type == T_LONG ), "unexpected type");
LIR_Address* addr;
if (offset->is_constant()) {
#ifdef _LP64
jlong c = offset->as_jlong();
if ((jlong)((jint)c) == c) {
addr = new LIR_Address(src.result(), (jint)c, type);
} else {
LIR_Opr tmp = new_register(T_LONG);
__ move(offset, tmp);
addr = new LIR_Address(src.result(), tmp, type);
}
#else
addr = new LIR_Address(src.result(), offset->as_jint(), type);
#endif
} else {
addr = new LIR_Address(src.result(), offset, type);
}
// Because we want a 2-arg form of xchg and xadd
__ move(data, dst);
if (x->is_add()) {
__ xadd(LIR_OprFact::address(addr), dst, dst, LIR_OprFact::illegalOpr);
} else {
if (is_obj) {
// Do the pre-write barrier, if any.
pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
true /* do_load */, false /* patch */, NULL);
}
__ xchg(LIR_OprFact::address(addr), dst, dst, LIR_OprFact::illegalOpr);
if (is_obj) {
// Seems to be a precise address
post_barrier(LIR_OprFact::address(addr), data);
}
}
}