blob: 12173829220b58871682352c75851dd66dd988d7 [file] [log] [blame]
/*
* Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterGenerator.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/templateTable.hpp"
#include "oops/arrayOop.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/timer.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/debug.hpp"
#include "utilities/macros.hpp"
#define __ _masm->
#ifndef CC_INTERP
const int method_offset = frame::interpreter_frame_method_offset * wordSize;
const int bci_offset = frame::interpreter_frame_bcx_offset * wordSize;
const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
//-----------------------------------------------------------------------------
address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
address entry = __ pc();
#ifdef ASSERT
{
Label L;
__ lea(rax, Address(rbp,
frame::interpreter_frame_monitor_block_top_offset *
wordSize));
__ cmpptr(rax, rsp); // rax = maximal rsp for current rbp (stack
// grows negative)
__ jcc(Assembler::aboveEqual, L); // check if frame is complete
__ stop ("interpreter frame not set up");
__ bind(L);
}
#endif // ASSERT
// Restore bcp under the assumption that the current frame is still
// interpreted
__ restore_bcp();
// expression stack must be empty before entering the VM if an
// exception happened
__ empty_expression_stack();
// throw exception
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_StackOverflowError));
return entry;
}
address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
const char* name) {
address entry = __ pc();
// expression stack must be empty before entering the VM if an
// exception happened
__ empty_expression_stack();
// setup parameters
// ??? convention: expect aberrant index in register ebx
__ lea(c_rarg1, ExternalAddress((address)name));
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::
throw_ArrayIndexOutOfBoundsException),
c_rarg1, rbx);
return entry;
}
address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
address entry = __ pc();
// object is at TOS
__ pop(c_rarg1);
// expression stack must be empty before entering the VM if an
// exception happened
__ empty_expression_stack();
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::
throw_ClassCastException),
c_rarg1);
return entry;
}
address TemplateInterpreterGenerator::generate_exception_handler_common(
const char* name, const char* message, bool pass_oop) {
assert(!pass_oop || message == NULL, "either oop or message but not both");
address entry = __ pc();
if (pass_oop) {
// object is at TOS
__ pop(c_rarg2);
}
// expression stack must be empty before entering the VM if an
// exception happened
__ empty_expression_stack();
// setup parameters
__ lea(c_rarg1, ExternalAddress((address)name));
if (pass_oop) {
__ call_VM(rax, CAST_FROM_FN_PTR(address,
InterpreterRuntime::
create_klass_exception),
c_rarg1, c_rarg2);
} else {
// kind of lame ExternalAddress can't take NULL because
// external_word_Relocation will assert.
if (message != NULL) {
__ lea(c_rarg2, ExternalAddress((address)message));
} else {
__ movptr(c_rarg2, NULL_WORD);
}
__ call_VM(rax,
CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
c_rarg1, c_rarg2);
}
// throw exception
__ jump(ExternalAddress(Interpreter::throw_exception_entry()));
return entry;
}
address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
address entry = __ pc();
// NULL last_sp until next java call
__ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
__ dispatch_next(state);
return entry;
}
address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
address entry = __ pc();
// Restore stack bottom in case i2c adjusted stack
__ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
// and NULL it as marker that esp is now tos until next java call
__ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
__ restore_bcp();
__ restore_locals();
if (state == atos) {
Register mdp = rbx;
Register tmp = rcx;
__ profile_return_type(mdp, rax, tmp);
}
const Register cache = rbx;
const Register index = rcx;
__ get_cache_and_index_at_bcp(cache, index, 1, index_size);
const Register flags = cache;
__ movl(flags, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
__ andl(flags, ConstantPoolCacheEntry::parameter_size_mask);
__ lea(rsp, Address(rsp, flags, Interpreter::stackElementScale()));
__ dispatch_next(state, step);
return entry;
}
address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
int step) {
address entry = __ pc();
// NULL last_sp until next java call
__ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
__ restore_bcp();
__ restore_locals();
// handle exceptions
{
Label L;
__ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
__ jcc(Assembler::zero, L);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_pending_exception));
__ should_not_reach_here();
__ bind(L);
}
__ dispatch_next(state, step);
return entry;
}
int AbstractInterpreter::BasicType_as_index(BasicType type) {
int i = 0;
switch (type) {
case T_BOOLEAN: i = 0; break;
case T_CHAR : i = 1; break;
case T_BYTE : i = 2; break;
case T_SHORT : i = 3; break;
case T_INT : i = 4; break;
case T_LONG : i = 5; break;
case T_VOID : i = 6; break;
case T_FLOAT : i = 7; break;
case T_DOUBLE : i = 8; break;
case T_OBJECT : i = 9; break;
case T_ARRAY : i = 9; break;
default : ShouldNotReachHere();
}
assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
"index out of bounds");
return i;
}
address TemplateInterpreterGenerator::generate_result_handler_for(
BasicType type) {
address entry = __ pc();
switch (type) {
case T_BOOLEAN: __ c2bool(rax); break;
case T_CHAR : __ movzwl(rax, rax); break;
case T_BYTE : __ sign_extend_byte(rax); break;
case T_SHORT : __ sign_extend_short(rax); break;
case T_INT : /* nothing to do */ break;
case T_LONG : /* nothing to do */ break;
case T_VOID : /* nothing to do */ break;
case T_FLOAT : /* nothing to do */ break;
case T_DOUBLE : /* nothing to do */ break;
case T_OBJECT :
// retrieve result from frame
__ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
// and verify it
__ verify_oop(rax);
break;
default : ShouldNotReachHere();
}
__ ret(0); // return from result handler
return entry;
}
address TemplateInterpreterGenerator::generate_safept_entry_for(
TosState state,
address runtime_entry) {
address entry = __ pc();
__ push(state);
__ call_VM(noreg, runtime_entry);
__ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
return entry;
}
// Helpers for commoning out cases in the various type of method entries.
//
// increment invocation count & check for overflow
//
// Note: checking for negative value instead of overflow
// so we have a 'sticky' overflow test
//
// rbx: method
// ecx: invocation counter
//
void InterpreterGenerator::generate_counter_incr(
Label* overflow,
Label* profile_method,
Label* profile_method_continue) {
Label done;
// Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
if (TieredCompilation) {
int increment = InvocationCounter::count_increment;
int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
Label no_mdo;
if (ProfileInterpreter) {
// Are we profiling?
__ movptr(rax, Address(rbx, Method::method_data_offset()));
__ testptr(rax, rax);
__ jccb(Assembler::zero, no_mdo);
// Increment counter in the MDO
const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) +
in_bytes(InvocationCounter::counter_offset()));
__ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
__ jmp(done);
}
__ bind(no_mdo);
// Increment counter in MethodCounters
const Address invocation_counter(rax,
MethodCounters::invocation_counter_offset() +
InvocationCounter::counter_offset());
__ get_method_counters(rbx, rax, done);
__ increment_mask_and_jump(invocation_counter, increment, mask, rcx,
false, Assembler::zero, overflow);
__ bind(done);
} else {
const Address backedge_counter(rax,
MethodCounters::backedge_counter_offset() +
InvocationCounter::counter_offset());
const Address invocation_counter(rax,
MethodCounters::invocation_counter_offset() +
InvocationCounter::counter_offset());
__ get_method_counters(rbx, rax, done);
if (ProfileInterpreter) {
__ incrementl(Address(rax,
MethodCounters::interpreter_invocation_counter_offset()));
}
// Update standard invocation counters
__ movl(rcx, invocation_counter);
__ incrementl(rcx, InvocationCounter::count_increment);
__ movl(invocation_counter, rcx); // save invocation count
__ movl(rax, backedge_counter); // load backedge counter
__ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
__ addl(rcx, rax); // add both counters
// profile_method is non-null only for interpreted method so
// profile_method != NULL == !native_call
if (ProfileInterpreter && profile_method != NULL) {
// Test to see if we should create a method data oop
__ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
__ jcc(Assembler::less, *profile_method_continue);
// if no method data exists, go to profile_method
__ test_method_data_pointer(rax, *profile_method);
}
__ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
__ jcc(Assembler::aboveEqual, *overflow);
__ bind(done);
}
}
void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
// Asm interpreter on entry
// r14 - locals
// r13 - bcp
// rbx - method
// edx - cpool --- DOES NOT APPEAR TO BE TRUE
// rbp - interpreter frame
// On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
// Everything as it was on entry
// rdx is not restored. Doesn't appear to really be set.
// InterpreterRuntime::frequency_counter_overflow takes two
// arguments, the first (thread) is passed by call_VM, the second
// indicates if the counter overflow occurs at a backwards branch
// (NULL bcp). We pass zero for it. The call returns the address
// of the verified entry point for the method or NULL if the
// compilation did not complete (either went background or bailed
// out).
__ movl(c_rarg1, 0);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::frequency_counter_overflow),
c_rarg1);
__ movptr(rbx, Address(rbp, method_offset)); // restore Method*
// Preserve invariant that r13/r14 contain bcp/locals of sender frame
// and jump to the interpreted entry.
__ jmp(*do_continue, relocInfo::none);
}
// See if we've got enough room on the stack for locals plus overhead.
// The expression stack grows down incrementally, so the normal guard
// page mechanism will work for that.
//
// NOTE: Since the additional locals are also always pushed (wasn't
// obvious in generate_method_entry) so the guard should work for them
// too.
//
// Args:
// rdx: number of additional locals this frame needs (what we must check)
// rbx: Method*
//
// Kills:
// rax
void InterpreterGenerator::generate_stack_overflow_check(void) {
// monitor entry size: see picture of stack set
// (generate_method_entry) and frame_amd64.hpp
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
// total overhead size: entry_size + (saved rbp through expr stack
// bottom). be sure to change this if you add/subtract anything
// to/from the overhead area
const int overhead_size =
-(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
const int page_size = os::vm_page_size();
Label after_frame_check;
// see if the frame is greater than one page in size. If so,
// then we need to verify there is enough stack space remaining
// for the additional locals.
__ cmpl(rdx, (page_size - overhead_size) / Interpreter::stackElementSize);
__ jcc(Assembler::belowEqual, after_frame_check);
// compute rsp as if this were going to be the last frame on
// the stack before the red zone
const Address stack_base(r15_thread, Thread::stack_base_offset());
const Address stack_size(r15_thread, Thread::stack_size_offset());
// locals + overhead, in bytes
__ mov(rax, rdx);
__ shlptr(rax, Interpreter::logStackElementSize); // 2 slots per parameter.
__ addptr(rax, overhead_size);
#ifdef ASSERT
Label stack_base_okay, stack_size_okay;
// verify that thread stack base is non-zero
__ cmpptr(stack_base, (int32_t)NULL_WORD);
__ jcc(Assembler::notEqual, stack_base_okay);
__ stop("stack base is zero");
__ bind(stack_base_okay);
// verify that thread stack size is non-zero
__ cmpptr(stack_size, 0);
__ jcc(Assembler::notEqual, stack_size_okay);
__ stop("stack size is zero");
__ bind(stack_size_okay);
#endif
// Add stack base to locals and subtract stack size
__ addptr(rax, stack_base);
__ subptr(rax, stack_size);
// Use the maximum number of pages we might bang.
const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
(StackRedPages+StackYellowPages);
// add in the red and yellow zone sizes
__ addptr(rax, max_pages * page_size);
// check against the current stack bottom
__ cmpptr(rsp, rax);
__ jcc(Assembler::above, after_frame_check);
// Restore sender's sp as SP. This is necessary if the sender's
// frame is an extended compiled frame (see gen_c2i_adapter())
// and safer anyway in case of JSR292 adaptations.
__ pop(rax); // return address must be moved if SP is changed
__ mov(rsp, r13);
__ push(rax);
// Note: the restored frame is not necessarily interpreted.
// Use the shared runtime version of the StackOverflowError.
assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
__ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
// all done with frame size check
__ bind(after_frame_check);
}
// Allocate monitor and lock method (asm interpreter)
//
// Args:
// rbx: Method*
// r14: locals
//
// Kills:
// rax
// c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
// rscratch1, rscratch2 (scratch regs)
void InterpreterGenerator::lock_method(void) {
// synchronize method
const Address access_flags(rbx, Method::access_flags_offset());
const Address monitor_block_top(
rbp,
frame::interpreter_frame_monitor_block_top_offset * wordSize);
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
#ifdef ASSERT
{
Label L;
__ movl(rax, access_flags);
__ testl(rax, JVM_ACC_SYNCHRONIZED);
__ jcc(Assembler::notZero, L);
__ stop("method doesn't need synchronization");
__ bind(L);
}
#endif // ASSERT
// get synchronization object
{
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
Label done;
__ movl(rax, access_flags);
__ testl(rax, JVM_ACC_STATIC);
// get receiver (assume this is frequent case)
__ movptr(rax, Address(r14, Interpreter::local_offset_in_bytes(0)));
__ jcc(Assembler::zero, done);
__ movptr(rax, Address(rbx, Method::const_offset()));
__ movptr(rax, Address(rax, ConstMethod::constants_offset()));
__ movptr(rax, Address(rax,
ConstantPool::pool_holder_offset_in_bytes()));
__ movptr(rax, Address(rax, mirror_offset));
#ifdef ASSERT
{
Label L;
__ testptr(rax, rax);
__ jcc(Assembler::notZero, L);
__ stop("synchronization object is NULL");
__ bind(L);
}
#endif // ASSERT
__ bind(done);
}
// add space for monitor & lock
__ subptr(rsp, entry_size); // add space for a monitor entry
__ movptr(monitor_block_top, rsp); // set new monitor block top
// store object
__ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax);
__ movptr(c_rarg1, rsp); // object address
__ lock_object(c_rarg1);
}
// Generate a fixed interpreter frame. This is identical setup for
// interpreted methods and for native methods hence the shared code.
//
// Args:
// rax: return address
// rbx: Method*
// r14: pointer to locals
// r13: sender sp
// rdx: cp cache
void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
// initialize fixed part of activation frame
__ push(rax); // save return address
__ enter(); // save old & set new rbp
__ push(r13); // set sender sp
__ push((int)NULL_WORD); // leave last_sp as null
__ movptr(r13, Address(rbx, Method::const_offset())); // get ConstMethod*
__ lea(r13, Address(r13, ConstMethod::codes_offset())); // get codebase
__ push(rbx); // save Method*
if (ProfileInterpreter) {
Label method_data_continue;
__ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset())));
__ testptr(rdx, rdx);
__ jcc(Assembler::zero, method_data_continue);
__ addptr(rdx, in_bytes(MethodData::data_offset()));
__ bind(method_data_continue);
__ push(rdx); // set the mdp (method data pointer)
} else {
__ push(0);
}
__ movptr(rdx, Address(rbx, Method::const_offset()));
__ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
__ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
__ push(rdx); // set constant pool cache
__ push(r14); // set locals pointer
if (native_call) {
__ push(0); // no bcp
} else {
__ push(r13); // set bcp
}
__ push(0); // reserve word for pointer to expression stack bottom
__ movptr(Address(rsp, 0), rsp); // set expression stack bottom
}
// End of helpers
// Various method entries
//------------------------------------------------------------------------------------------------------------------------
//
//
// Call an accessor method (assuming it is resolved, otherwise drop
// into vanilla (slow path) entry
address InterpreterGenerator::generate_accessor_entry(void) {
// rbx: Method*
// r13: senderSP must preserver for slow path, set SP to it on fast path
address entry_point = __ pc();
Label xreturn_path;
// do fastpath for resolved accessor methods
if (UseFastAccessorMethods) {
// Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites
// thereof; parameter size = 1
// Note: We can only use this code if the getfield has been resolved
// and if we don't have a null-pointer exception => check for
// these conditions first and use slow path if necessary.
Label slow_path;
// If we need a safepoint check, generate full interpreter entry.
__ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
SafepointSynchronize::_not_synchronized);
__ jcc(Assembler::notEqual, slow_path);
// rbx: method
__ movptr(rax, Address(rsp, wordSize));
// check if local 0 != NULL and read field
__ testptr(rax, rax);
__ jcc(Assembler::zero, slow_path);
// read first instruction word and extract bytecode @ 1 and index @ 2
__ movptr(rdx, Address(rbx, Method::const_offset()));
__ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
__ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
// Shift codes right to get the index on the right.
// The bytecode fetched looks like <index><0xb4><0x2a>
__ shrl(rdx, 2 * BitsPerByte);
__ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
__ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
// rax: local 0
// rbx: method
// rdx: constant pool cache index
// rdi: constant pool cache
// check if getfield has been resolved and read constant pool cache entry
// check the validity of the cache entry by testing whether _indices field
// contains Bytecode::_getfield in b1 byte.
assert(in_words(ConstantPoolCacheEntry::size()) == 4,
"adjust shift below");
__ movl(rcx,
Address(rdi,
rdx,
Address::times_8,
ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::indices_offset()));
__ shrl(rcx, 2 * BitsPerByte);
__ andl(rcx, 0xFF);
__ cmpl(rcx, Bytecodes::_getfield);
__ jcc(Assembler::notEqual, slow_path);
// Note: constant pool entry is not valid before bytecode is resolved
__ movptr(rcx,
Address(rdi,
rdx,
Address::times_8,
ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::f2_offset()));
// edx: flags
__ movl(rdx,
Address(rdi,
rdx,
Address::times_8,
ConstantPoolCache::base_offset() +
ConstantPoolCacheEntry::flags_offset()));
Label notObj, notInt, notByte, notBool, notShort;
const Address field_address(rax, rcx, Address::times_1);
// Need to differentiate between igetfield, agetfield, bgetfield etc.
// because they are different sizes.
// Use the type from the constant pool cache
__ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
// Make sure we don't need to mask edx after the above shift
ConstantPoolCacheEntry::verify_tos_state_shift();
__ cmpl(rdx, atos);
__ jcc(Assembler::notEqual, notObj);
// atos
__ load_heap_oop(rax, field_address);
__ jmp(xreturn_path);
__ bind(notObj);
__ cmpl(rdx, itos);
__ jcc(Assembler::notEqual, notInt);
// itos
__ movl(rax, field_address);
__ jmp(xreturn_path);
__ bind(notInt);
__ cmpl(rdx, btos);
__ jcc(Assembler::notEqual, notByte);
// btos
__ load_signed_byte(rax, field_address);
__ jmp(xreturn_path);
__ bind(notByte);
__ cmpl(rdx, ztos);
__ jcc(Assembler::notEqual, notBool);
// ztos
__ load_signed_byte(rax, field_address);
__ jmp(xreturn_path);
__ bind(notBool);
__ cmpl(rdx, stos);
__ jcc(Assembler::notEqual, notShort);
// stos
__ load_signed_short(rax, field_address);
__ jmp(xreturn_path);
__ bind(notShort);
#ifdef ASSERT
Label okay;
__ cmpl(rdx, ctos);
__ jcc(Assembler::equal, okay);
__ stop("what type is this?");
__ bind(okay);
#endif
// ctos
__ load_unsigned_short(rax, field_address);
__ bind(xreturn_path);
// _ireturn/_areturn
__ pop(rdi);
__ mov(rsp, r13);
__ jmp(rdi);
__ ret(0);
// generate a vanilla interpreter entry as the slow path
__ bind(slow_path);
(void) generate_normal_entry(false);
} else {
(void) generate_normal_entry(false);
}
return entry_point;
}
// Method entry for java.lang.ref.Reference.get.
address InterpreterGenerator::generate_Reference_get_entry(void) {
#if INCLUDE_ALL_GCS
// Code: _aload_0, _getfield, _areturn
// parameter size = 1
//
// The code that gets generated by this routine is split into 2 parts:
// 1. The "intrinsified" code for G1 (or any SATB based GC),
// 2. The slow path - which is an expansion of the regular method entry.
//
// Notes:-
// * In the G1 code we do not check whether we need to block for
// a safepoint. If G1 is enabled then we must execute the specialized
// code for Reference.get (except when the Reference object is null)
// so that we can log the value in the referent field with an SATB
// update buffer.
// If the code for the getfield template is modified so that the
// G1 pre-barrier code is executed when the current method is
// Reference.get() then going through the normal method entry
// will be fine.
// * The G1 code can, however, check the receiver object (the instance
// of java.lang.Reference) and jump to the slow path if null. If the
// Reference object is null then we obviously cannot fetch the referent
// and so we don't need to call the G1 pre-barrier. Thus we can use the
// regular method entry code to generate the NPE.
//
// This code is based on generate_accessor_enty.
//
// rbx: Method*
// r13: senderSP must preserve for slow path, set SP to it on fast path
address entry = __ pc();
const int referent_offset = java_lang_ref_Reference::referent_offset;
guarantee(referent_offset > 0, "referent offset not initialized");
if (UseG1GC) {
Label slow_path;
// rbx: method
// Check if local 0 != NULL
// If the receiver is null then it is OK to jump to the slow path.
__ movptr(rax, Address(rsp, wordSize));
__ testptr(rax, rax);
__ jcc(Assembler::zero, slow_path);
// rax: local 0
// rbx: method (but can be used as scratch now)
// rdx: scratch
// rdi: scratch
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer.
// Load the value of the referent field.
const Address field_address(rax, referent_offset);
__ load_heap_oop(rax, field_address);
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer.
__ g1_write_barrier_pre(noreg /* obj */,
rax /* pre_val */,
r15_thread /* thread */,
rbx /* tmp */,
true /* tosca_live */,
true /* expand_call */);
// _areturn
__ pop(rdi); // get return address
__ mov(rsp, r13); // set sp to sender sp
__ jmp(rdi);
__ ret(0);
// generate a vanilla interpreter entry as the slow path
__ bind(slow_path);
(void) generate_normal_entry(false);
return entry;
}
#endif // INCLUDE_ALL_GCS
// If G1 is not enabled then attempt to go through the accessor entry point
// Reference.get is an accessor
return generate_accessor_entry();
}
/**
* Method entry for static native methods:
* int java.util.zip.CRC32.update(int crc, int b)
*/
address InterpreterGenerator::generate_CRC32_update_entry() {
if (UseCRC32Intrinsics) {
address entry = __ pc();
// rbx,: Method*
// r13: senderSP must preserved for slow path, set SP to it on fast path
// c_rarg0: scratch (rdi on non-Win64, rcx on Win64)
// c_rarg1: scratch (rsi on non-Win64, rdx on Win64)
Label slow_path;
// If we need a safepoint check, generate full interpreter entry.
ExternalAddress state(SafepointSynchronize::address_of_state());
__ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
SafepointSynchronize::_not_synchronized);
__ jcc(Assembler::notEqual, slow_path);
// We don't generate local frame and don't align stack because
// we call stub code and there is no safepoint on this path.
// Load parameters
const Register crc = rax; // crc
const Register val = c_rarg0; // source java byte value
const Register tbl = c_rarg1; // scratch
// Arguments are reversed on java expression stack
__ movl(val, Address(rsp, wordSize)); // byte value
__ movl(crc, Address(rsp, 2*wordSize)); // Initial CRC
__ lea(tbl, ExternalAddress(StubRoutines::crc_table_addr()));
__ notl(crc); // ~crc
__ update_byte_crc32(crc, val, tbl);
__ notl(crc); // ~crc
// result in rax
// _areturn
__ pop(rdi); // get return address
__ mov(rsp, r13); // set sp to sender sp
__ jmp(rdi);
// generate a vanilla native entry as the slow path
__ bind(slow_path);
(void) generate_native_entry(false);
return entry;
}
return generate_native_entry(false);
}
/**
* Method entry for static native methods:
* int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
* int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
*/
address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
if (UseCRC32Intrinsics) {
address entry = __ pc();
// rbx,: Method*
// r13: senderSP must preserved for slow path, set SP to it on fast path
Label slow_path;
// If we need a safepoint check, generate full interpreter entry.
ExternalAddress state(SafepointSynchronize::address_of_state());
__ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
SafepointSynchronize::_not_synchronized);
__ jcc(Assembler::notEqual, slow_path);
// We don't generate local frame and don't align stack because
// we call stub code and there is no safepoint on this path.
// Load parameters
const Register crc = c_rarg0; // crc
const Register buf = c_rarg1; // source java byte array address
const Register len = c_rarg2; // length
const Register off = len; // offset (never overlaps with 'len')
// Arguments are reversed on java expression stack
// Calculate address of start element
if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
__ movptr(buf, Address(rsp, 3*wordSize)); // long buf
__ movl2ptr(off, Address(rsp, 2*wordSize)); // offset
__ addq(buf, off); // + offset
__ movl(crc, Address(rsp, 5*wordSize)); // Initial CRC
} else {
__ movptr(buf, Address(rsp, 3*wordSize)); // byte[] array
__ addptr(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
__ movl2ptr(off, Address(rsp, 2*wordSize)); // offset
__ addq(buf, off); // + offset
__ movl(crc, Address(rsp, 4*wordSize)); // Initial CRC
}
// Can now load 'len' since we're finished with 'off'
__ movl(len, Address(rsp, wordSize)); // Length
__ super_call_VM_leaf(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()), crc, buf, len);
// result in rax
// _areturn
__ pop(rdi); // get return address
__ mov(rsp, r13); // set sp to sender sp
__ jmp(rdi);
// generate a vanilla native entry as the slow path
__ bind(slow_path);
(void) generate_native_entry(false);
return entry;
}
return generate_native_entry(false);
}
// Interpreter stub for calling a native method. (asm interpreter)
// This sets up a somewhat different looking stack for calling the
// native method than the typical interpreter frame setup.
address InterpreterGenerator::generate_native_entry(bool synchronized) {
// determine code generation flags
bool inc_counter = UseCompiler || CountCompiledCalls;
// rbx: Method*
// r13: sender sp
address entry_point = __ pc();
const Address constMethod (rbx, Method::const_offset());
const Address access_flags (rbx, Method::access_flags_offset());
const Address size_of_parameters(rcx, ConstMethod::
size_of_parameters_offset());
// get parameter size (always needed)
__ movptr(rcx, constMethod);
__ load_unsigned_short(rcx, size_of_parameters);
// native calls don't need the stack size check since they have no
// expression stack and the arguments are already on the stack and
// we only add a handful of words to the stack
// rbx: Method*
// rcx: size of parameters
// r13: sender sp
__ pop(rax); // get return address
// for natives the size of locals is zero
// compute beginning of parameters (r14)
__ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
// add 2 zero-initialized slots for native calls
// initialize result_handler slot
__ push((int) NULL_WORD);
// slot for oop temp
// (static native method holder mirror/jni oop result)
__ push((int) NULL_WORD);
// initialize fixed part of activation frame
generate_fixed_frame(true);
// make sure method is native & not abstract
#ifdef ASSERT
__ movl(rax, access_flags);
{
Label L;
__ testl(rax, JVM_ACC_NATIVE);
__ jcc(Assembler::notZero, L);
__ stop("tried to execute non-native method as native");
__ bind(L);
}
{
Label L;
__ testl(rax, JVM_ACC_ABSTRACT);
__ jcc(Assembler::zero, L);
__ stop("tried to execute abstract method in interpreter");
__ bind(L);
}
#endif
// Since at this point in the method invocation the exception handler
// would try to exit the monitor of synchronized methods which hasn't
// been entered yet, we set the thread local variable
// _do_not_unlock_if_synchronized to true. The remove_activation will
// check this flag.
const Address do_not_unlock_if_synchronized(r15_thread,
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
__ movbool(do_not_unlock_if_synchronized, true);
// increment invocation count & check for overflow
Label invocation_counter_overflow;
if (inc_counter) {
generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
}
Label continue_after_compile;
__ bind(continue_after_compile);
bang_stack_shadow_pages(true);
// reset the _do_not_unlock_if_synchronized flag
__ movbool(do_not_unlock_if_synchronized, false);
// check for synchronized methods
// Must happen AFTER invocation_counter check and stack overflow check,
// so method is not locked if overflows.
if (synchronized) {
lock_method();
} else {
// no synchronization necessary
#ifdef ASSERT
{
Label L;
__ movl(rax, access_flags);
__ testl(rax, JVM_ACC_SYNCHRONIZED);
__ jcc(Assembler::zero, L);
__ stop("method needs synchronization");
__ bind(L);
}
#endif
}
// start execution
#ifdef ASSERT
{
Label L;
const Address monitor_block_top(rbp,
frame::interpreter_frame_monitor_block_top_offset * wordSize);
__ movptr(rax, monitor_block_top);
__ cmpptr(rax, rsp);
__ jcc(Assembler::equal, L);
__ stop("broken stack frame setup in interpreter");
__ bind(L);
}
#endif
// jvmti support
__ notify_method_entry();
// work registers
const Register method = rbx;
const Register t = r11;
// allocate space for parameters
__ get_method(method);
__ movptr(t, Address(method, Method::const_offset()));
__ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
__ shll(t, Interpreter::logStackElementSize);
__ subptr(rsp, t);
__ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
__ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
// get signature handler
{
Label L;
__ movptr(t, Address(method, Method::signature_handler_offset()));
__ testptr(t, t);
__ jcc(Assembler::notZero, L);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::prepare_native_call),
method);
__ get_method(method);
__ movptr(t, Address(method, Method::signature_handler_offset()));
__ bind(L);
}
// call signature handler
assert(InterpreterRuntime::SignatureHandlerGenerator::from() == r14,
"adjust this code");
assert(InterpreterRuntime::SignatureHandlerGenerator::to() == rsp,
"adjust this code");
assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
"adjust this code");
// The generated handlers do not touch RBX (the method oop).
// However, large signatures cannot be cached and are generated
// each time here. The slow-path generator can do a GC on return,
// so we must reload it after the call.
__ call(t);
__ get_method(method); // slow path can do a GC, reload RBX
// result handler is in rax
// set result handler
__ movptr(Address(rbp,
(frame::interpreter_frame_result_handler_offset) * wordSize),
rax);
// pass mirror handle if static call
{
Label L;
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
__ movl(t, Address(method, Method::access_flags_offset()));
__ testl(t, JVM_ACC_STATIC);
__ jcc(Assembler::zero, L);
// get mirror
__ movptr(t, Address(method, Method::const_offset()));
__ movptr(t, Address(t, ConstMethod::constants_offset()));
__ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
__ movptr(t, Address(t, mirror_offset));
// copy mirror into activation frame
__ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize),
t);
// pass handle to mirror
__ lea(c_rarg1,
Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
__ bind(L);
}
// get native function entry point
{
Label L;
__ movptr(rax, Address(method, Method::native_function_offset()));
ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
__ movptr(rscratch2, unsatisfied.addr());
__ cmpptr(rax, rscratch2);
__ jcc(Assembler::notEqual, L);
__ call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::prepare_native_call),
method);
__ get_method(method);
__ movptr(rax, Address(method, Method::native_function_offset()));
__ bind(L);
}
// pass JNIEnv
__ lea(c_rarg0, Address(r15_thread, JavaThread::jni_environment_offset()));
// It is enough that the pc() points into the right code
// segment. It does not have to be the correct return pc.
__ set_last_Java_frame(rsp, rbp, (address) __ pc());
// change thread state
#ifdef ASSERT
{
Label L;
__ movl(t, Address(r15_thread, JavaThread::thread_state_offset()));
__ cmpl(t, _thread_in_Java);
__ jcc(Assembler::equal, L);
__ stop("Wrong thread state in native stub");
__ bind(L);
}
#endif
// Change state to native
__ movl(Address(r15_thread, JavaThread::thread_state_offset()),
_thread_in_native);
// Call the native method.
__ call(rax);
// result potentially in rax or xmm0
// Verify or restore cpu control state after JNI call
__ restore_cpu_control_state_after_jni();
// NOTE: The order of these pushes is known to frame::interpreter_frame_result
// in order to extract the result of a method call. If the order of these
// pushes change or anything else is added to the stack then the code in
// interpreter_frame_result must also change.
__ push(dtos);
__ push(ltos);
// change thread state
__ movl(Address(r15_thread, JavaThread::thread_state_offset()),
_thread_in_native_trans);
if (os::is_MP()) {
if (UseMembar) {
// Force this write out before the read below
__ membar(Assembler::Membar_mask_bits(
Assembler::LoadLoad | Assembler::LoadStore |
Assembler::StoreLoad | Assembler::StoreStore));
} else {
// Write serialization page so VM thread can do a pseudo remote membar.
// We use the current thread pointer to calculate a thread specific
// offset to write to within the page. This minimizes bus traffic
// due to cache line collision.
__ serialize_memory(r15_thread, rscratch2);
}
}
// check for safepoint operation in progress and/or pending suspend requests
{
Label Continue;
__ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
SafepointSynchronize::_not_synchronized);
Label L;
__ jcc(Assembler::notEqual, L);
__ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
__ jcc(Assembler::equal, Continue);
__ bind(L);
// Don't use call_VM as it will see a possible pending exception
// and forward it and never return here preventing us from
// clearing _last_native_pc down below. Also can't use
// call_VM_leaf either as it will check to see if r13 & r14 are
// preserved and correspond to the bcp/locals pointers. So we do a
// runtime call by hand.
//
__ mov(c_rarg0, r15_thread);
__ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
__ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
__ andptr(rsp, -16); // align stack as required by ABI
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
__ mov(rsp, r12); // restore sp
__ reinit_heapbase();
__ bind(Continue);
}
// change thread state
__ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
// reset_last_Java_frame
__ reset_last_Java_frame(r15_thread, true);
// reset handle block
__ movptr(t, Address(r15_thread, JavaThread::active_handles_offset()));
__ movl(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
// If result is an oop unbox and store it in frame where gc will see it
// and result handler will pick it up
{
Label no_oop, store_result;
__ lea(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
__ cmpptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
__ jcc(Assembler::notEqual, no_oop);
// retrieve result
__ pop(ltos);
__ testptr(rax, rax);
__ jcc(Assembler::zero, store_result);
__ movptr(rax, Address(rax, 0));
__ bind(store_result);
__ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize), rax);
// keep stack depth as expected by pushing oop which will eventually be discarde
__ push(ltos);
__ bind(no_oop);
}
{
Label no_reguard;
__ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()),
JavaThread::stack_guard_yellow_disabled);
__ jcc(Assembler::notEqual, no_reguard);
__ pusha(); // XXX only save smashed registers
__ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
__ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
__ andptr(rsp, -16); // align stack as required by ABI
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
__ mov(rsp, r12); // restore sp
__ popa(); // XXX only restore smashed registers
__ reinit_heapbase();
__ bind(no_reguard);
}
// The method register is junk from after the thread_in_native transition
// until here. Also can't call_VM until the bcp has been
// restored. Need bcp for throwing exception below so get it now.
__ get_method(method);
// restore r13 to have legal interpreter frame, i.e., bci == 0 <=>
// r13 == code_base()
__ movptr(r13, Address(method, Method::const_offset())); // get ConstMethod*
__ lea(r13, Address(r13, ConstMethod::codes_offset())); // get codebase
// handle exceptions (exception handling will handle unlocking!)
{
Label L;
__ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
__ jcc(Assembler::zero, L);
// Note: At some point we may want to unify this with the code
// used in call_VM_base(); i.e., we should use the
// StubRoutines::forward_exception code. For now this doesn't work
// here because the rsp is not correctly set at this point.
__ MacroAssembler::call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_pending_exception));
__ should_not_reach_here();
__ bind(L);
}
// do unlocking if necessary
{
Label L;
__ movl(t, Address(method, Method::access_flags_offset()));
__ testl(t, JVM_ACC_SYNCHRONIZED);
__ jcc(Assembler::zero, L);
// the code below should be shared with interpreter macro
// assembler implementation
{
Label unlock;
// BasicObjectLock will be first in list, since this is a
// synchronized method. However, need to check that the object
// has not been unlocked by an explicit monitorexit bytecode.
const Address monitor(rbp,
(intptr_t)(frame::interpreter_frame_initial_sp_offset *
wordSize - sizeof(BasicObjectLock)));
// monitor expect in c_rarg1 for slow unlock path
__ lea(c_rarg1, monitor); // address of first monitor
__ movptr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
__ testptr(t, t);
__ jcc(Assembler::notZero, unlock);
// Entry already unlocked, need to throw exception
__ MacroAssembler::call_VM(noreg,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::throw_illegal_monitor_state_exception));
__ should_not_reach_here();
__ bind(unlock);
__ unlock_object(c_rarg1);
}
__ bind(L);
}
// jvmti support
// Note: This must happen _after_ handling/throwing any exceptions since
// the exception handler code notifies the runtime of method exits
// too. If this happens before, method entry/exit notifications are
// not properly paired (was bug - gri 11/22/99).
__ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
// restore potential result in edx:eax, call result handler to
// restore potential result in ST0 & handle result
__ pop(ltos);
__ pop(dtos);
__ movptr(t, Address(rbp,
(frame::interpreter_frame_result_handler_offset) * wordSize));
__ call(t);
// remove activation
__ movptr(t, Address(rbp,
frame::interpreter_frame_sender_sp_offset *
wordSize)); // get sender sp
__ leave(); // remove frame anchor
__ pop(rdi); // get return address
__ mov(rsp, t); // set sp to sender sp
__ jmp(rdi);
if (inc_counter) {
// Handle overflow of counter and compile method
__ bind(invocation_counter_overflow);
generate_counter_overflow(&continue_after_compile);
}
return entry_point;
}
//
// Generic interpreted method entry to (asm) interpreter
//
address InterpreterGenerator::generate_normal_entry(bool synchronized) {
// determine code generation flags
bool inc_counter = UseCompiler || CountCompiledCalls;
// ebx: Method*
// r13: sender sp
address entry_point = __ pc();
const Address constMethod(rbx, Method::const_offset());
const Address access_flags(rbx, Method::access_flags_offset());
const Address size_of_parameters(rdx,
ConstMethod::size_of_parameters_offset());
const Address size_of_locals(rdx, ConstMethod::size_of_locals_offset());
// get parameter size (always needed)
__ movptr(rdx, constMethod);
__ load_unsigned_short(rcx, size_of_parameters);
// rbx: Method*
// rcx: size of parameters
// r13: sender_sp (could differ from sp+wordSize if we were called via c2i )
__ load_unsigned_short(rdx, size_of_locals); // get size of locals in words
__ subl(rdx, rcx); // rdx = no. of additional locals
// YYY
// __ incrementl(rdx);
// __ andl(rdx, -2);
// see if we've got enough room on the stack for locals plus overhead.
generate_stack_overflow_check();
// get return address
__ pop(rax);
// compute beginning of parameters (r14)
__ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
// rdx - # of additional locals
// allocate space for locals
// explicitly initialize locals
{
Label exit, loop;
__ testl(rdx, rdx);
__ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
__ bind(loop);
__ push((int) NULL_WORD); // initialize local variables
__ decrementl(rdx); // until everything initialized
__ jcc(Assembler::greater, loop);
__ bind(exit);
}
// initialize fixed part of activation frame
generate_fixed_frame(false);
// make sure method is not native & not abstract
#ifdef ASSERT
__ movl(rax, access_flags);
{
Label L;
__ testl(rax, JVM_ACC_NATIVE);
__ jcc(Assembler::zero, L);
__ stop("tried to execute native method as non-native");
__ bind(L);
}
{
Label L;
__ testl(rax, JVM_ACC_ABSTRACT);
__ jcc(Assembler::zero, L);
__ stop("tried to execute abstract method in interpreter");
__ bind(L);
}
#endif
// Since at this point in the method invocation the exception
// handler would try to exit the monitor of synchronized methods
// which hasn't been entered yet, we set the thread local variable
// _do_not_unlock_if_synchronized to true. The remove_activation
// will check this flag.
const Address do_not_unlock_if_synchronized(r15_thread,
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
__ movbool(do_not_unlock_if_synchronized, true);
__ profile_parameters_type(rax, rcx, rdx);
// increment invocation count & check for overflow
Label invocation_counter_overflow;
Label profile_method;
Label profile_method_continue;
if (inc_counter) {
generate_counter_incr(&invocation_counter_overflow,
&profile_method,
&profile_method_continue);
if (ProfileInterpreter) {
__ bind(profile_method_continue);
}
}
Label continue_after_compile;
__ bind(continue_after_compile);
// check for synchronized interpreted methods
bang_stack_shadow_pages(false);
// reset the _do_not_unlock_if_synchronized flag
__ movbool(do_not_unlock_if_synchronized, false);
// check for synchronized methods
// Must happen AFTER invocation_counter check and stack overflow check,
// so method is not locked if overflows.
if (synchronized) {
// Allocate monitor and lock method
lock_method();
} else {
// no synchronization necessary
#ifdef ASSERT
{
Label L;
__ movl(rax, access_flags);
__ testl(rax, JVM_ACC_SYNCHRONIZED);
__ jcc(Assembler::zero, L);
__ stop("method needs synchronization");
__ bind(L);
}
#endif
}
// start execution
#ifdef ASSERT
{
Label L;
const Address monitor_block_top (rbp,
frame::interpreter_frame_monitor_block_top_offset * wordSize);
__ movptr(rax, monitor_block_top);
__ cmpptr(rax, rsp);
__ jcc(Assembler::equal, L);
__ stop("broken stack frame setup in interpreter");
__ bind(L);
}
#endif
// jvmti support
__ notify_method_entry();
__ dispatch_next(vtos);
// invocation counter overflow
if (inc_counter) {
if (ProfileInterpreter) {
// We have decided to profile this method in the interpreter
__ bind(profile_method);
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
__ set_method_data_pointer_for_bcp();
__ get_method(rbx);
__ jmp(profile_method_continue);
}
// Handle overflow of counter and compile method
__ bind(invocation_counter_overflow);
generate_counter_overflow(&continue_after_compile);
}
return entry_point;
}
// Entry points
//
// Here we generate the various kind of entries into the interpreter.
// The two main entry type are generic bytecode methods and native
// call method. These both come in synchronized and non-synchronized
// versions but the frame layout they create is very similar. The
// other method entry types are really just special purpose entries
// that are really entry and interpretation all in one. These are for
// trivial methods like accessor, empty, or special math methods.
//
// When control flow reaches any of the entry types for the interpreter
// the following holds ->
//
// Arguments:
//
// rbx: Method*
//
// Stack layout immediately at entry
//
// [ return address ] <--- rsp
// [ parameter n ]
// ...
// [ parameter 1 ]
// [ expression stack ] (caller's java expression stack)
// Assuming that we don't go to one of the trivial specialized entries
// the stack will look like below when we are ready to execute the
// first bytecode (or call the native routine). The register usage
// will be as the template based interpreter expects (see
// interpreter_amd64.hpp).
//
// local variables follow incoming parameters immediately; i.e.
// the return address is moved to the end of the locals).
//
// [ monitor entry ] <--- rsp
// ...
// [ monitor entry ]
// [ expr. stack bottom ]
// [ saved r13 ]
// [ current r14 ]
// [ Method* ]
// [ saved ebp ] <--- rbp
// [ return address ]
// [ local variable m ]
// ...
// [ local variable 1 ]
// [ parameter n ]
// ...
// [ parameter 1 ] <--- r14
address AbstractInterpreterGenerator::generate_method_entry(
AbstractInterpreter::MethodKind kind) {
// determine code generation flags
bool synchronized = false;
address entry_point = NULL;
InterpreterGenerator* ig_this = (InterpreterGenerator*)this;
switch (kind) {
case Interpreter::zerolocals : break;
case Interpreter::zerolocals_synchronized: synchronized = true; break;
case Interpreter::native : entry_point = ig_this->generate_native_entry(false); break;
case Interpreter::native_synchronized : entry_point = ig_this->generate_native_entry(true); break;
case Interpreter::empty : entry_point = ig_this->generate_empty_entry(); break;
case Interpreter::accessor : entry_point = ig_this->generate_accessor_entry(); break;
case Interpreter::abstract : entry_point = ig_this->generate_abstract_entry(); break;
case Interpreter::java_lang_math_sin : // fall thru
case Interpreter::java_lang_math_cos : // fall thru
case Interpreter::java_lang_math_tan : // fall thru
case Interpreter::java_lang_math_abs : // fall thru
case Interpreter::java_lang_math_log : // fall thru
case Interpreter::java_lang_math_log10 : // fall thru
case Interpreter::java_lang_math_sqrt : // fall thru
case Interpreter::java_lang_math_pow : // fall thru
case Interpreter::java_lang_math_exp : entry_point = ig_this->generate_math_entry(kind); break;
case Interpreter::java_lang_ref_reference_get
: entry_point = ig_this->generate_Reference_get_entry(); break;
case Interpreter::java_util_zip_CRC32_update
: entry_point = ig_this->generate_CRC32_update_entry(); break;
case Interpreter::java_util_zip_CRC32_updateBytes
: // fall thru
case Interpreter::java_util_zip_CRC32_updateByteBuffer
: entry_point = ig_this->generate_CRC32_updateBytes_entry(kind); break;
default:
fatal(err_msg("unexpected method kind: %d", kind));
break;
}
if (entry_point) {
return entry_point;
}
return ig_this->generate_normal_entry(synchronized);
}
// These should never be compiled since the interpreter will prefer
// the compiled version to the intrinsic version.
bool AbstractInterpreter::can_be_compiled(methodHandle m) {
switch (method_kind(m)) {
case Interpreter::java_lang_math_sin : // fall thru
case Interpreter::java_lang_math_cos : // fall thru
case Interpreter::java_lang_math_tan : // fall thru
case Interpreter::java_lang_math_abs : // fall thru
case Interpreter::java_lang_math_log : // fall thru
case Interpreter::java_lang_math_log10 : // fall thru
case Interpreter::java_lang_math_sqrt : // fall thru
case Interpreter::java_lang_math_pow : // fall thru
case Interpreter::java_lang_math_exp :
return false;
default:
return true;
}
}
// How much stack a method activation needs in words.
int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
const int entry_size = frame::interpreter_frame_monitor_size();
// total overhead size: entry_size + (saved rbp thru expr stack
// bottom). be sure to change this if you add/subtract anything
// to/from the overhead area
const int overhead_size =
-(frame::interpreter_frame_initial_sp_offset) + entry_size;
const int stub_code = frame::entry_frame_after_call_words;
const int method_stack = (method->max_locals() + method->max_stack()) *
Interpreter::stackElementWords;
return (overhead_size + method_stack + stub_code);
}
//-----------------------------------------------------------------------------
// Exceptions
void TemplateInterpreterGenerator::generate_throw_exception() {
// Entry point in previous activation (i.e., if the caller was
// interpreted)
Interpreter::_rethrow_exception_entry = __ pc();
// Restore sp to interpreter_frame_last_sp even though we are going
// to empty the expression stack for the exception processing.
__ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
// rax: exception
// rdx: return address/pc that threw exception
__ restore_bcp(); // r13 points to call/send
__ restore_locals();
__ reinit_heapbase(); // restore r12 as heapbase.
// Entry point for exceptions thrown within interpreter code
Interpreter::_throw_exception_entry = __ pc();
// expression stack is undefined here
// rax: exception
// r13: exception bcp
__ verify_oop(rax);
__ mov(c_rarg1, rax);
// expression stack must be empty before entering the VM in case of
// an exception
__ empty_expression_stack();
// find exception handler address and preserve exception oop
__ call_VM(rdx,
CAST_FROM_FN_PTR(address,
InterpreterRuntime::exception_handler_for_exception),
c_rarg1);
// rax: exception handler entry point
// rdx: preserved exception oop
// r13: bcp for exception handler
__ push_ptr(rdx); // push exception which is now the only value on the stack
__ jmp(rax); // jump to exception handler (may be _remove_activation_entry!)
// If the exception is not handled in the current frame the frame is
// removed and the exception is rethrown (i.e. exception
// continuation is _rethrow_exception).
//
// Note: At this point the bci is still the bxi for the instruction
// which caused the exception and the expression stack is
// empty. Thus, for any VM calls at this point, GC will find a legal
// oop map (with empty expression stack).
// In current activation
// tos: exception
// esi: exception bcp
//
// JVMTI PopFrame support
//
Interpreter::_remove_activation_preserving_args_entry = __ pc();
__ empty_expression_stack();
// Set the popframe_processing bit in pending_popframe_condition
// indicating that we are currently handling popframe, so that
// call_VMs that may happen later do not trigger new popframe
// handling cycles.
__ movl(rdx, Address(r15_thread, JavaThread::popframe_condition_offset()));
__ orl(rdx, JavaThread::popframe_processing_bit);
__ movl(Address(r15_thread, JavaThread::popframe_condition_offset()), rdx);
{
// Check to see whether we are returning to a deoptimized frame.
// (The PopFrame call ensures that the caller of the popped frame is
// either interpreted or compiled and deoptimizes it if compiled.)
// In this case, we can't call dispatch_next() after the frame is
// popped, but instead must save the incoming arguments and restore
// them after deoptimization has occurred.
//
// Note that we don't compare the return PC against the
// deoptimization blob's unpack entry because of the presence of
// adapter frames in C2.
Label caller_not_deoptimized;
__ movptr(c_rarg1, Address(rbp, frame::return_addr_offset * wordSize));
__ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
InterpreterRuntime::interpreter_contains), c_rarg1);
__ testl(rax, rax);
__ jcc(Assembler::notZero, caller_not_deoptimized);
// Compute size of arguments for saving when returning to
// deoptimized caller
__ get_method(rax);
__ movptr(rax, Address(rax, Method::const_offset()));
__ load_unsigned_short(rax, Address(rax, in_bytes(ConstMethod::
size_of_parameters_offset())));
__ shll(rax, Interpreter::logStackElementSize);
__ restore_locals(); // XXX do we need this?
__ subptr(r14, rax);
__ addptr(r14, wordSize);
// Save these arguments
__ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
Deoptimization::
popframe_preserve_args),
r15_thread, rax, r14);
__ remove_activation(vtos, rdx,
/* throw_monitor_exception */ false,
/* install_monitor_exception */ false,
/* notify_jvmdi */ false);
// Inform deoptimization that it is responsible for restoring
// these arguments
__ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
JavaThread::popframe_force_deopt_reexecution_bit);
// Continue in deoptimization handler
__ jmp(rdx);
__ bind(caller_not_deoptimized);
}
__ remove_activation(vtos, rdx, /* rdx result (retaddr) is not used */
/* throw_monitor_exception */ false,
/* install_monitor_exception */ false,
/* notify_jvmdi */ false);
// Finish with popframe handling
// A previous I2C followed by a deoptimization might have moved the
// outgoing arguments further up the stack. PopFrame expects the
// mutations to those outgoing arguments to be preserved and other
// constraints basically require this frame to look exactly as
// though it had previously invoked an interpreted activation with
// no space between the top of the expression stack (current
// last_sp) and the top of stack. Rather than force deopt to
// maintain this kind of invariant all the time we call a small
// fixup routine to move the mutated arguments onto the top of our
// expression stack if necessary.
__ mov(c_rarg1, rsp);
__ movptr(c_rarg2, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
// PC must point into interpreter here
__ set_last_Java_frame(noreg, rbp, __ pc());
__ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), r15_thread, c_rarg1, c_rarg2);
__ reset_last_Java_frame(r15_thread, true);
// Restore the last_sp and null it out
__ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
__ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
__ restore_bcp(); // XXX do we need this?
__ restore_locals(); // XXX do we need this?
// The method data pointer was incremented already during
// call profiling. We have to restore the mdp for the current bcp.
if (ProfileInterpreter) {
__ set_method_data_pointer_for_bcp();
}
// Clear the popframe condition flag
__ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
JavaThread::popframe_inactive);
#if INCLUDE_JVMTI
if (EnableInvokeDynamic) {
Label L_done;
const Register local0 = r14;
__ cmpb(Address(r13, 0), Bytecodes::_invokestatic);
__ jcc(Assembler::notEqual, L_done);
// The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
// Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
__ get_method(rdx);
__ movptr(rax, Address(local0, 0));
__ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), rax, rdx, r13);
__ testptr(rax, rax);
__ jcc(Assembler::zero, L_done);
__ movptr(Address(rbx, 0), rax);
__ bind(L_done);
}
#endif // INCLUDE_JVMTI
__ dispatch_next(vtos);
// end of PopFrame support
Interpreter::_remove_activation_entry = __ pc();
// preserve exception over this code sequence
__ pop_ptr(rax);
__ movptr(Address(r15_thread, JavaThread::vm_result_offset()), rax);
// remove the activation (without doing throws on illegalMonitorExceptions)
__ remove_activation(vtos, rdx, false, true, false);
// restore exception
__ get_vm_result(rax, r15_thread);
// In between activations - previous activation type unknown yet
// compute continuation point - the continuation point expects the
// following registers set up:
//
// rax: exception
// rdx: return address/pc that threw exception
// rsp: expression stack of caller
// rbp: ebp of caller
__ push(rax); // save exception
__ push(rdx); // save return address
__ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
SharedRuntime::exception_handler_for_return_address),
r15_thread, rdx);
__ mov(rbx, rax); // save exception handler
__ pop(rdx); // restore return address
__ pop(rax); // restore exception
// Note that an "issuing PC" is actually the next PC after the call
__ jmp(rbx); // jump to exception
// handler of caller
}
//
// JVMTI ForceEarlyReturn support
//
address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
address entry = __ pc();
__ restore_bcp();
__ restore_locals();
__ empty_expression_stack();
__ load_earlyret_value(state);
__ movptr(rdx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
Address cond_addr(rdx, JvmtiThreadState::earlyret_state_offset());
// Clear the earlyret state
__ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
__ remove_activation(state, rsi,
false, /* throw_monitor_exception */
false, /* install_monitor_exception */
true); /* notify_jvmdi */
__ jmp(rsi);
return entry;
} // end of ForceEarlyReturn support
//-----------------------------------------------------------------------------
// Helper for vtos entry point generation
void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
address& bep,
address& cep,
address& sep,
address& aep,
address& iep,
address& lep,
address& fep,
address& dep,
address& vep) {
assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
Label L;
aep = __ pc(); __ push_ptr(); __ jmp(L);
fep = __ pc(); __ push_f(); __ jmp(L);
dep = __ pc(); __ push_d(); __ jmp(L);
lep = __ pc(); __ push_l(); __ jmp(L);
bep = cep = sep =
iep = __ pc(); __ push_i();
vep = __ pc();
__ bind(L);
generate_and_dispatch(t);
}
//-----------------------------------------------------------------------------
// Generation of individual instructions
// helpers for generate_and_dispatch
InterpreterGenerator::InterpreterGenerator(StubQueue* code)
: TemplateInterpreterGenerator(code) {
generate_all(); // down here so it can be "virtual"
}
//-----------------------------------------------------------------------------
// Non-product code
#ifndef PRODUCT
address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
address entry = __ pc();
__ push(state);
__ push(c_rarg0);
__ push(c_rarg1);
__ push(c_rarg2);
__ push(c_rarg3);
__ mov(c_rarg2, rax); // Pass itos
#ifdef _WIN64
__ movflt(xmm3, xmm0); // Pass ftos
#endif
__ call_VM(noreg,
CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode),
c_rarg1, c_rarg2, c_rarg3);
__ pop(c_rarg3);
__ pop(c_rarg2);
__ pop(c_rarg1);
__ pop(c_rarg0);
__ pop(state);
__ ret(0); // return from result handler
return entry;
}
void TemplateInterpreterGenerator::count_bytecode() {
__ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
}
void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
__ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
}
void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
__ mov32(rbx, ExternalAddress((address) &BytecodePairHistogram::_index));
__ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
__ orl(rbx,
((int) t->bytecode()) <<
BytecodePairHistogram::log2_number_of_codes);
__ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
__ lea(rscratch1, ExternalAddress((address) BytecodePairHistogram::_counters));
__ incrementl(Address(rscratch1, rbx, Address::times_4));
}
void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
// Call a little run-time stub to avoid blow-up for each bytecode.
// The run-time runtime saves the right registers, depending on
// the tosca in-state for the given template.
assert(Interpreter::trace_code(t->tos_in()) != NULL,
"entry must have been generated");
__ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
__ andptr(rsp, -16); // align stack as required by ABI
__ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
__ mov(rsp, r12); // restore sp
__ reinit_heapbase();
}
void TemplateInterpreterGenerator::stop_interpreter_at() {
Label L;
__ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
StopInterpreterAt);
__ jcc(Assembler::notEqual, L);
__ int3();
__ bind(L);
}
#endif // !PRODUCT
#endif // ! CC_INTERP