blob: 3518d0b6336cae427bd12386d096d1c6bf298630 [file] [log] [blame]
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_SPARC_VM_MACROASSEMBLER_SPARC_INLINE_HPP
#define CPU_SPARC_VM_MACROASSEMBLER_SPARC_INLINE_HPP
#include "asm/assembler.inline.hpp"
#include "asm/macroAssembler.hpp"
#include "asm/codeBuffer.hpp"
#include "code/codeCache.hpp"
inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
inline int AddressLiteral::low10() const {
return Assembler::low10(value());
}
inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
jint& stub_inst = *(jint*) branch;
stub_inst = patched_branch(target - branch, stub_inst, 0);
}
// Use the right loads/stores for the platform
inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
#ifdef _LP64
Assembler::ldx(s1, s2, d);
#else
ld( s1, s2, d);
#endif
}
inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
#ifdef _LP64
Assembler::ldx(s1, simm13a, d);
#else
ld( s1, simm13a, d);
#endif
}
#ifdef ASSERT
// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
ld_ptr(s1, in_bytes(simm13a), d);
}
#endif
inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
#ifdef _LP64
ldx(s1, s2, d);
#else
ld( s1, s2, d);
#endif
}
inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
#ifdef _LP64
ldx(a, d, offset);
#else
ld( a, d, offset);
#endif
}
inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
#ifdef _LP64
Assembler::stx(d, s1, s2);
#else
st( d, s1, s2);
#endif
}
inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
#ifdef _LP64
Assembler::stx(d, s1, simm13a);
#else
st( d, s1, simm13a);
#endif
}
#ifdef ASSERT
// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
st_ptr(d, s1, in_bytes(simm13a));
}
#endif
inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
#ifdef _LP64
stx(d, s1, s2);
#else
st( d, s1, s2);
#endif
}
inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
#ifdef _LP64
stx(d, a, offset);
#else
st( d, a, offset);
#endif
}
// Use the right loads/stores for the platform
inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
#ifdef _LP64
Assembler::ldx(s1, s2, d);
#else
Assembler::ldd(s1, s2, d);
#endif
}
inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
#ifdef _LP64
Assembler::ldx(s1, simm13a, d);
#else
Assembler::ldd(s1, simm13a, d);
#endif
}
inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
#ifdef _LP64
ldx(s1, s2, d);
#else
ldd(s1, s2, d);
#endif
}
inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
#ifdef _LP64
ldx(a, d, offset);
#else
ldd(a, d, offset);
#endif
}
inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
#ifdef _LP64
Assembler::stx(d, s1, s2);
#else
Assembler::std(d, s1, s2);
#endif
}
inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
#ifdef _LP64
Assembler::stx(d, s1, simm13a);
#else
Assembler::std(d, s1, simm13a);
#endif
}
inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
#ifdef _LP64
stx(d, s1, s2);
#else
std(d, s1, s2);
#endif
}
inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
#ifdef _LP64
stx(d, a, offset);
#else
std(d, a, offset);
#endif
}
// Functions for isolating 64 bit shifts for LP64
inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
#ifdef _LP64
Assembler::sllx(s1, s2, d);
#else
Assembler::sll( s1, s2, d);
#endif
}
inline void MacroAssembler::sll_ptr( Register s1, int imm6a, Register d ) {
#ifdef _LP64
Assembler::sllx(s1, imm6a, d);
#else
Assembler::sll( s1, imm6a, d);
#endif
}
inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
#ifdef _LP64
Assembler::srlx(s1, s2, d);
#else
Assembler::srl( s1, s2, d);
#endif
}
inline void MacroAssembler::srl_ptr( Register s1, int imm6a, Register d ) {
#ifdef _LP64
Assembler::srlx(s1, imm6a, d);
#else
Assembler::srl( s1, imm6a, d);
#endif
}
inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
if (s2.is_register()) sll_ptr(s1, s2.as_register(), d);
else sll_ptr(s1, s2.as_constant(), d);
}
// Use the right branch for the platform
inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
Assembler::bp(c, a, icc, p, d, rt);
}
inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
insert_nop_after_cbcond();
br(c, a, p, target(L));
}
// Branch that tests either xcc or icc depending on the
// architecture compiled (LP64 or not)
inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
#ifdef _LP64
Assembler::bp(c, a, xcc, p, d, rt);
#else
MacroAssembler::br(c, a, p, d, rt);
#endif
}
inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
insert_nop_after_cbcond();
brx(c, a, p, target(L));
}
inline void MacroAssembler::ba( Label& L ) {
br(always, false, pt, L);
}
// Warning: V9 only functions
inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
Assembler::bp(c, a, cc, p, d, rt);
}
inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
Assembler::bp(c, a, cc, p, L);
}
inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
fbp(c, a, fcc0, p, d, rt);
}
inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
insert_nop_after_cbcond();
fb(c, a, p, target(L));
}
inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
Assembler::fbp(c, a, cc, p, d, rt);
}
inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
Assembler::fbp(c, a, cc, p, L);
}
inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
inline bool MacroAssembler::is_far_target(address d) {
if (ForceUnreachable) {
// References outside the code cache should be treated as far
return d < CodeCache::low_bound() || d > CodeCache::high_bound();
}
return !is_in_wdisp30_range(d, CodeCache::low_bound()) || !is_in_wdisp30_range(d, CodeCache::high_bound());
}
// Call with a check to see if we need to deal with the added
// expense of relocation and if we overflow the displacement
// of the quick call instruction.
inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
#ifdef _LP64
intptr_t disp;
// NULL is ok because it will be relocated later.
// Must change NULL to a reachable address in order to
// pass asserts here and in wdisp.
if ( d == NULL )
d = pc();
// Is this address within range of the call instruction?
// If not, use the expensive instruction sequence
if (is_far_target(d)) {
relocate(rt);
AddressLiteral dest(d);
jumpl_to(dest, O7, O7);
} else {
Assembler::call(d, rt);
}
#else
Assembler::call( d, rt );
#endif
}
inline void MacroAssembler::call( Label& L, relocInfo::relocType rt ) {
insert_nop_after_cbcond();
MacroAssembler::call( target(L), rt);
}
inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
// prefetch instruction
inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
Assembler::bp( never, true, xcc, pt, d, rt );
Assembler::bp( never, true, xcc, pt, d, rt );
}
inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
// clobbers o7 on V8!!
// returns delta from gotten pc to addr after
inline int MacroAssembler::get_pc( Register d ) {
int x = offset();
rdpc(d);
return offset() - x;
}
// Note: All MacroAssembler::set_foo functions are defined out-of-line.
// Loads the current PC of the following instruction as an immediate value in
// 2 instructions. All PCs in the CodeCache are within 2 Gig of each other.
inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
#ifdef _LP64
Unimplemented();
#else
Assembler::sethi( thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
add(reg, thepc & 0x3ff, reg, internal_word_Relocation::spec((address)thepc));
#endif
return thepc;
}
inline void MacroAssembler::load_contents(const AddressLiteral& addrlit, Register d, int offset) {
assert_not_delayed();
if (ForceUnreachable) {
patchable_sethi(addrlit, d);
} else {
sethi(addrlit, d);
}
ld(d, addrlit.low10() + offset, d);
}
inline void MacroAssembler::load_bool_contents(const AddressLiteral& addrlit, Register d, int offset) {
assert_not_delayed();
if (ForceUnreachable) {
patchable_sethi(addrlit, d);
} else {
sethi(addrlit, d);
}
ldub(d, addrlit.low10() + offset, d);
}
inline void MacroAssembler::load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset) {
assert_not_delayed();
if (ForceUnreachable) {
patchable_sethi(addrlit, d);
} else {
sethi(addrlit, d);
}
ld_ptr(d, addrlit.low10() + offset, d);
}
inline void MacroAssembler::store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
assert_not_delayed();
if (ForceUnreachable) {
patchable_sethi(addrlit, temp);
} else {
sethi(addrlit, temp);
}
st(s, temp, addrlit.low10() + offset);
}
inline void MacroAssembler::store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
assert_not_delayed();
if (ForceUnreachable) {
patchable_sethi(addrlit, temp);
} else {
sethi(addrlit, temp);
}
st_ptr(s, temp, addrlit.low10() + offset);
}
// This code sequence is relocatable to any address, even on LP64.
inline void MacroAssembler::jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset) {
assert_not_delayed();
// Force fixed length sethi because NativeJump and NativeFarCall don't handle
// variable length instruction streams.
patchable_sethi(addrlit, temp);
jmpl(temp, addrlit.low10() + offset, d);
}
inline void MacroAssembler::jump_to(const AddressLiteral& addrlit, Register temp, int offset) {
jumpl_to(addrlit, temp, G0, offset);
}
inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
int ld_offset, int jmp_offset) {
assert_not_delayed();
//sethi(al); // sethi is caller responsibility for this one
ld_ptr(a, temp, ld_offset);
jmp(temp, jmp_offset);
}
inline void MacroAssembler::set_metadata(Metadata* obj, Register d) {
set_metadata(allocate_metadata_address(obj), d);
}
inline void MacroAssembler::set_metadata_constant(Metadata* obj, Register d) {
set_metadata(constant_metadata_address(obj), d);
}
inline void MacroAssembler::set_metadata(const AddressLiteral& obj_addr, Register d) {
assert(obj_addr.rspec().type() == relocInfo::metadata_type, "must be a metadata reloc");
set(obj_addr, d);
}
inline void MacroAssembler::set_oop(jobject obj, Register d) {
set_oop(allocate_oop_address(obj), d);
}
inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
set_oop(constant_oop_address(obj), d);
}
inline void MacroAssembler::set_oop(const AddressLiteral& obj_addr, Register d) {
assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
set(obj_addr, d);
}
inline void MacroAssembler::load_argument( Argument& a, Register d ) {
if (a.is_register())
mov(a.as_register(), d);
else
ld (a.as_address(), d);
}
inline void MacroAssembler::store_argument( Register s, Argument& a ) {
if (a.is_register())
mov(s, a.as_register());
else
st_ptr (s, a.as_address()); // ABI says everything is right justified.
}
inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
if (a.is_register())
mov(s, a.as_register());
else
st_ptr (s, a.as_address());
}
#ifdef _LP64
inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
if (a.is_float_register())
// V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
fmov(FloatRegisterImpl::S, s, a.as_float_register() );
else
// Floats are stored in the high half of the stack entry
// The low half is undefined per the ABI.
stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
}
inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
if (a.is_float_register())
// V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
fmov(FloatRegisterImpl::D, s, a.as_double_register() );
else
stf(FloatRegisterImpl::D, s, a.as_address());
}
inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
if (a.is_register())
mov(s, a.as_register());
else
stx(s, a.as_address());
}
#endif
inline void MacroAssembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype) {
relocate(rtype);
add(s1, simm13a, d);
}
inline void MacroAssembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec) {
relocate(rspec);
add(s1, simm13a, d);
}
// form effective addresses this way:
inline void MacroAssembler::add(const Address& a, Register d, int offset) {
if (a.has_index()) add(a.base(), a.index(), d);
else { add(a.base(), a.disp() + offset, d, a.rspec(offset)); offset = 0; }
if (offset != 0) add(d, offset, d);
}
inline void MacroAssembler::add(Register s1, RegisterOrConstant s2, Register d, int offset) {
if (s2.is_register()) add(s1, s2.as_register(), d);
else { add(s1, s2.as_constant() + offset, d); offset = 0; }
if (offset != 0) add(d, offset, d);
}
inline void MacroAssembler::andn(Register s1, RegisterOrConstant s2, Register d) {
if (s2.is_register()) andn(s1, s2.as_register(), d);
else andn(s1, s2.as_constant(), d);
}
inline void MacroAssembler::clrb( Register s1, Register s2) { stb( G0, s1, s2 ); }
inline void MacroAssembler::clrh( Register s1, Register s2) { sth( G0, s1, s2 ); }
inline void MacroAssembler::clr( Register s1, Register s2) { stw( G0, s1, s2 ); }
inline void MacroAssembler::clrx( Register s1, Register s2) { stx( G0, s1, s2 ); }
inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
inline void MacroAssembler::clr( Register s1, int simm13a) { stw( G0, s1, simm13a); }
inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
#ifdef _LP64
// Make all 32 bit loads signed so 64 bit registers maintain proper sign
inline void MacroAssembler::ld( Register s1, Register s2, Register d) { ldsw( s1, s2, d); }
inline void MacroAssembler::ld( Register s1, int simm13a, Register d) { ldsw( s1, simm13a, d); }
#else
inline void MacroAssembler::ld( Register s1, Register s2, Register d) { lduw( s1, s2, d); }
inline void MacroAssembler::ld( Register s1, int simm13a, Register d) { lduw( s1, simm13a, d); }
#endif
#ifdef ASSERT
// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
# ifdef _LP64
inline void MacroAssembler::ld(Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
# else
inline void MacroAssembler::ld(Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
# endif
#endif
inline void MacroAssembler::ld( const Address& a, Register d, int offset) {
if (a.has_index()) { assert(offset == 0, ""); ld( a.base(), a.index(), d); }
else { ld( a.base(), a.disp() + offset, d); }
}
inline void MacroAssembler::ldsb(const Address& a, Register d, int offset) {
if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(), d); }
else { ldsb(a.base(), a.disp() + offset, d); }
}
inline void MacroAssembler::ldsh(const Address& a, Register d, int offset) {
if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(), d); }
else { ldsh(a.base(), a.disp() + offset, d); }
}
inline void MacroAssembler::ldsw(const Address& a, Register d, int offset) {
if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(), d); }
else { ldsw(a.base(), a.disp() + offset, d); }
}
inline void MacroAssembler::ldub(const Address& a, Register d, int offset) {
if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(), d); }
else { ldub(a.base(), a.disp() + offset, d); }
}
inline void MacroAssembler::lduh(const Address& a, Register d, int offset) {
if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(), d); }
else { lduh(a.base(), a.disp() + offset, d); }
}
inline void MacroAssembler::lduw(const Address& a, Register d, int offset) {
if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(), d); }
else { lduw(a.base(), a.disp() + offset, d); }
}
inline void MacroAssembler::ldd( const Address& a, Register d, int offset) {
if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(), d); }
else { ldd( a.base(), a.disp() + offset, d); }
}
inline void MacroAssembler::ldx( const Address& a, Register d, int offset) {
if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(), d); }
else { ldx( a.base(), a.disp() + offset, d); }
}
inline void MacroAssembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
inline void MacroAssembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
inline void MacroAssembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
inline void MacroAssembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
inline void MacroAssembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
inline void MacroAssembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
inline void MacroAssembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
inline void MacroAssembler::ld( Register s1, RegisterOrConstant s2, Register d) { ld( Address(s1, s2), d); }
inline void MacroAssembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
inline void MacroAssembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) {
if (s2.is_register()) ldf(w, s1, s2.as_register(), d);
else ldf(w, s1, s2.as_constant(), d);
}
inline void MacroAssembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) {
relocate(a.rspec(offset));
if (a.has_index()) {
assert(offset == 0, "");
ldf(w, a.base(), a.index(), d);
} else {
ldf(w, a.base(), a.disp() + offset, d);
}
}
// returns if membar generates anything, obviously this code should mirror
// membar below.
inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
if (!os::is_MP())
return false; // Not needed on single CPU
const Membar_mask_bits effective_mask =
Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
return (effective_mask != 0);
}
inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
// Uniprocessors do not need memory barriers
if (!os::is_MP())
return;
// Weakened for current Sparcs and TSO. See the v9 manual, sections 8.4.3,
// 8.4.4.3, a.31 and a.50.
// Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
// of the mmask subfield of const7a that does anything that isn't done
// implicitly is StoreLoad.
const Membar_mask_bits effective_mask =
Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
if (effective_mask != 0) {
Assembler::membar(effective_mask);
}
}
inline void MacroAssembler::prefetch(const Address& a, PrefetchFcn f, int offset) {
relocate(a.rspec(offset));
assert(!a.has_index(), "");
prefetch(a.base(), a.disp() + offset, f);
}
inline void MacroAssembler::st(Register d, Register s1, Register s2) { stw(d, s1, s2); }
inline void MacroAssembler::st(Register d, Register s1, int simm13a) { stw(d, s1, simm13a); }
#ifdef ASSERT
// ByteSize is only a class when ASSERT is defined, otherwise it's an int.
inline void MacroAssembler::st(Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
#endif
inline void MacroAssembler::st(Register d, const Address& a, int offset) {
if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index() ); }
else { st( d, a.base(), a.disp() + offset); }
}
inline void MacroAssembler::stb(Register d, const Address& a, int offset) {
if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index() ); }
else { stb(d, a.base(), a.disp() + offset); }
}
inline void MacroAssembler::sth(Register d, const Address& a, int offset) {
if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index() ); }
else { sth(d, a.base(), a.disp() + offset); }
}
inline void MacroAssembler::stw(Register d, const Address& a, int offset) {
if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index() ); }
else { stw(d, a.base(), a.disp() + offset); }
}
inline void MacroAssembler::std(Register d, const Address& a, int offset) {
if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index() ); }
else { std(d, a.base(), a.disp() + offset); }
}
inline void MacroAssembler::stx(Register d, const Address& a, int offset) {
if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index() ); }
else { stx(d, a.base(), a.disp() + offset); }
}
inline void MacroAssembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
inline void MacroAssembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
inline void MacroAssembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); }
inline void MacroAssembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
inline void MacroAssembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
inline void MacroAssembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
inline void MacroAssembler::stf(FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) {
if (s2.is_register()) stf(w, d, s1, s2.as_register());
else stf(w, d, s1, s2.as_constant());
}
inline void MacroAssembler::stf(FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) {
relocate(a.rspec(offset));
if (a.has_index()) { assert(offset == 0, ""); stf(w, d, a.base(), a.index() ); }
else { stf(w, d, a.base(), a.disp() + offset); }
}
inline void MacroAssembler::sub(Register s1, RegisterOrConstant s2, Register d, int offset) {
if (s2.is_register()) sub(s1, s2.as_register(), d);
else { sub(s1, s2.as_constant() + offset, d); offset = 0; }
if (offset != 0) sub(d, offset, d);
}
inline void MacroAssembler::swap(const Address& a, Register d, int offset) {
relocate(a.rspec(offset));
if (a.has_index()) { assert(offset == 0, ""); swap(a.base(), a.index(), d ); }
else { swap(a.base(), a.disp() + offset, d); }
}
#endif // CPU_SPARC_VM_MACROASSEMBLER_SPARC_INLINE_HPP