blob: c3fc4bf0f74cfb6633a4d1f11c56aca51700d460 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Chris Wilson <chris@chris-wilson.co.uk>
*
*/
#include <pthread.h>
#include "igt.h"
#include <unistd.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <inttypes.h>
#include <limits.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <sys/poll.h>
#include <sys/resource.h>
#include "drm.h"
#define LOCAL_I915_EXEC_FENCE_IN (1<<16)
#define LOCAL_I915_EXEC_FENCE_OUT (1<<17)
#define CONTEXT 0x1
#define REALTIME 0x2
#define CMDPARSER 0x4
#define FENCE_OUT 0x8
static int done;
static int fd;
static volatile uint32_t *timestamp_reg;
#define REG(x) (volatile uint32_t *)((volatile char *)igt_global_mmio + x)
#define REG_OFFSET(x) ((volatile char *)(x) - (volatile char *)igt_global_mmio)
#if defined(__USE_XOPEN2K) && defined(gen7_safe_mmio)
static pthread_spinlock_t timestamp_lock;
static uint32_t read_timestamp_locked(void)
{
uint32_t t;
pthread_spin_lock(&timestamp_lock);
t = *timestamp_reg;
pthread_spin_unlock(&timestamp_lock);
return t;
}
static int setup_timestamp_locked(void)
{
if (pthread_spin_init(&timestamp_lock, 0))
return 0;
read_timestamp = read_timestamp_locked;
return 1;
}
static uint32_t read_timestamp_unlocked(void)
{
return *timestamp_reg;
}
static uint32_t (*read_timestamp)(void) = read_timestamp_unlocked;
#else
static int setup_timestamp_locked(void)
{
return 1;
}
inline static uint32_t read_timestamp(void)
{
return *timestamp_reg;
}
#endif
struct consumer {
pthread_t thread;
int go;
struct igt_mean latency;
struct producer *producer;
};
struct producer {
pthread_t thread;
uint32_t ctx;
struct {
struct drm_i915_gem_exec_object2 exec[1];
struct drm_i915_gem_execbuffer2 execbuf;
} nop_dispatch;
struct {
struct drm_i915_gem_exec_object2 exec[2];
struct drm_i915_gem_execbuffer2 execbuf;
} workload_dispatch;
struct {
struct drm_i915_gem_exec_object2 exec[1];
struct drm_i915_gem_relocation_entry reloc[1];
struct drm_i915_gem_execbuffer2 execbuf;
} latency_dispatch;
pthread_mutex_t lock;
pthread_cond_t p_cond, c_cond;
uint32_t *last_timestamp;
int wait;
int complete;
int done;
struct igt_mean latency, dispatch;
int nop;
int nconsumers;
struct consumer *consumers;
};
#define LOCAL_EXEC_NO_RELOC (1<<11)
#define COPY_BLT_CMD (2<<29|0x53<<22|0x6)
#define BLT_WRITE_ALPHA (1<<21)
#define BLT_WRITE_RGB (1<<20)
#define WIDTH 1024
#define HEIGHT 1024
#define RCS_TIMESTAMP (0x2000 + 0x358)
#define BCS_TIMESTAMP (0x22000 + 0x358)
#define CYCLES_TO_NS(x) (80.*(x))
#define CYCLES_TO_US(x) (CYCLES_TO_NS(x)/1000.)
static uint32_t create_workload(int gen, int factor)
{
const int has_64bit_reloc = gen >= 8;
uint32_t handle = gem_create(fd, 4096);
uint32_t *map = gem_mmap__cpu(fd, handle, 0, 4096, PROT_WRITE);
int i = 0;
while (factor--) {
/* XY_SRC_COPY */
map[i++] = COPY_BLT_CMD | BLT_WRITE_ALPHA | BLT_WRITE_RGB;
if (has_64bit_reloc)
map[i-1] += 2;
map[i++] = 0xcc << 16 | 1 << 25 | 1 << 24 | (4*WIDTH);
map[i++] = 0;
map[i++] = HEIGHT << 16 | WIDTH;
map[i++] = 0;
if (has_64bit_reloc)
map[i++] = 0;
map[i++] = 0;
map[i++] = 4096;
map[i++] = 0;
if (has_64bit_reloc)
map[i++] = 0;
}
map[i++] = MI_BATCH_BUFFER_END;
munmap(map, 4096);
return handle;
}
static void setup_workload(struct producer *p, int gen,
uint32_t scratch,
uint32_t batch,
int factor,
unsigned flags)
{
struct drm_i915_gem_execbuffer2 *eb;
const int has_64bit_reloc = gen >= 8;
struct drm_i915_gem_relocation_entry *reloc;
int offset;
reloc = calloc(sizeof(*reloc), 2*factor);
p->workload_dispatch.exec[0].handle = scratch;
p->workload_dispatch.exec[1].relocation_count = 2*factor;
p->workload_dispatch.exec[1].relocs_ptr = (uintptr_t)reloc;
p->workload_dispatch.exec[1].handle = batch;
offset = 0;
while (factor--) {
reloc->offset = (offset+4) * sizeof(uint32_t);
reloc->target_handle = scratch;
reloc->read_domains = I915_GEM_DOMAIN_RENDER;
reloc->write_domain = I915_GEM_DOMAIN_RENDER;
reloc++;
reloc->offset = (offset+7) * sizeof(uint32_t);
if (has_64bit_reloc)
reloc->offset += sizeof(uint32_t);
reloc->target_handle = scratch;
reloc->read_domains = I915_GEM_DOMAIN_RENDER;
reloc++;
offset += 8;
if (has_64bit_reloc)
offset += 2;
}
eb = memset(&p->workload_dispatch.execbuf, 0, sizeof(*eb));
eb->buffers_ptr = (uintptr_t)p->workload_dispatch.exec;
eb->buffer_count = 2;
if (flags & CMDPARSER)
eb->batch_len = 4096;
eb->flags = I915_EXEC_BLT | LOCAL_EXEC_NO_RELOC;
eb->rsvd1 = p->ctx;
}
static void setup_latency(struct producer *p, int gen, unsigned flags)
{
struct drm_i915_gem_execbuffer2 *eb;
const int has_64bit_reloc = gen >= 8;
uint32_t handle;
uint32_t *map;
int i = 0;
handle = gem_create(fd, 4096);
if (gem_has_llc(fd))
map = gem_mmap__cpu(fd, handle, 0, 4096, PROT_WRITE);
else
map = gem_mmap__gtt(fd, handle, 4096, PROT_WRITE);
p->latency_dispatch.exec[0].relocation_count = 1;
p->latency_dispatch.exec[0].relocs_ptr =
(uintptr_t)p->latency_dispatch.reloc;
p->latency_dispatch.exec[0].handle = handle;
/* MI_STORE_REG_MEM */
map[i++] = 0x24 << 23 | 1;
if (has_64bit_reloc)
map[i-1]++;
map[i++] = REG_OFFSET(timestamp_reg);
p->latency_dispatch.reloc[0].offset = i * sizeof(uint32_t);
p->latency_dispatch.reloc[0].delta = 4000;
p->latency_dispatch.reloc[0].target_handle = handle;
p->latency_dispatch.reloc[0].read_domains = I915_GEM_DOMAIN_INSTRUCTION;
p->latency_dispatch.reloc[0].write_domain = 0; /* We lie! */
p->latency_dispatch.reloc[0].presumed_offset = 0;
p->last_timestamp = &map[1000];
map[i++] = 4000;
if (has_64bit_reloc)
map[i++] = 0;
map[i++] = MI_BATCH_BUFFER_END;
eb = memset(&p->latency_dispatch.execbuf, 0, sizeof(*eb));
eb->buffers_ptr = (uintptr_t)p->latency_dispatch.exec;
eb->buffer_count = 1;
if (flags & CMDPARSER)
eb->batch_len = sizeof(*map) * ((i + 1) & ~1);
eb->flags = I915_EXEC_BLT | LOCAL_EXEC_NO_RELOC;
if (flags & FENCE_OUT)
eb->flags |= LOCAL_I915_EXEC_FENCE_OUT;
eb->rsvd1 = p->ctx;
}
static uint32_t create_nop(void)
{
uint32_t buf = MI_BATCH_BUFFER_END;
uint32_t handle;
handle = gem_create(fd, 4096);
gem_write(fd, handle, 0, &buf, sizeof(buf));
return handle;
}
static void setup_nop(struct producer *p, uint32_t batch, unsigned flags)
{
struct drm_i915_gem_execbuffer2 *eb;
p->nop_dispatch.exec[0].handle = batch;
eb = memset(&p->nop_dispatch.execbuf, 0, sizeof(*eb));
eb->buffers_ptr = (uintptr_t)p->nop_dispatch.exec;
eb->buffer_count = 1;
if (flags & CMDPARSER)
eb->batch_len = 8;
eb->flags = I915_EXEC_BLT | LOCAL_EXEC_NO_RELOC;
eb->rsvd1 = p->ctx;
}
static void fence_wait(int fence)
{
struct pollfd pfd = { .fd = fence, .events = POLLIN };
poll(&pfd, 1, -1);
}
static void measure_latency(struct producer *p, struct igt_mean *mean)
{
if (!(p->latency_dispatch.execbuf.flags & LOCAL_I915_EXEC_FENCE_OUT))
gem_sync(fd, p->latency_dispatch.exec[0].handle);
else
fence_wait(p->latency_dispatch.execbuf.rsvd2 >> 32);
igt_mean_add(mean, read_timestamp() - *p->last_timestamp);
}
static void *producer(void *arg)
{
struct producer *p = arg;
int n;
while (!done) {
uint32_t start = read_timestamp();
int batches;
/* Control the amount of work we do, similar to submitting
* empty buffers below, except this time we will load the
* GPU with a small amount of real work - so there is a small
* period between execution and interrupts.
*/
gem_execbuf(fd, &p->workload_dispatch.execbuf);
/* Submitting a set of empty batches has a two fold effect:
* - increases contention on execbuffer, i.e. measure dispatch
* latency with number of clients.
* - generates lots of spurious interrupts (if someone is
* waiting).
*/
batches = p->nop;
while (batches--)
gem_execbuf(fd, &p->nop_dispatch.execbuf);
/* Finally, execute a batch that just reads the current
* TIMESTAMP so we can measure the latency.
*/
if (p->latency_dispatch.execbuf.flags & LOCAL_I915_EXEC_FENCE_OUT)
gem_execbuf_wr(fd, &p->latency_dispatch.execbuf);
else
gem_execbuf(fd, &p->latency_dispatch.execbuf);
/* Wake all the associated clients to wait upon our batch */
p->wait = p->nconsumers;
for (n = 0; n < p->nconsumers; n++)
p->consumers[n].go = 1;
pthread_cond_broadcast(&p->c_cond);
/* Wait for this batch to finish and record how long we waited,
* and how long it took for the batch to be submitted
* (including the nop delays).
*/
measure_latency(p, &p->latency);
igt_mean_add(&p->dispatch, *p->last_timestamp - start);
/* Tidy up all the extra threads before we submit again. */
pthread_mutex_lock(&p->lock);
while (p->wait)
pthread_cond_wait(&p->p_cond, &p->lock);
pthread_mutex_unlock(&p->lock);
p->complete++;
if (p->latency_dispatch.execbuf.flags & LOCAL_I915_EXEC_FENCE_OUT)
close(p->latency_dispatch.execbuf.rsvd2 >> 32);
}
pthread_mutex_lock(&p->lock);
p->wait = p->nconsumers;
p->done = true;
for (n = 0; n < p->nconsumers; n++)
p->consumers[n].go = 1;
pthread_cond_broadcast(&p->c_cond);
pthread_mutex_unlock(&p->lock);
return NULL;
}
static void *consumer(void *arg)
{
struct consumer *c = arg;
struct producer *p = c->producer;
/* Sit around waiting for the "go" signal from the producer, then
* wait upon the batch to finish. This is to add extra waiters to
* the same request - increasing wakeup contention.
*/
do {
pthread_mutex_lock(&p->lock);
if (--p->wait == 0)
pthread_cond_signal(&p->p_cond);
while (!c->go)
pthread_cond_wait(&p->c_cond, &p->lock);
c->go = 0;
pthread_mutex_unlock(&p->lock);
if (p->done)
return NULL;
measure_latency(p, &c->latency);
} while (1);
}
static double l_estimate(igt_stats_t *stats)
{
if (stats->n_values > 9)
return igt_stats_get_trimean(stats);
else if (stats->n_values > 5)
return igt_stats_get_median(stats);
else
return igt_stats_get_mean(stats);
}
static double cpu_time(const struct rusage *r)
{
return 10e6*(r->ru_utime.tv_sec + r->ru_stime.tv_sec) +
(r->ru_utime.tv_usec + r->ru_stime.tv_usec);
}
static int run(int seconds,
int nproducers,
int nconsumers,
int nop,
int workload,
unsigned flags)
{
pthread_attr_t attr;
struct producer *p;
igt_stats_t platency, latency, dispatch;
struct rusage rused;
uint32_t nop_batch;
uint32_t workload_batch;
uint32_t scratch;
int gen, n, m;
int complete;
int nrun;
#if 0
printf("producers=%d, consumers=%d, nop=%d, workload=%d, flags=%x\n",
nproducers, nconsumers, nop, workload, flags);
#endif
fd = drm_open_driver(DRIVER_INTEL);
gen = intel_gen(intel_get_drm_devid(fd));
if (gen < 6)
return IGT_EXIT_SKIP; /* Needs BCS timestamp */
intel_register_access_init(intel_get_pci_device(), false, fd);
if (gen == 6)
timestamp_reg = REG(RCS_TIMESTAMP);
else
timestamp_reg = REG(BCS_TIMESTAMP);
if (gen < 8 && !setup_timestamp_locked())
return IGT_EXIT_SKIP;
nrun = read_timestamp();
usleep(1);
if (read_timestamp() == nrun)
return IGT_EXIT_SKIP;
scratch = gem_create(fd, 4*WIDTH*HEIGHT);
nop_batch = create_nop();
workload_batch = create_workload(gen, workload);
p = calloc(nproducers, sizeof(*p));
for (n = 0; n < nproducers; n++) {
if (flags & CONTEXT)
p[n].ctx = gem_context_create(fd);
setup_nop(&p[n], nop_batch, flags);
setup_workload(&p[n], gen, scratch, workload_batch, workload, flags);
setup_latency(&p[n], gen, flags);
pthread_mutex_init(&p[n].lock, NULL);
pthread_cond_init(&p[n].p_cond, NULL);
pthread_cond_init(&p[n].c_cond, NULL);
igt_mean_init(&p[n].latency);
igt_mean_init(&p[n].dispatch);
p[n].wait = nconsumers;
p[n].nop = nop;
p[n].nconsumers = nconsumers;
p[n].consumers = calloc(nconsumers, sizeof(struct consumer));
for (m = 0; m < nconsumers; m++) {
p[n].consumers[m].producer = &p[n];
igt_mean_init(&p[n].consumers[m].latency);
pthread_create(&p[n].consumers[m].thread, NULL,
consumer, &p[n].consumers[m]);
}
pthread_mutex_lock(&p[n].lock);
while (p[n].wait)
pthread_cond_wait(&p[n].p_cond, &p[n].lock);
pthread_mutex_unlock(&p[n].lock);
}
pthread_attr_init(&attr);
if (flags & REALTIME) {
#ifdef PTHREAD_EXPLICIT_SCHED
struct sched_param param = { .sched_priority = 99 };
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
pthread_attr_setschedpolicy(&attr, SCHED_FIFO);
pthread_attr_setschedparam(&attr, &param);
#else
return IGT_EXIT_SKIP;
#endif
}
for (n = 0; n < nproducers; n++)
pthread_create(&p[n].thread, &attr, producer, &p[n]);
sleep(seconds);
done = true;
nrun = complete = 0;
igt_stats_init_with_size(&dispatch, nproducers);
igt_stats_init_with_size(&platency, nproducers);
igt_stats_init_with_size(&latency, nconsumers*nproducers);
for (n = 0; n < nproducers; n++) {
pthread_join(p[n].thread, NULL);
if (!p[n].complete)
continue;
nrun++;
complete += p[n].complete;
igt_stats_push_float(&latency, p[n].latency.mean);
igt_stats_push_float(&platency, p[n].latency.mean);
igt_stats_push_float(&dispatch, p[n].dispatch.mean);
for (m = 0; m < nconsumers; m++) {
pthread_join(p[n].consumers[m].thread, NULL);
igt_stats_push_float(&latency,
p[n].consumers[m].latency.mean);
}
}
getrusage(RUSAGE_SELF, &rused);
switch ((flags >> 8) & 0xf) {
default:
printf("%d/%d: %7.3fus %7.3fus %7.3fus %7.3fus\n",
complete, nrun,
CYCLES_TO_US(l_estimate(&dispatch)),
CYCLES_TO_US(l_estimate(&latency)),
CYCLES_TO_US(l_estimate(&platency)),
cpu_time(&rused) / complete);
break;
case 1:
printf("%f\n", CYCLES_TO_US(l_estimate(&dispatch)));
break;
case 2:
printf("%f\n", CYCLES_TO_US(l_estimate(&latency)));
break;
case 3:
printf("%f\n", CYCLES_TO_US(l_estimate(&platency)));
break;
case 4:
printf("%f\n", cpu_time(&rused) / complete);
break;
case 5:
printf("%d\n", complete);
break;
}
return 0;
}
int main(int argc, char **argv)
{
int time = 10;
int producers = 1;
int consumers = 0;
int nop = 0;
int workload = 0;
unsigned flags = 0;
int c;
while ((c = getopt(argc, argv, "Cp:c:n:w:t:f:sRF")) != -1) {
switch (c) {
case 'p':
/* How many threads generate work? */
producers = atoi(optarg);
if (producers < 1)
producers = 1;
break;
case 'c':
/* How many threads wait upon each piece of work? */
consumers = atoi(optarg);
if (consumers < 0)
consumers = 0;
break;
case 'n':
/* Extra dispatch contention + interrupts */
nop = atoi(optarg);
if (nop < 0)
nop = 0;
break;
case 'w':
/* Control the amount of real work done */
workload = atoi(optarg);
if (workload < 0)
workload = 0;
if (workload > 100)
workload = 100;
break;
case 't':
/* How long to run the benchmark for (seconds) */
time = atoi(optarg);
if (time < 0)
time = INT_MAX;
break;
case 'f':
/* Select an output field */
flags |= atoi(optarg) << 8;
break;
case 's':
/* Assign each producer to its own context, adding
* context switching into the mix (e.g. execlists
* can amalgamate requests from one context, so
* having each producer submit in different contexts
* should force more execlist interrupts).
*/
flags |= CONTEXT;
break;
case 'R':
/* Run the producers at RealTime priority */
flags |= REALTIME;
break;
case 'C':
/* Don't hide from the command parser (gen7) */
flags |= CMDPARSER;
break;
case 'F':
flags |= FENCE_OUT;
break;
default:
break;
}
}
return run(time, producers, consumers, nop, workload, flags);
}