blob: cbabbe74fff4ba2e06f9e9b3b30e5c0fda6a21ed [file] [log] [blame]
/*
* Copyright 2012 Intel Corporation
* Jesse Barnes <jesse.barnes@intel.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/**
* TEST: kms flip
* Category: Display
* Description: Tests for validating modeset, dpms and pageflips
* Driver requirement: i915, xe
* Functionality: vblank
* Mega feature: General Display Features
* Test category: functionality test
*/
#include "config.h"
#include "igt.h"
#include "i915/intel_drrs.h"
#include <cairo.h>
#include <errno.h>
#include <fcntl.h>
#include <math.h>
#include <poll.h>
#include <stdint.h>
#include <unistd.h>
#include <sys/time.h>
#include <sys/ioctl.h>
#ifdef HAVE_LINUX_KD_H
#include <linux/kd.h>
#elif HAVE_SYS_KD_H
#include <sys/kd.h>
#endif
#include <time.h>
#include <pthread.h>
#include "i915/gem_create.h"
#include "igt_stats.h"
#include "xe/xe_query.h"
/**
* SUBTEST: %s
* Description: %arg[1] test to validate pageflips with available fences
* Driver requirement: i915
* Functionality: gtt, vblank
*
* SUBTEST: 2x-%s
* Description: %arg[1] test to validate pageflips along with available fences
* on a pair of connected displays
* Driver requirement: i915
* Functionality: gtt, vblank
*
* arg[1]:
*
* @flip-vs-fences: Basic
* @flip-vs-fences-interruptible: Interrupt
*/
/**
* SUBTEST: dpms-off-%s
* Description: %arg[1] test to validate pageflips by disabling other connectors usng dpms
* Functionality: dpms, vblank
*
* arg[1]:
*
* @confusion: Basic
* @confusion-interruptible: Interrupt
*/
/**
* SUBTEST: %s
* Description: %arg[1] test to validate pageflips with large BO in size
* Functionality: kms_gem_interop, vblank
*
* arg[1]:
*
* @bo-too-big: Basic
* @bo-too-big-interruptible: Interrupt
*/
/**
* SUBTEST: %s
* Description: Basic test to validate %arg[1]
* Functionality: hang, vblank
*
* SUBTEST: 2x-%s
* Description: Test to validate %arg[1] on a pair of connected displays
* Functionality: hang, vblank
*
* arg[1]:
*
* @flip-vs-modeset-vs-hang: pageflip and modeset by hang injection
* @flip-vs-panning-vs-hang: pageflip with panning by hang injection
*/
/**
* SUBTEST: %s
* Description: Basic test to validate %arg[1]
*
* SUBTEST: 2x-%s
* Description: Test to validate %arg[1] on a pair of connected displays
*
* arg[1]:
*
* @wf_vblank-ts-check: wait for the vblank and check timestamps
* @blocking-wf_vblank: wait for the vblank synchronous
* @absolute-wf_vblank: wait for the absolute vblank
* @blocking-absolute-wf_vblank: wait for the absolute vblank synchronous
* @busy-flip: pageflip with busy buffers
* @plain-flip-ts-check: pageflip and check timestamps
* @plain-flip-fb-recreate: pageflip by recreating the fb
* @flip-vs-rmfb: pageflip by recreating the fb (rmfb)
* @flip-vs-panning: pageflip with panning
* @flip-vs-expired-vblank: pageflip by checking the vbalnk sequence
* @flip-vs-absolute-wf_vblank: pageflip and wait for the absolute vblank
* @flip-vs-blocking-wf-vblank: pageflip and wait for the absolute vblank synchronous
* @nonexisting-fb: expired framebuffer
* @modeset-vs-vblank-race: modeset and check for vblank
*/
/**
* SUBTEST: %s
* Description: %arg[1] test to validate pageflips with suspend cycle
* Functionality: suspend, vblank
*
* SUBTEST: 2x-%s
* Description: %arg[1] test to validate pageflips with suspend cycle on a pair
* of connected displays
* Functionality: suspend, vblank
*
* arg[1]:
*
* @flip-vs-suspend: Basic
* @flip-vs-suspend-interruptible: Interrupt
*/
/**
* SUBTEST: %s
* Description: Basic test to validate %arg[1]
* Functionality: dpms, vblank
*
* SUBTEST: 2x-%s
* Description: Basic test to validate %arg[1] on a pair of connected displays
* Functionality: dpms, vblank
*
* SUBTEST: %s-interruptible
* Description: Basic test to validate %arg[1]
*
* SUBTEST: 2x-%s-interruptible
* Description: Basic test to validate %arg[1] on a pair of connected displays
*
* arg[1]:
*
* @flip-vs-dpms-off-vs-modeset: pageflips along with modeset and
* dpms off.
* @single-buffer-flip-vs-dpms-off-vs-modeset: pageflip of same buffer along with
* the modeset and dpms off
* @dpms-vs-vblank-race: vblank along with the dpms & modeset
*/
/**
* SUBTEST: 2x-flip-vs-dpms
* Description: Basic test to validate pageflip along with dpms on a pair of
* connected displays
* Functionality: dpms, vblank
*
* SUBTEST: 2x-%s
* Description: Basic test to validate %arg[1] on a pair of connected displays
*
* arg[1]:
*
* @plain-flip: pageflip
* @flip-vs-modeset: pageflip along with modeset
* @flip-vs-wf_vblank: pageflip along with waiting for vblank
*/
/**
* SUBTEST: %s-interruptible
* Description: Basic test for validating modeset, dpms and pageflips
*
* SUBTEST: 2x-%s-interruptible
* Description: Test for validating modeset, dpms and pageflips with a pair of
* connected displays
*
* arg[1]:
*
* @wf_vblank-ts-check: wait for the vblank and check timestamps
* @absolute-wf_vblank: wait for the absolute vblank
* @blocking-absolute-wf_vblank: wait for the absolute vblank synchronous
* @plain-flip: pageflip
* @plain-flip-ts-check: pageflip and check timestamps
* @plain-flip-fb-recreate: pageflip by recreating the fb
* @flip-vs-rmfb: pageflip by recreating the fb (rmfb)
* @flip-vs-panning: pageflip with panning
* @flip-vs-expired-vblank: pageflip by checking the vbalnk sequence
* @flip-vs-absolute-wf_vblank: pageflip and wait for the absolute vblank
* @flip-vs-wf_vblank: pageflip and wait for vblank
* @nonexisting-fb: expired framebuffer
* @modeset-vs-vblank-race: modeset and check for vblank
*/
/**
* SUBTEST: basic-plain-flip
* Description: Basic test for validating page flip
*
* SUBTEST: nonblocking-read
* Description: Tests that nonblocking reading fails correctly
*
* SUBTEST: basic-flip-vs-dpms
* Description: Basic test to valide pageflip with dpms
* Functionality: dpms, vblank
*
* SUBTEST: basic-flip-vs-%s
* Description: Basic test to valide pageflip with %arg[1]
*
* arg[1]:
*
* @modeset: modeset
* @wf_vblank: wait for vblank
*/
#define TEST_DPMS (1 << 0)
#define TEST_PAN (1 << 3)
#define TEST_MODESET (1 << 4)
#define TEST_CHECK_TS (1 << 5)
#define TEST_EBUSY (1 << 6)
#define TEST_EINVAL (1 << 7)
#define TEST_FLIP (1 << 8)
#define TEST_VBLANK (1 << 9)
#define TEST_VBLANK_BLOCK (1 << 10)
#define TEST_VBLANK_ABSOLUTE (1 << 11)
#define TEST_VBLANK_EXPIRED_SEQ (1 << 12)
#define TEST_FB_RECREATE (1 << 13)
#define TEST_RMFB (1 << 14)
#define TEST_HANG (1 << 15)
#define TEST_NOEVENT (1 << 16)
#define TEST_SINGLE_BUFFER (1 << 18)
#define TEST_DPMS_OFF (1 << 19)
#define TEST_NO_2X_OUTPUT (1 << 20)
#define TEST_DPMS_OFF_OTHERS (1 << 21)
#define TEST_ENOENT (1 << 22)
#define TEST_FENCE_STRESS (1 << 23)
#define TEST_VBLANK_RACE (1 << 24)
#define TEST_SUSPEND (1 << 26)
#define TEST_BO_TOOBIG (1 << 28)
#define TEST_NO_VBLANK (1 << 29)
#define TEST_BASIC (1 << 30)
#define EVENT_FLIP (1 << 0)
#define EVENT_VBLANK (1 << 1)
#define RUN_TEST 1
#define RUN_PAIR 2
#ifndef DRM_CAP_TIMESTAMP_MONOTONIC
#define DRM_CAP_TIMESTAMP_MONOTONIC 6
#endif
static bool all_pipes = false;
drmModeRes *resources;
int drm_fd;
static struct buf_ops *bops;
uint32_t devid;
int test_time = 3;
static bool monotonic_timestamp;
static pthread_t vblank_wait_thread;
static int max_dotclock;
static drmModeConnector *last_connector;
uint32_t *fb_ptr;
struct type_name {
int type;
const char *name;
};
struct event_state {
const char *name;
/*
* Event data for the last event that has already passed our check.
* Updated using the below current_* vars in update_state().
*/
struct timeval last_ts; /* kernel reported timestamp */
struct timeval last_received_ts; /* the moment we received it */
unsigned int last_seq; /* kernel reported seq. num */
/*
* Event data for for the current event that we just received and
* going to check for validity. Set in event_handler().
*/
struct timeval current_ts; /* kernel reported timestamp */
struct timeval current_received_ts; /* the moment we received it */
unsigned int current_seq; /* kernel reported seq. num */
int count; /* # of events of this type */
/* Step between the current and next 'target' sequence number. */
int seq_step;
};
static bool should_skip_ts_checks(void) {
/* Mediatek devices have a HW issue with sending their vblank IRQ at the same time interval
* everytime. The drift can be below or above the expected frame time, causing the
* timestamp to drift with a relatively larger standard deviation over a large sample.
* As it's a known issue, skip any Timestamp or Sequence checks for MTK drivers.
*/
return is_mtk_device(drm_fd);
}
static bool vblank_dependence(int flags)
{
int vblank_flags = TEST_VBLANK | TEST_VBLANK_BLOCK |
TEST_VBLANK_ABSOLUTE | TEST_VBLANK_EXPIRED_SEQ |
TEST_CHECK_TS | TEST_VBLANK_RACE | TEST_EBUSY;
if (flags & vblank_flags)
return true;
return false;
}
static float timeval_float(const struct timeval *tv)
{
return tv->tv_sec + tv->tv_usec / 1000000.0f;
}
static void dump_event_state(const struct event_state *es)
{
igt_debug("name = %s\n"
"last_ts = %.06f\n"
"last_received_ts = %.06f\n"
"last_seq = %u\n"
"current_ts = %.06f\n"
"current_received_ts = %.06f\n"
"current_seq = %u\n"
"count = %u\n"
"seq_step = %d\n",
es->name,
timeval_float(&es->last_ts),
timeval_float(&es->last_received_ts),
es->last_seq,
timeval_float(&es->current_ts),
timeval_float(&es->current_received_ts),
es->current_seq,
es->count,
es->seq_step);
}
struct test_output {
int mode_valid;
drmModeModeInfo kmode[4];
drmModeEncoder *kencoder[4];
drmModeConnector *kconnector[4];
uint32_t _connector[4];
uint32_t _crtc[4];
int _pipe[4];
int count; /* 1:1 mapping between crtc:connector */
int flags;
int pipe; /* primary pipe for vblank */
unsigned int current_fb_id;
unsigned int fb_width;
unsigned int fb_height;
unsigned int fb_ids[3];
int bpp, depth;
struct igt_fb fb_info[3];
struct event_state flip_state;
struct event_state vblank_state;
/* Overall step between each round */
int seq_step;
unsigned int pending_events;
int flip_count;
double vblank_interval;
};
static unsigned long gettime_us(void)
{
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_sec * 1000000 + ts.tv_nsec / 1000;
}
static void emit_fence_stress(struct test_output *o)
{
const int num_fences = gem_available_fences(drm_fd);
struct igt_fb *fb_info = &o->fb_info[o->current_fb_id];
struct drm_i915_gem_execbuffer2 execbuf;
struct drm_i915_gem_exec_object2 *exec;
uint32_t buf[2] = { MI_BATCH_BUFFER_END, 0 };
struct intel_buf **bo;
int i;
igt_require(bops);
igt_assert(num_fences);
bo = calloc(num_fences, sizeof(*bo));
exec = calloc(num_fences+1, sizeof(*exec));
for (i = 0; i < num_fences - 1; i++) {
uint32_t tiling = I915_TILING_X;
bo[i] = intel_buf_create(bops, 1024, 1024, 32, 0, tiling,
I915_COMPRESSION_NONE);
exec[i].handle = bo[i]->handle;
exec[i].flags = EXEC_OBJECT_NEEDS_FENCE;
}
exec[i].handle = fb_info->gem_handle;
exec[i].flags = EXEC_OBJECT_NEEDS_FENCE;
exec[++i].handle = gem_create(drm_fd, 4096);
gem_write(drm_fd, exec[i].handle, 0, buf, sizeof(buf));
memset(&execbuf, 0, sizeof(execbuf));
execbuf.buffers_ptr = (uintptr_t)exec;
execbuf.buffer_count = i + 1;
execbuf.batch_len = sizeof(buf);
if (HAS_BLT_RING(intel_get_drm_devid(drm_fd)))
execbuf.flags = I915_EXEC_BLT;
gem_execbuf(drm_fd, &execbuf);
gem_close(drm_fd, exec[i].handle);
for (i = 0; i < num_fences - 1; i++)
intel_buf_destroy(bo[i]);
free(bo);
free(exec);
}
static void dpms_off_other_outputs(struct test_output *o)
{
int i, n;
drmModeConnector *connector;
uint32_t connector_id;
for (i = 0; i < resources->count_connectors; i++) {
connector_id = resources->connectors[i];
for (n = 0; n < o->count; n++) {
if (connector_id == o->kconnector[n]->connector_id)
goto next;
}
connector = drmModeGetConnectorCurrent(drm_fd, connector_id);
kmstest_set_connector_dpms(drm_fd, connector, DRM_MODE_DPMS_ON);
kmstest_set_connector_dpms(drm_fd, connector, DRM_MODE_DPMS_OFF);
drmModeFreeConnector(connector);
next:
;
}
}
static void set_dpms(struct test_output *o, int mode)
{
for (int n = 0; n < o->count; n++)
kmstest_set_connector_dpms(drm_fd, o->kconnector[n], mode);
}
static void set_flag(unsigned int *v, unsigned int flag)
{
igt_assert(!(*v & flag));
*v |= flag;
}
static void clear_flag(unsigned int *v, unsigned int flag)
{
igt_assert(*v & flag);
*v &= ~flag;
}
static int do_page_flip(struct test_output *o, uint32_t fb_id, bool event)
{
int n, ret = 0;
o->flip_count = 0;
for (n = 0; ret == 0 && n < o->count; n++)
ret = drmModePageFlip(drm_fd, o->_crtc[n], fb_id,
event ? DRM_MODE_PAGE_FLIP_EVENT : 0,
event ? (void *)((unsigned long)o | (n==0)) : NULL);
if (ret == 0 && event)
set_flag(&o->pending_events, EVENT_FLIP);
return ret;
}
struct vblank_reply {
unsigned int sequence;
struct timeval ts;
};
static int __wait_for_vblank(unsigned int flags, int crtc_idx,
int target_seq, unsigned long ret_data,
struct vblank_reply *reply)
{
drmVBlank wait_vbl;
int ret;
uint32_t pipe_id_flag;
bool event = !(flags & TEST_VBLANK_BLOCK);
memset(&wait_vbl, 0, sizeof(wait_vbl));
pipe_id_flag = kmstest_get_vbl_flag(crtc_idx);
wait_vbl.request.type = pipe_id_flag;
if (flags & TEST_VBLANK_ABSOLUTE)
wait_vbl.request.type |= DRM_VBLANK_ABSOLUTE;
else
wait_vbl.request.type |= DRM_VBLANK_RELATIVE;
if (event) {
wait_vbl.request.type |= DRM_VBLANK_EVENT;
wait_vbl.request.signal = ret_data;
}
wait_vbl.request.sequence = target_seq;
ret = drmWaitVBlank(drm_fd, &wait_vbl);
if (ret == 0) {
reply->ts.tv_sec = wait_vbl.reply.tval_sec;
reply->ts.tv_usec = wait_vbl.reply.tval_usec;
reply->sequence = wait_vbl.reply.sequence;
} else
ret = -errno;
return ret;
}
static int do_wait_for_vblank(struct test_output *o, int pipe_id,
int target_seq, struct vblank_reply *reply)
{
int ret;
unsigned flags = o->flags;
/* Absolute waits only works once we have a frame counter. */
if (!(o->vblank_state.count > 0))
flags &= ~TEST_VBLANK_ABSOLUTE;
ret = __wait_for_vblank(flags, pipe_id, target_seq, (unsigned long)o,
reply);
if (ret == 0 && !(o->flags & TEST_VBLANK_BLOCK))
set_flag(&o->pending_events, EVENT_VBLANK);
return ret;
}
static bool
analog_tv_connector(const struct test_output *o)
{
uint32_t connector_type = o->kconnector[0]->connector_type;
return connector_type == DRM_MODE_CONNECTOR_TV ||
connector_type == DRM_MODE_CONNECTOR_9PinDIN ||
connector_type == DRM_MODE_CONNECTOR_SVIDEO ||
connector_type == DRM_MODE_CONNECTOR_Composite;
}
static void event_handler(struct event_state *es, unsigned int frame,
unsigned int sec, unsigned int usec)
{
struct timeval now;
if (monotonic_timestamp) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
now.tv_sec = ts.tv_sec;
now.tv_usec = ts.tv_nsec / 1000;
} else {
gettimeofday(&now, NULL);
}
es->current_received_ts = now;
es->current_ts.tv_sec = sec;
es->current_ts.tv_usec = usec;
es->current_seq = frame;
}
static void page_flip_handler(int fd, unsigned int frame, unsigned int sec,
unsigned int usec, void *data)
{
int primary = (unsigned long)data & 1;
struct test_output *o = (void *)((unsigned long)data & ~ 1);
if (++o->flip_count == o->count)
clear_flag(&o->pending_events, EVENT_FLIP);
if (primary)
event_handler(&o->flip_state, frame, sec, usec);
}
static double mode_frame_time(const struct test_output *o)
{
return 1000.0 * o->kmode[0].htotal * o->kmode[0].vtotal / o->kmode[0].clock;
}
static double actual_frame_time(const struct test_output *o)
{
return o->vblank_interval;
}
static void *vblank_wait_thread_func(void *data)
{
struct test_output *o = data;
struct vblank_reply reply;
int i;
for (i = 0; i < 32; i++) {
unsigned long start = gettime_us();
__wait_for_vblank(TEST_VBLANK_BLOCK, o->pipe, 20, (unsigned long)o, &reply);
if (gettime_us() - start > 2 * mode_frame_time(o))
return (void*)1;
}
return 0;
}
static void spawn_vblank_wait_thread(struct test_output *o)
{
igt_assert(pthread_create(&vblank_wait_thread, NULL,
vblank_wait_thread_func, o) == 0);
}
static void join_vblank_wait_thread(void)
{
igt_assert(pthread_join(vblank_wait_thread, NULL) == 0);
}
static void fixup_premature_vblank_ts(struct test_output *o,
struct event_state *es)
{
/*
* In case a power off event preempts the completion of a
* wait-for-vblank event the kernel will return a wf-vblank event with
* a zeroed-out timestamp. In order that check_state() doesn't
* complain replace this ts with a valid ts. As we can't calculate the
* exact timestamp, just use the time we received the event.
*/
struct timeval tv;
if (!(o->flags & (TEST_DPMS | TEST_MODESET)))
return;
if (o->vblank_state.current_ts.tv_sec != 0 ||
o->vblank_state.current_ts.tv_usec != 0)
return;
tv.tv_sec = 0;
tv.tv_usec = 1;
timersub(&es->current_received_ts, &tv, &es->current_ts);
}
static void vblank_handler(int fd, unsigned int frame, unsigned int sec,
unsigned int usec, void *data)
{
struct test_output *o = data;
clear_flag(&o->pending_events, EVENT_VBLANK);
event_handler(&o->vblank_state, frame, sec, usec);
fixup_premature_vblank_ts(o, &o->vblank_state);
}
static bool check_state(const struct test_output *o, const struct event_state *es)
{
struct timeval diff;
dump_event_state(es);
timersub(&es->current_ts, &es->current_received_ts, &diff);
if (!analog_tv_connector(o)) {
igt_assert_f(diff.tv_sec < 0 || (diff.tv_sec == 0 && diff.tv_usec <= 2000),
"%s ts delayed for too long: %.06f\n",
es->name, timeval_float(&diff));
}
if (es->count == 0)
return true;
timersub(&es->current_ts, &es->last_received_ts, &diff);
igt_assert_f(timercmp(&es->last_received_ts, &es->current_ts, <),
"%s ts before the %s was issued!\n"
"timerdiff %.06f\n",
es->name, es->name, timeval_float(&diff));
/* check only valid if no modeset happens in between, that increments by
* (1 << 23) on each step. This bounding matches the one in
* DRM_IOCTL_WAIT_VBLANK. */
if (!(o->flags & (TEST_DPMS | TEST_MODESET | TEST_NO_VBLANK)) &&
es->current_seq - (es->last_seq + o->seq_step) > 1UL << 23) {
igt_debug("unexpected %s seq %u, should be >= %u\n",
es->name, es->current_seq, es->last_seq + o->seq_step);
return false;
}
if (o->flags & TEST_CHECK_TS) {
double elapsed, expected;
timersub(&es->current_ts, &es->last_ts, &diff);
elapsed = 1e6*diff.tv_sec + diff.tv_usec;
expected = (es->current_seq - es->last_seq) * actual_frame_time(o);
igt_debug("%s ts/seq: last %.06f/%u, current %.06f/%u: elapsed=%.1fus expected=%.1fus +- %.1fus, error %.1f%%\n",
es->name, timeval_float(&es->last_ts), es->last_seq,
timeval_float(&es->current_ts), es->current_seq,
elapsed, expected, expected * 0.005,
fabs((elapsed - expected) / expected) * 100);
if (fabs((elapsed - expected) / expected) > 0.005) {
igt_debug("inconsistent %s ts/seq: last %.06f/%u, current %.06f/%u: elapsed=%.1fus expected=%.1fus\n",
es->name, timeval_float(&es->last_ts), es->last_seq,
timeval_float(&es->current_ts), es->current_seq,
elapsed, expected);
return false;
}
if (es->current_seq != es->last_seq + o->seq_step) {
igt_debug("unexpected %s seq %u, expected %u\n",
es->name, es->current_seq,
es->last_seq + o->seq_step);
return false;
}
}
return true;
}
static void check_state_correlation(struct test_output *o,
struct event_state *es1,
struct event_state *es2)
{
struct timeval tv_diff;
double ftime;
double usec_diff;
int seq_diff;
if (es1->count == 0 || es2->count == 0)
return;
timersub(&es2->current_ts, &es1->current_ts, &tv_diff);
usec_diff = tv_diff.tv_sec * USEC_PER_SEC + tv_diff.tv_usec;
seq_diff = es2->current_seq - es1->current_seq;
ftime = mode_frame_time(o);
usec_diff -= seq_diff * ftime;
igt_assert_f(fabs(usec_diff) / ftime <= 0.005,
"timestamp mismatch between %s and %s (diff %.6f sec)\n",
es1->name, es2->name, usec_diff / USEC_PER_SEC);
}
static bool check_all_state(struct test_output *o,
unsigned int completed_events)
{
bool flip, vblank;
flip = completed_events & EVENT_FLIP;
vblank = completed_events & EVENT_VBLANK;
if (flip && !check_state(o, &o->flip_state))
return false;
if (vblank && !check_state(o, &o->vblank_state))
return false;
/* FIXME: Correlation check is broken. */
if (flip && vblank && 0)
check_state_correlation(o, &o->flip_state, &o->vblank_state);
return true;
}
static void recreate_fb(struct test_output *o)
{
drmModeFBPtr r;
struct igt_fb *fb_info = &o->fb_info[o->current_fb_id];
uint32_t new_fb_id;
/* Call rmfb/getfb/addfb to ensure those don't introduce stalls */
r = drmModeGetFB(drm_fd, fb_info->fb_id);
igt_assert(r);
do_or_die(drmModeAddFB(drm_fd, o->fb_width, o->fb_height, o->depth,
o->bpp, fb_info->strides[0],
r->handle, &new_fb_id));
gem_close(drm_fd, r->handle);
drmFree(r);
do_or_die(drmModeRmFB(drm_fd, fb_info->fb_id));
o->fb_ids[o->current_fb_id] = new_fb_id;
o->fb_info[o->current_fb_id].fb_id = new_fb_id;
}
static igt_hang_t hang_gpu(int fd, uint64_t ahnd)
{
return igt_hang_ring_with_ahnd(fd, I915_EXEC_DEFAULT, ahnd);
}
static void unhang_gpu(int fd, igt_hang_t hang)
{
igt_post_hang_ring(fd, hang);
}
static bool is_wedged(int fd)
{
if (drmIoctl(fd, DRM_IOCTL_I915_GEM_THROTTLE, 0) == 0)
return false;
return errno == EIO;
}
static int set_mode(struct test_output *o, uint32_t fb, int x, int y)
{
int n, ret;
for (n = o->count - 1; n >= 0; n--) {
uint32_t buffer_id = fb, x_crtc = x, y_crtc = y;
uint32_t *conn = &o->_connector[n];
int count = 1;
drmModeModeInfoPtr mode = &o->kmode[n];
if (fb == 0) {
buffer_id = x_crtc = y_crtc = count = 0;
conn = NULL; mode = NULL;
}
ret = drmModeSetCrtc(drm_fd, o->_crtc[n],
buffer_id, x_crtc, y_crtc,
conn, count, mode);
if (ret)
return ret;
if (is_intel_device(drm_fd))
intel_drrs_disable(drm_fd, o->pipe);
}
return 0;
}
/*
* Return true if the test steps were run successfully, false in case of a
* failure that requires rerunning the test steps. On success events will
* contain the mask of completed events.
*/
static bool run_test_step(struct test_output *o, unsigned int *events)
{
unsigned int new_fb_id;
/* for funny reasons page_flip returns -EBUSY on disabled crtcs ... */
int expected_einval = o->flags & TEST_MODESET ? -EBUSY : -EINVAL;
unsigned int completed_events = 0;
bool do_flip;
bool do_vblank;
struct vblank_reply vbl_reply;
unsigned int target_seq;
igt_hang_t hang;
uint64_t ahnd = 0;
target_seq = o->vblank_state.seq_step;
/* Absolute waits only works once we have a frame counter. */
if (o->flags & TEST_VBLANK_ABSOLUTE && o->vblank_state.count > 0)
target_seq += o->vblank_state.last_seq;
/*
* It's possible that we don't have a pending flip here, in case both
* wf-vblank and flip were scheduled and the wf-vblank event was
* delivered earlier. The same applies to vblank events w.r.t flip.
*/
do_flip = (o->flags & TEST_FLIP) && !(o->pending_events & EVENT_FLIP);
do_vblank = (o->flags & TEST_VBLANK) &&
!(o->pending_events & EVENT_VBLANK);
if (o->flags & TEST_DPMS_OFF_OTHERS)
dpms_off_other_outputs(o);
if (!(o->flags & TEST_SINGLE_BUFFER))
o->current_fb_id = !o->current_fb_id;
if (o->flags & TEST_FB_RECREATE)
recreate_fb(o);
new_fb_id = o->fb_ids[o->current_fb_id];
if ((o->flags & TEST_VBLANK_EXPIRED_SEQ) &&
!(o->pending_events & EVENT_VBLANK) && o->flip_state.count > 0) {
struct vblank_reply reply;
unsigned int exp_seq;
unsigned long start, end;
exp_seq = o->flip_state.current_seq;
start = gettime_us();
do_or_die(__wait_for_vblank(TEST_VBLANK_ABSOLUTE |
TEST_VBLANK_BLOCK, o->pipe, exp_seq,
0, &reply));
end = gettime_us();
igt_debug("Vblank took %luus\n", end - start);
igt_assert(end - start < 500);
if (reply.sequence != exp_seq) {
igt_debug("unexpected vblank seq %u, should be %u\n",
reply.sequence, exp_seq);
return false;
}
igt_assert(timercmp(&reply.ts, &o->flip_state.last_ts, ==));
}
if (o->flags & TEST_ENOENT) {
/* hope that fb 0xfffffff0 does not exist */
igt_assert_eq(do_page_flip(o, 0xfffffff0, false), -ENOENT);
igt_assert_eq(set_mode(o, 0xfffffff0, 0, 0), -ENOENT);
}
if (do_flip && (o->flags & TEST_EINVAL) && o->flip_state.count > 0)
igt_assert_eq(do_page_flip(o, new_fb_id, false), expected_einval);
if (do_vblank && (o->flags & TEST_EINVAL) && o->vblank_state.count > 0)
igt_assert_eq(do_wait_for_vblank(o, o->pipe, target_seq, &vbl_reply), -EINVAL);
if (o->flags & TEST_VBLANK_RACE) {
spawn_vblank_wait_thread(o);
if (o->flags & TEST_MODESET)
igt_assert_f(set_mode(o, 0 /* no fb */, 0, 0) == 0,
"failed to disable output: %s\n",
strerror(errno));
}
if (o->flags & TEST_DPMS_OFF)
set_dpms(o, DRM_MODE_DPMS_OFF);
if (o->flags & TEST_MODESET)
igt_assert(set_mode(o, o->fb_ids[o->current_fb_id], 0, 0) == 0);
if (o->flags & TEST_DPMS)
set_dpms(o, DRM_MODE_DPMS_ON);
if (o->flags & TEST_VBLANK_RACE) {
struct vblank_reply reply;
unsigned long start, end;
/* modeset/DPMS is done, vblank wait should work normally now */
start = gettime_us();
igt_assert(__wait_for_vblank(TEST_VBLANK_BLOCK, o->pipe, 2, 0, &reply) == 0);
end = gettime_us();
if (!should_skip_ts_checks()) {
/*
* we waited for two vblanks, so verify that
* we were blocked for ~1-2 frames. And due
* to scheduling latencies we give it an extra
* half a frame or so.
*/
igt_assert_f(end - start > 0.9 * actual_frame_time(o) &&
end - start < 2.6 * actual_frame_time(o),
"wait for two vblanks took %lu usec (frame time %f usec)\n",
end - start, mode_frame_time(o));
}
join_vblank_wait_thread();
}
igt_print_activity();
memset(&hang, 0, sizeof(hang));
if (do_flip && (o->flags & TEST_HANG)) {
igt_require_intel(drm_fd);
ahnd = is_i915_device(drm_fd) ?
get_reloc_ahnd(drm_fd, 0) :
intel_allocator_open(drm_fd, 0, INTEL_ALLOCATOR_RELOC);
hang = hang_gpu(drm_fd, ahnd);
}
/* try to make sure we can issue two flips during the same frame */
if (do_flip && (o->flags & TEST_EBUSY)) {
struct vblank_reply reply;
igt_assert(__wait_for_vblank(TEST_VBLANK_BLOCK, o->pipe, 1, 0, &reply) == 0);
}
if (do_flip)
do_or_die(do_page_flip(o, new_fb_id, !(o->flags & TEST_NOEVENT)));
if (o->flags & TEST_FENCE_STRESS)
emit_fence_stress(o);
if (do_vblank) {
do_or_die(do_wait_for_vblank(o, o->pipe, target_seq,
&vbl_reply));
if (o->flags & TEST_VBLANK_BLOCK) {
event_handler(&o->vblank_state, vbl_reply.sequence,
vbl_reply.ts.tv_sec,
vbl_reply.ts.tv_usec);
completed_events = EVENT_VBLANK;
}
}
if (do_flip && (o->flags & TEST_EBUSY))
igt_assert_eq(do_page_flip(o, new_fb_id, false), -EBUSY);
if (do_flip && (o->flags & TEST_RMFB))
recreate_fb(o);
/* pan before the flip completes */
if (o->flags & TEST_PAN) {
int count = do_flip ?
o->flip_state.count : o->vblank_state.count;
int width = o->fb_width - o->kmode[0].hdisplay;
int x_ofs = count * 10 % (2 * width);
if (x_ofs >= width)
x_ofs = 2 * width - x_ofs;
/* Make sure DSPSURF changes value */
if (o->flags & TEST_HANG)
o->current_fb_id = !o->current_fb_id;
igt_assert_f(set_mode(o, o->fb_ids[o->current_fb_id], x_ofs, 0) == 0,
"failed to pan (%dx%d@%dHz)+%d: %s\n",
o->kmode[0].hdisplay, o->kmode[0].vdisplay, o->kmode[0].vrefresh,
x_ofs, strerror(errno));
}
if (o->flags & TEST_DPMS)
set_dpms(o, DRM_MODE_DPMS_OFF);
if (o->flags & TEST_MODESET && !(o->flags & TEST_RMFB) && !(o->flags & TEST_VBLANK_RACE))
igt_assert_f(set_mode(o, 0 /* no fb */, 0, 0) == 0,
"failed to disable output: %s\n",
strerror(errno));
if (o->flags & TEST_SUSPEND)
igt_system_suspend_autoresume(SUSPEND_STATE_MEM,
SUSPEND_TEST_NONE);
if (do_vblank && (o->flags & TEST_EINVAL) && o->vblank_state.count > 0)
igt_assert(do_wait_for_vblank(o, o->pipe, target_seq, &vbl_reply)
== -EINVAL);
if (do_flip && (o->flags & TEST_EINVAL))
igt_assert(do_page_flip(o, new_fb_id, false) == expected_einval);
unhang_gpu(drm_fd, hang);
put_ahnd(ahnd);
*events = completed_events;
return true;
}
static void update_state(struct event_state *es)
{
es->last_received_ts = es->current_received_ts;
es->last_ts = es->current_ts;
es->last_seq = es->current_seq;
es->count++;
}
static void update_all_state(struct test_output *o,
unsigned int completed_events)
{
if (completed_events & EVENT_FLIP)
update_state(&o->flip_state);
if (completed_events & EVENT_VBLANK)
update_state(&o->vblank_state);
}
static void connector_find_preferred_mode(uint32_t connector_id, int crtc_idx,
struct test_output *o)
{
struct kmstest_connector_config config;
if (!kmstest_get_connector_config(drm_fd, connector_id, 1 << crtc_idx,
&config)) {
o->mode_valid = 0;
return;
}
o->pipe = config.pipe;
o->kconnector[0] = config.connector;
o->kencoder[0] = config.encoder;
o->_crtc[0] = config.crtc->crtc_id;
o->_pipe[0] = config.pipe;
o->kmode[0] = config.default_mode;
o->mode_valid = 1;
o->fb_width = o->kmode[0].hdisplay;
o->fb_height = o->kmode[0].vdisplay;
drmModeFreeCrtc(config.crtc);
}
static bool mode_compatible(const drmModeModeInfo *a, const drmModeModeInfo *b)
{
int d_refresh;
if (a->hdisplay != b->hdisplay)
return false;
if (a->vdisplay != b->vdisplay)
return false;
d_refresh = a->vrefresh - b->vrefresh;
if (d_refresh < -1 || d_refresh > 1)
return false;
return true;
}
static bool get_compatible_modes(drmModeModeInfo *a, drmModeModeInfo *b,
drmModeConnector *c1, drmModeConnector *c2)
{
int n, m;
*a = c1->modes[0];
*b = c2->modes[0];
if (!mode_compatible(a, b)) {
for (n = 0; n < c1->count_modes; n++) {
*a = c1->modes[n];
for (m = 0; m < c2->count_modes; m++) {
*b = c2->modes[m];
if (mode_compatible(a, b))
return true;
}
}
return false;
}
return true;
}
static void connector_find_compatible_mode(int crtc_idx0, int crtc_idx1,
struct test_output *o)
{
struct kmstest_connector_config config[2];
drmModeModeInfo mode[2];
if (!kmstest_get_connector_config(drm_fd, o->_connector[0],
1 << crtc_idx0, &config[0]))
return;
if (!kmstest_get_connector_config(drm_fd, o->_connector[1],
1 << crtc_idx1, &config[1])) {
kmstest_free_connector_config(&config[0]);
return;
}
o->mode_valid = get_compatible_modes(&mode[0], &mode[1],
config[0].connector, config[1].connector);
o->pipe = config[0].pipe;
o->fb_width = mode[0].hdisplay;
o->fb_height = mode[0].vdisplay;
o->kconnector[0] = config[0].connector;
o->kencoder[0] = config[0].encoder;
o->_crtc[0] = config[0].crtc->crtc_id;
o->_pipe[0] = config[0].pipe;
o->kmode[0] = mode[0];
o->kconnector[1] = config[1].connector;
o->kencoder[1] = config[1].encoder;
o->_crtc[1] = config[1].crtc->crtc_id;
o->_pipe[1] = config[1].pipe;
o->kmode[1] = mode[1];
drmModeFreeCrtc(config[0].crtc);
drmModeFreeCrtc(config[1].crtc);
}
static void paint_flip_mode(struct igt_fb *fb, bool odd_frame)
{
cairo_t *cr = igt_get_cairo_ctx(drm_fd, fb);
int width = fb->width;
int height = fb->height;
igt_paint_test_pattern(cr, width, height);
if (odd_frame)
cairo_rectangle(cr, width/4, height/2, width/4, height/8);
else
cairo_rectangle(cr, width/2, height/2, width/4, height/8);
cairo_set_source_rgb(cr, 1, 1, 1);
cairo_fill(cr);
igt_put_cairo_ctx(cr);
}
static bool fb_is_bound(struct test_output *o, int fb)
{
int n;
for (n = 0; n < o->count; n++) {
struct drm_mode_crtc mode = {
.crtc_id = o->_crtc[n]
};
if (drmIoctl(drm_fd, DRM_IOCTL_MODE_GETCRTC, &mode))
return false;
if (!mode.mode_valid || mode.fb_id != fb)
return false;
}
return true;
}
static bool check_final_state(const struct test_output *o,
const struct event_state *es,
unsigned int elapsed)
{
igt_assert_f(es->count > 0,
"no %s event received\n", es->name);
/* Verify we drop no frames, but only if it's not a TV encoder, since
* those use some funny fake timings behind userspace's back. */
if (o->flags & TEST_CHECK_TS) {
int count = es->count * o->seq_step;
unsigned int min = actual_frame_time(o) * (count - 1);
unsigned int max = actual_frame_time(o) * (count + 1);
igt_debug("expected %d, counted %d, encoder type %d\n",
(int)(elapsed / actual_frame_time(o)), count,
o->kencoder[0]->encoder_type);
if (elapsed < min || elapsed > max) {
igt_debug("dropped frames, expected %d, counted %d, encoder type %d\n",
(int)(elapsed / actual_frame_time(o)), count,
o->kencoder[0]->encoder_type);
return false;
}
}
return true;
}
/*
* Wait until at least one pending event completes. Return mask of completed
* events.
*/
static unsigned int wait_for_events(struct test_output *o)
{
drmEventContext evctx;
struct timeval timeout = { .tv_sec = 3, .tv_usec = 0 };
fd_set fds;
unsigned int event_mask;
int ret;
event_mask = o->pending_events;
igt_assert(event_mask);
memset(&evctx, 0, sizeof evctx);
evctx.version = 2;
evctx.vblank_handler = vblank_handler;
evctx.page_flip_handler = page_flip_handler;
FD_ZERO(&fds);
FD_SET(drm_fd, &fds);
do {
do {
ret = select(drm_fd + 1, &fds, NULL, NULL, &timeout);
} while (ret < 0 && errno == EINTR);
igt_assert_f(ret >= 0,
"select error (errno %i)\n", errno);
igt_assert_f(ret > 0,
"select timed out or error (ret %d)\n", ret);
igt_assert_f(!FD_ISSET(0, &fds),
"no fds active, breaking\n");
do_or_die(drmHandleEvent(drm_fd, &evctx));
} while (o->pending_events);
event_mask ^= o->pending_events;
igt_assert(event_mask);
return event_mask;
}
/* Returned the elapsed time in us */
static bool event_loop(struct test_output *o, unsigned duration_ms,
unsigned *elapsed)
{
unsigned long start, end;
int count = 0;
start = gettime_us();
while (1) {
unsigned int completed_events;
if (!run_test_step(o, &completed_events))
return false;
if (o->pending_events)
completed_events |= wait_for_events(o);
if (!check_all_state(o, completed_events))
return false;
update_all_state(o, completed_events);
if (count && (gettime_us() - start) / 1000 >= duration_ms)
break;
count++;
}
end = gettime_us();
/* Flush any remaining events */
if (o->pending_events)
wait_for_events(o);
*elapsed = end - start;
return true;
}
static void free_test_output(struct test_output *o)
{
int i;
for (i = 0; i < o->count; i++) {
drmModeFreeEncoder(o->kencoder[i]);
drmModeFreeConnector(o->kconnector[i]);
}
}
static bool calibrate_ts(struct test_output *o, int crtc_idx)
{
#define CALIBRATE_TS_STEPS 16
drmVBlank wait;
igt_stats_t stats;
uint32_t last_seq;
uint64_t last_timestamp;
double expected;
double mean;
double stddev;
bool failed = false;
int n;
memset(&wait, 0, sizeof(wait));
wait.request.type = kmstest_get_vbl_flag(crtc_idx);
wait.request.type |= DRM_VBLANK_RELATIVE | DRM_VBLANK_NEXTONMISS;
do_or_die(drmWaitVBlank(drm_fd, &wait));
last_seq = wait.reply.sequence;
last_timestamp = wait.reply.tval_sec;
last_timestamp *= 1000000;
last_timestamp += wait.reply.tval_usec;
memset(&wait, 0, sizeof(wait));
wait.request.type = kmstest_get_vbl_flag(crtc_idx);
wait.request.type |= DRM_VBLANK_ABSOLUTE | DRM_VBLANK_EVENT;
wait.request.sequence = last_seq;
for (n = 0; n < CALIBRATE_TS_STEPS; n++) {
drmVBlank check = {};
++wait.request.sequence;
do_or_die(drmWaitVBlank(drm_fd, &wait));
/* Double check that haven't already missed the vblank */
check.request.type = kmstest_get_vbl_flag(crtc_idx);
check.request.type |= DRM_VBLANK_RELATIVE;
do_or_die(drmWaitVBlank(drm_fd, &check));
igt_assert(!igt_vblank_after(check.reply.sequence, wait.request.sequence));
}
igt_stats_init_with_size(&stats, CALIBRATE_TS_STEPS);
for (n = 0; n < CALIBRATE_TS_STEPS; n++) {
struct drm_event_vblank ev;
uint64_t now;
int poll_ret;
while (1) {
/*
* In case of the interruptible tests, this poll may
* be interrupted with -EINTR, handle this by restarting
* until we poll timeout or success.
*/
poll_ret = poll(&(struct pollfd){drm_fd, POLLIN}, 1, -1);
if (poll_ret == 1)
break;
igt_assert_neq(poll_ret, 0);
igt_assert_eq(errno, EINTR);
}
igt_assert(read(drm_fd, &ev, sizeof(ev)) == sizeof(ev));
if (failed)
continue;
if (ev.sequence != last_seq + 1) {
igt_debug("Unexpected frame sequence %d vs. expected %d\n",
ev.sequence, last_seq + 1);
failed = true;
/* Continue to flush all the events queued up */
continue;
}
now = ev.tv_sec;
now *= 1000000;
now += ev.tv_usec;
igt_stats_push(&stats, now - last_timestamp);
last_timestamp = now;
last_seq = ev.sequence;
}
if (failed)
return false;
expected = mode_frame_time(o);
mean = igt_stats_get_mean(&stats);
stddev = igt_stats_get_std_deviation(&stats);
igt_info("Expected frametime: %.0fus; measured %.1fus +- %.3fus accuracy %.2f%%\n",
expected, mean, stddev, 100 * 3 * stddev / mean);
if (!should_skip_ts_checks())
/* 99.7% samples within 0.5% of the mean */
igt_assert(3 * stddev / mean < 0.005);
/* 84% samples within 0.5% of the expected value.
* See comments in check_timings() in kms_setmode.c
*/
if (fabs(mean - expected) > 2*stddev) {
igt_info("vblank interval differs from modeline! expected %.1fus, measured %1.fus +- %.3fus, difference %.1fus (%.1f sigma)\n",
expected, mean, stddev,
fabs(mean - expected), fabs(mean - expected) / stddev);
}
o->vblank_interval = mean;
return true;
}
/*
* Some monitors with odd behavior signal a bad link after waking from a power
* saving state and the subsequent (successful) modeset. This will result in a
* link-retraining (DP) or async modeset (HDMI), which in turn makes the test
* miss vblank/flip events and fail. Work around this by retrying the test
* once in case of such a link reset event, which the driver signals with a
* hotplug event.
*/
static bool needs_retry_after_link_reset(struct udev_monitor *mon)
{
bool hotplug_detected;
igt_suspend_signal_helper();
hotplug_detected = igt_hotplug_detected(mon, 3);
igt_resume_signal_helper();
if (hotplug_detected)
igt_debug("Retrying after a hotplug event\n");
return hotplug_detected;
}
static void discard_any_stale_events(void) {
fd_set fds;
int ret;
struct timeval timeout = { .tv_sec = 0, .tv_usec = 20000 };
FD_ZERO(&fds);
FD_SET(drm_fd, &fds);
ret = select(drm_fd + 1, &fds, NULL, NULL, &timeout);
if (ret > 0) {
drmEventContext evctx;
memset(&evctx, 0, sizeof evctx);
evctx.version = 2;
igt_info("Stale Event found - Discarding now\n");
drmHandleEvent(drm_fd, &evctx);
}
else {
igt_debug("No stale events found\n");
}
}
static void get_suitable_modes(struct test_output *o)
{
drmModeModeInfo mode[2];
int i;
for (i = 0; i < RUN_PAIR; i++)
igt_sort_connector_modes(o->kconnector[i],
sort_drm_modes_by_clk_asc);
o->mode_valid = get_compatible_modes(&mode[0], &mode[1],
o->kconnector[0], o->kconnector[1]);
o->fb_width = mode[0].hdisplay;
o->fb_height = mode[0].vdisplay;
o->kmode[0] = mode[0];
o->kmode[1] = mode[1];
}
static void __run_test_on_crtc_set(struct test_output *o, int *crtc_idxs,
int crtc_count, int duration_ms)
{
struct udev_monitor *mon = igt_watch_uevents();
unsigned bo_size = 0;
bool vblank = true;
bool retried = false, restart = false;
bool state_ok;
unsigned elapsed;
uint64_t modifier;
int i, ret;
restart:
last_connector = o->kconnector[0];
if (o->flags & TEST_PAN)
o->fb_width *= 2;
modifier = DRM_FORMAT_MOD_LINEAR;
if (o->flags & TEST_FENCE_STRESS)
modifier = I915_FORMAT_MOD_X_TILED;
/* 256 MB is usually the maximum mappable aperture,
* (make it 4x times that to ensure failure) */
if (o->flags & TEST_BO_TOOBIG) {
bo_size = 4*gem_mappable_aperture_size(drm_fd);
if (is_i915_device(drm_fd))
igt_require(bo_size < gem_global_aperture_size(drm_fd));
else
igt_require(bo_size < (1ULL << xe_va_bits(drm_fd)));
}
o->fb_ids[0] = igt_create_fb(drm_fd, o->fb_width, o->fb_height,
igt_bpp_depth_to_drm_format(o->bpp, o->depth),
modifier, &o->fb_info[0]);
o->fb_ids[1] = igt_create_fb_with_bo_size(drm_fd, o->fb_width, o->fb_height,
igt_bpp_depth_to_drm_format(o->bpp, o->depth),
modifier, IGT_COLOR_YCBCR_BT709,
IGT_COLOR_YCBCR_LIMITED_RANGE,
&o->fb_info[1], bo_size, 0);
igt_assert(o->fb_ids[0]);
igt_assert(o->fb_ids[1]);
paint_flip_mode(&o->fb_info[0], false);
if (!(o->flags & TEST_BO_TOOBIG))
paint_flip_mode(&o->fb_info[1], true);
if (o->fb_ids[2])
paint_flip_mode(&o->fb_info[2], true);
for (i = 0; i < o->count; i++)
kmstest_dump_mode(&o->kmode[i]);
retry:
/* Discard any pending event that hasn't been consumed from a previous retry or subtest. */
discard_any_stale_events();
memset(&o->vblank_state, 0, sizeof(o->vblank_state));
memset(&o->flip_state, 0, sizeof(o->flip_state));
o->flip_state.name = "flip";
o->vblank_state.name = "vblank";
kmstest_unset_all_crtcs(drm_fd, resources);
igt_flush_uevents(mon);
ret = set_mode(o, o->fb_ids[0], 0, 0);
/* In case of DP-MST find suitable mode(s) to fit into the link BW. */
if (ret < 0 && errno == ENOSPC &&
crtc_count == RUN_PAIR) {
if (restart) {
igt_info("No suitable modes found to fit into the link BW.\n");
goto out;
}
get_suitable_modes(o);
if (o->mode_valid) {
igt_remove_fb(drm_fd, &o->fb_info[2]);
igt_remove_fb(drm_fd, &o->fb_info[1]);
igt_remove_fb(drm_fd, &o->fb_info[0]);
restart = true;
goto restart;
}
goto out;
}
igt_assert(!ret);
igt_assert(fb_is_bound(o, o->fb_ids[0]));
vblank = kms_has_vblank(drm_fd);
if (!vblank) {
if (vblank_dependence(o->flags))
igt_require_f(vblank, "There is no VBlank\n");
else
o->flags |= TEST_NO_VBLANK;
}
/* quiescent the hw a bit so ensure we don't miss a single frame */
if (o->flags & TEST_CHECK_TS && !calibrate_ts(o, crtc_idxs[0])) {
igt_assert(!retried && needs_retry_after_link_reset(mon));
retried = true;
goto retry;
}
if (o->flags & TEST_BO_TOOBIG) {
int err = do_page_flip(o, o->fb_ids[1], true);
igt_assert(err == 0 || err == -E2BIG);
if (err)
goto out;
} else {
igt_assert_eq(do_page_flip(o, o->fb_ids[1], true), 0);
}
wait_for_events(o);
o->current_fb_id = 1;
if (o->flags & TEST_FLIP)
o->flip_state.seq_step = 1;
else
o->flip_state.seq_step = 0;
if (o->flags & TEST_VBLANK)
o->vblank_state.seq_step = 10;
else
o->vblank_state.seq_step = 0;
/* We run the vblank and flip actions in parallel by default. */
o->seq_step = max(o->vblank_state.seq_step, o->flip_state.seq_step);
state_ok = event_loop(o, duration_ms, &elapsed);
if (o->flags & TEST_FLIP && !(o->flags & TEST_NOEVENT))
state_ok &= check_final_state(o, &o->flip_state, elapsed);
if (o->flags & TEST_VBLANK)
state_ok &= check_final_state(o, &o->vblank_state, elapsed);
if (!state_ok) {
igt_assert(!retried && needs_retry_after_link_reset(mon));
retried = true;
goto retry;
}
out:
igt_remove_fb(drm_fd, &o->fb_info[2]);
igt_remove_fb(drm_fd, &o->fb_info[1]);
igt_remove_fb(drm_fd, &o->fb_info[0]);
last_connector = NULL;
free_test_output(o);
igt_cleanup_uevents(mon);
}
static void run_test_on_crtc_set(struct test_output *o, int *crtc_idxs,
int crtc_count, int total_crtcs,
int duration_ms)
{
char test_name[128];
int i;
switch (crtc_count) {
case RUN_TEST:
connector_find_preferred_mode(o->_connector[0], crtc_idxs[0], o);
if (!o->mode_valid)
return;
snprintf(test_name, sizeof(test_name),
"%s-%s%d",
kmstest_pipe_name(o->_pipe[0]),
kmstest_connector_type_str(o->kconnector[0]->connector_type),
o->kconnector[0]->connector_type_id);
break;
case RUN_PAIR:
connector_find_compatible_mode(crtc_idxs[0], crtc_idxs[1], o);
if (!o->mode_valid)
return;
snprintf(test_name, sizeof(test_name),
"%s%s-%s%d-%s%d",
kmstest_pipe_name(o->_pipe[0]),
kmstest_pipe_name(o->_pipe[1]),
kmstest_connector_type_str(o->kconnector[0]->connector_type),
o->kconnector[0]->connector_type_id,
kmstest_connector_type_str(o->kconnector[1]->connector_type),
o->kconnector[1]->connector_type_id);
break;
default:
igt_assert(0);
}
igt_assert_eq(o->count, crtc_count);
/*
* Handle BW limitations on intel hardware:
*
* if force joiner (or) mode resolution > 5K (or) mode clock > max_dotclock, then ignore
* - last crtc in single/multi-connector config
* - consecutive crtcs in multi-connector config
*
* in multi-connector config ignore if
* - previous crtc (force joiner or mode resolution > 5K or mode clock > max_dotclock) and
* - current & previous crtcs are consecutive
*/
if (!is_intel_device(drm_fd))
goto test;
for (i = 0; i < crtc_count; i++) {
char conn_name[24], prev_conn_name[24];
snprintf(conn_name, sizeof(conn_name),
"%s-%d",
kmstest_connector_type_str(o->kconnector[i]->connector_type),
o->kconnector[i]->connector_type_id);
if (i > 0)
snprintf(prev_conn_name, sizeof(prev_conn_name),
"%s-%d",
kmstest_connector_type_str(o->kconnector[i - 1]->connector_type),
o->kconnector[i - 1]->connector_type_id);
if (((igt_check_force_joiner_status(drm_fd, conn_name) ||
igt_bigjoiner_possible(&o->kmode[i], max_dotclock)) &&
((crtc_idxs[i] >= (total_crtcs - 1)) ||
((i < (crtc_count - 1)) && (abs(crtc_idxs[i + 1] - crtc_idxs[i]) <= 1)))) ||
((i > 0) && (igt_check_force_joiner_status(drm_fd, prev_conn_name) ||
igt_bigjoiner_possible(&o->kmode[i - 1], max_dotclock)) &&
(abs(crtc_idxs[i] - crtc_idxs[i - 1]) <= 1))) {
igt_debug("Combo: %s is not possible with selected mode(s).\n", test_name);
return;
}
}
test:
igt_dynamic_f("%s", test_name)
__run_test_on_crtc_set(o, crtc_idxs, crtc_count, duration_ms);
}
static void run_test(int duration, int flags)
{
struct test_output o;
int i, n, modes = 0;
/* No tiling support in XE. */
if (is_xe_device(drm_fd) && flags & TEST_FENCE_STRESS)
return;
if (flags & TEST_BO_TOOBIG && !is_intel_device(drm_fd))
return;
if ((flags & TEST_HANG) == 0 && is_i915_device(drm_fd))
igt_require(!is_wedged(drm_fd));
igt_require(!(flags & TEST_FENCE_STRESS) ||
(is_i915_device(drm_fd) && gem_available_fences(drm_fd)));
resources = drmModeGetResources(drm_fd);
igt_require(resources);
/* Count output configurations to scale test runtime. */
for (i = 0; i < resources->count_connectors; i++) {
for (n = 0; n < resources->count_crtcs; n++) {
/* Limit the execution to 2 CRTCs (first & last) for hang tests */
if ((flags & TEST_HANG) && !all_pipes &&
n != 0 && n != (resources->count_crtcs - 1))
continue;
memset(&o, 0, sizeof(o));
o.count = 1;
o._connector[0] = resources->connectors[i];
o.flags = flags;
o.bpp = 32;
o.depth = 24;
connector_find_preferred_mode(o._connector[0], n, &o);
if (o.mode_valid)
modes++;
free_test_output(&o);
}
}
igt_require(modes);
if (duration) {
duration = duration * 1000 / modes;
duration = max(500, duration);
}
/* Find any connected displays */
for (i = 0; i < resources->count_connectors; i++) {
for (n = 0; n < resources->count_crtcs; n++) {
int crtc_idx;
/* Limit the execution to 2 CRTCs (first & last) for hang tests */
if ((flags & TEST_HANG) && !all_pipes &&
n != 0 && n != (resources->count_crtcs - 1))
continue;
memset(&o, 0, sizeof(o));
o.count = 1;
o._connector[0] = resources->connectors[i];
o.flags = flags;
o.bpp = 32;
o.depth = 24;
crtc_idx = n;
run_test_on_crtc_set(&o, &crtc_idx, RUN_TEST,
resources->count_crtcs, duration);
}
}
drmModeFreeResources(resources);
}
static void run_pair(int duration, int flags)
{
struct test_output o;
int i, j, m, n, modes = 0;
/* No tiling support in XE. */
if (is_xe_device(drm_fd) && flags & TEST_FENCE_STRESS)
return;
if (flags & TEST_BO_TOOBIG && !is_intel_device(drm_fd))
return;
if ((flags & TEST_HANG) == 0 && is_i915_device(drm_fd))
igt_require(!is_wedged(drm_fd));
igt_require(!(flags & TEST_FENCE_STRESS) ||
(is_i915_device(drm_fd) && gem_available_fences(drm_fd)));
resources = drmModeGetResources(drm_fd);
igt_require(resources);
/* Find a pair of connected displays */
for (i = 0; i < resources->count_connectors; i++) {
for (n = 0; n < resources->count_crtcs; n++) {
for (j = i + 1; j < resources->count_connectors; j++) {
for (m = n + 1; m < resources->count_crtcs; m++) {
memset(&o, 0, sizeof(o));
o.count = 2;
o._connector[0] = resources->connectors[i];
o._connector[1] = resources->connectors[j];
o.flags = flags;
o.bpp = 32;
o.depth = 24;
connector_find_compatible_mode(n, m, &o);
if (o.mode_valid)
modes++;
free_test_output(&o);
}
}
}
}
/* If we have fewer than 2 connected outputs then we won't have any
* configuration at all. So skip in that case. */
igt_require_f(modes, "At least two displays required\n");
if (duration) {
duration = duration * 1000 / modes;
duration = max(duration, 500);
}
/* Find a pair of connected displays */
for (i = 0; i < resources->count_connectors; i++) {
for (n = 0; n < resources->count_crtcs; n++) {
for (j = i + 1; j < resources->count_connectors; j++) {
for (m = n + 1; m < resources->count_crtcs; m++) {
int crtc_idxs[2];
memset(&o, 0, sizeof(o));
o.count = 2;
o._connector[0] = resources->connectors[i];
o._connector[1] = resources->connectors[j];
o.flags = flags;
o.bpp = 32;
o.depth = 24;
crtc_idxs[0] = n;
crtc_idxs[1] = m;
/* Limit the execution to 2 CRTCs (first & last) for hang tests */
if ((flags & TEST_HANG) && !all_pipes &&
((n != 0 && n != resources->count_crtcs) ||
m != resources->count_crtcs - 1))
continue;
run_test_on_crtc_set(&o, crtc_idxs,
RUN_PAIR,
resources->count_crtcs,
duration);
}
}
}
}
drmModeFreeResources(resources);
}
static void get_timestamp_format(void)
{
uint64_t cap_mono;
int ret;
ret = drmGetCap(drm_fd, DRM_CAP_TIMESTAMP_MONOTONIC, &cap_mono);
igt_assert(ret == 0 || errno == EINVAL);
monotonic_timestamp = ret == 0 && cap_mono == 1;
igt_info("Using %s timestamps\n",
monotonic_timestamp ? "monotonic" : "real");
}
static void kms_flip_exit_handler(int sig)
{
if (last_connector)
kmstest_set_connector_dpms(drm_fd, last_connector, DRM_MODE_DPMS_ON);
}
static void test_nonblocking_read(int in)
{
char buffer[1024];
int fd = dup(in);
int ret;
ret = -1;
if (fd != -1)
ret = fcntl(fd, F_GETFL);
if (ret != -1) {
ret |= O_NONBLOCK;
ret = fcntl(fd, F_SETFL, ret);
}
igt_require(ret != -1);
igt_set_timeout(5, "Nonblocking DRM fd reading");
ret = read(fd, buffer, sizeof(buffer));
igt_reset_timeout();
igt_assert_eq(ret, -1);
igt_assert_eq(errno, EAGAIN);
close(fd);
}
static int opt_handler(int opt, int opt_index, void *data)
{
switch (opt) {
case 'e':
all_pipes = true;
break;
default:
return IGT_OPT_HANDLER_ERROR;
}
return IGT_OPT_HANDLER_SUCCESS;
}
const char *help_str =
" -e \tRun on all pipes. (By default subtests will run on two pipes)\n";
igt_main_args("e", NULL, help_str, opt_handler, NULL)
{
struct {
int duration;
int flags;
const char *name;
} tests[] = {
{ 30, TEST_VBLANK | TEST_CHECK_TS, "wf_vblank-ts-check" },
{ 30, TEST_VBLANK | TEST_VBLANK_BLOCK | TEST_CHECK_TS,
"blocking-wf_vblank" },
{ 30, TEST_VBLANK | TEST_VBLANK_ABSOLUTE,
"absolute-wf_vblank" },
{ 30, TEST_VBLANK | TEST_VBLANK_BLOCK | TEST_VBLANK_ABSOLUTE,
"blocking-absolute-wf_vblank" },
{ 2, TEST_FLIP | TEST_BASIC, "plain-flip" },
{ 1, TEST_FLIP | TEST_EBUSY, "busy-flip" },
{ 30, TEST_FLIP | TEST_FENCE_STRESS , "flip-vs-fences" },
{ 30, TEST_FLIP | TEST_CHECK_TS, "plain-flip-ts-check" },
{ 30, TEST_FLIP | TEST_CHECK_TS | TEST_FB_RECREATE,
"plain-flip-fb-recreate" },
{ 30, TEST_FLIP | TEST_RMFB | TEST_MODESET , "flip-vs-rmfb" },
{ 2, TEST_FLIP | TEST_DPMS | TEST_EINVAL | TEST_BASIC, "flip-vs-dpms" },
{ 30, TEST_FLIP | TEST_PAN, "flip-vs-panning" },
{ 2, TEST_FLIP | TEST_MODESET | TEST_EINVAL | TEST_BASIC, "flip-vs-modeset" },
{ 30, TEST_FLIP | TEST_VBLANK_EXPIRED_SEQ,
"flip-vs-expired-vblank" },
{ 30, TEST_FLIP | TEST_VBLANK | TEST_VBLANK_ABSOLUTE |
TEST_CHECK_TS, "flip-vs-absolute-wf_vblank" },
{ 2, TEST_FLIP | TEST_VBLANK | TEST_CHECK_TS | TEST_BASIC,
"flip-vs-wf_vblank" },
{ 30, TEST_FLIP | TEST_VBLANK | TEST_VBLANK_BLOCK |
TEST_CHECK_TS, "flip-vs-blocking-wf-vblank" },
{ 1, TEST_FLIP | TEST_MODESET | TEST_HANG | TEST_NOEVENT, "flip-vs-modeset-vs-hang" },
{ 1, TEST_FLIP | TEST_PAN | TEST_HANG, "flip-vs-panning-vs-hang" },
{ 1, TEST_DPMS_OFF | TEST_MODESET | TEST_FLIP,
"flip-vs-dpms-off-vs-modeset" },
{ 1, TEST_DPMS_OFF | TEST_MODESET | TEST_FLIP | TEST_SINGLE_BUFFER,
"single-buffer-flip-vs-dpms-off-vs-modeset" },
{ 30, TEST_FLIP | TEST_NO_2X_OUTPUT | TEST_DPMS_OFF_OTHERS , "dpms-off-confusion" },
{ 0, TEST_ENOENT | TEST_NOEVENT, "nonexisting-fb" },
{ 10, TEST_DPMS_OFF | TEST_DPMS | TEST_VBLANK_RACE | TEST_CHECK_TS, "dpms-vs-vblank-race" },
{ 10, TEST_MODESET | TEST_VBLANK_RACE | TEST_CHECK_TS, "modeset-vs-vblank-race" },
{ 0, TEST_BO_TOOBIG | TEST_NO_2X_OUTPUT, "bo-too-big" },
{ 10, TEST_FLIP | TEST_SUSPEND, "flip-vs-suspend" },
};
igt_display_t display;
int i;
igt_fixture {
drm_fd = drm_open_driver_master(DRIVER_ANY);
igt_display_require(&display, drm_fd);
kmstest_set_vt_graphics_mode();
igt_install_exit_handler(kms_flip_exit_handler);
get_timestamp_format();
if (is_i915_device(drm_fd)) {
bops = buf_ops_create(drm_fd);
}
if (should_skip_ts_checks()) {
igt_info("Skipping timestamp checks\n");
for (i = 0; i < sizeof(tests) / sizeof(tests[0]); i++)
tests[i].flags &= ~(TEST_CHECK_TS | TEST_VBLANK_EXPIRED_SEQ);
}
max_dotclock = igt_get_max_dotclock(drm_fd);
}
igt_describe("Tests that nonblocking reading fails correctly");
igt_subtest("nonblocking-read")
test_nonblocking_read(drm_fd);
for (i = 0; i < sizeof(tests) / sizeof (tests[0]); i++) {
igt_describe("Basic test for validating modeset, dpms and pageflips");
igt_subtest_with_dynamic_f("%s%s",
tests[i].flags & TEST_BASIC ? "basic-" : "",
tests[i].name)
run_test(tests[i].duration, tests[i].flags);
if (tests[i].flags & TEST_NO_2X_OUTPUT)
continue;
igt_describe("Test for validating modeset, dpms and pageflips with a pair of connected displays");
igt_subtest_with_dynamic_f("2x-%s", tests[i].name)
run_pair(tests[i].duration, tests[i].flags);
}
igt_fork_signal_helper();
for (i = 0; i < sizeof(tests) / sizeof (tests[0]); i++) {
/* relative blocking vblank waits that get constantly interrupt
* take forver. So don't do them. */
if ((tests[i].flags & TEST_VBLANK_BLOCK) &&
!(tests[i].flags & TEST_VBLANK_ABSOLUTE))
continue;
/*
* -EINVAL are negative API tests, they are rejected before
* any waits and so not subject to interruptiblity.
*
* -EBUSY needs to complete in a single vblank, skip them for
* interruptible tests
*
* HANGs are slow enough and interruptible hang testing is
* an oxymoron (can't force the wait-for-hang if being
* interrupted all the time).
*/
if (tests[i].flags & (TEST_EINVAL | TEST_EBUSY | TEST_HANG))
continue;
igt_describe("Interrupt test for validating modeset, dpms and pageflips");
igt_subtest_with_dynamic_f("%s-interruptible", tests[i].name)
run_test(tests[i].duration, tests[i].flags);
if (tests[i].flags & TEST_NO_2X_OUTPUT)
continue;
igt_describe("Interrupt test for validating modeset, dpms and pageflips with pair of connected displays");
igt_subtest_with_dynamic_f("2x-%s-interruptible", tests[i].name)
run_pair(tests[i].duration, tests[i].flags);
}
igt_stop_signal_helper();
igt_fixture {
igt_display_fini(&display);
drm_close_driver(drm_fd);
}
}