blob: e0b1bafe1be2bbc7d2cdde8d62bf074efb5a7771 [file] [log] [blame]
/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Paul Kocialkowski <paul.kocialkowski@linux.intel.com>
*/
#include "config.h"
#include <errno.h>
#include <fcntl.h>
#include <gsl/gsl_fft_real.h>
#include <math.h>
#include <unistd.h>
#include "igt_audio.h"
#include "igt_core.h"
#define FREQS_MAX 64
#define CHANNELS_MAX 8
#define SYNTHESIZE_AMPLITUDE 0.9
#define SYNTHESIZE_ACCURACY 0.2
/** MIN_FREQ: minimum frequency that audio_signal can generate.
*
* To make sure the audio signal doesn't contain noise, #audio_signal_detect
* checks that low frequencies have a power lower than #NOISE_THRESHOLD.
* However if too-low frequencies are generated, noise detection can fail.
*
* This value should be at least 100Hz plus one bin. Best is not to change this
* value.
*/
#define MIN_FREQ 200 /* Hz */
#define NOISE_THRESHOLD 0.0005
/**
* SECTION:igt_audio
* @short_description: Library for audio-related tests
* @title: Audio
* @include: igt_audio.h
*
* This library contains helpers for audio-related tests. More specifically,
* it allows generating additions of sine signals as well as detecting them.
*/
struct audio_signal_freq {
int freq;
int channel;
double *period;
size_t period_len;
int offset;
};
struct audio_signal {
int channels;
int sampling_rate;
struct audio_signal_freq freqs[FREQS_MAX];
size_t freqs_count;
};
/**
* audio_signal_init:
* @channels: The number of channels to use for the signal
* @sampling_rate: The sampling rate to use for the signal
*
* Allocate and initialize an audio signal structure with the given parameters.
*
* Returns: A newly-allocated audio signal structure
*/
struct audio_signal *audio_signal_init(int channels, int sampling_rate)
{
struct audio_signal *signal;
igt_assert(channels > 0);
igt_assert(channels <= CHANNELS_MAX);
signal = calloc(1, sizeof(struct audio_signal));
signal->sampling_rate = sampling_rate;
signal->channels = channels;
return signal;
}
/**
* audio_signal_add_frequency:
* @signal: The target signal structure
* @frequency: The frequency to add to the signal
* @channel: The channel to add this frequency to, or -1 to add it to all
* channels
*
* Add a frequency to the signal.
*
* Returns: An integer equal to zero for success and negative for failure
*/
int audio_signal_add_frequency(struct audio_signal *signal, int frequency,
int channel)
{
size_t index = signal->freqs_count;
struct audio_signal_freq *freq;
igt_assert(index < FREQS_MAX);
igt_assert(channel < signal->channels);
igt_assert(frequency >= MIN_FREQ);
/* Stay within the Nyquist–Shannon sampling theorem. */
if (frequency > signal->sampling_rate / 2) {
igt_debug("Skipping frequency %d: too high for a %d Hz "
"sampling rate\n", frequency, signal->sampling_rate);
return -1;
}
/* Clip the frequency to an integer multiple of the sampling rate.
* This to be able to store a full period of it and use that for
* signal generation, instead of recurrent calls to sin().
*/
frequency = signal->sampling_rate / (signal->sampling_rate / frequency);
igt_debug("Adding test frequency %d to channel %d\n",
frequency, channel);
freq = &signal->freqs[index];
memset(freq, 0, sizeof(*freq));
freq->freq = frequency;
freq->channel = channel;
signal->freqs_count++;
return 0;
}
/**
* audio_signal_synthesize:
* @signal: The target signal structure
*
* Synthesize the data tables for the audio signal, that can later be used
* to fill audio buffers. The resources allocated by this function must be
* freed with a call to audio_signal_clean when the signal is no longer used.
*/
void audio_signal_synthesize(struct audio_signal *signal)
{
double *period;
double value;
size_t period_len;
int freq;
int i, j;
for (i = 0; i < signal->freqs_count; i++) {
freq = signal->freqs[i].freq;
period_len = signal->sampling_rate / freq;
period = calloc(period_len, sizeof(double));
for (j = 0; j < period_len; j++) {
value = 2.0 * M_PI * freq / signal->sampling_rate * j;
value = sin(value) * SYNTHESIZE_AMPLITUDE;
period[j] = value;
}
signal->freqs[i].period = period;
signal->freqs[i].period_len = period_len;
}
}
/**
* audio_signal_fini:
*
* Release the signal.
*/
void audio_signal_fini(struct audio_signal *signal)
{
audio_signal_reset(signal);
free(signal);
}
/**
* audio_signal_reset:
* @signal: The target signal structure
*
* Free the resources allocated by audio_signal_synthesize and remove
* the previously-added frequencies.
*/
void audio_signal_reset(struct audio_signal *signal)
{
size_t i;
for (i = 0; i < signal->freqs_count; i++) {
free(signal->freqs[i].period);
}
signal->freqs_count = 0;
}
static size_t audio_signal_count_freqs(struct audio_signal *signal, int channel)
{
size_t n, i;
struct audio_signal_freq *freq;
n = 0;
for (i = 0; i < signal->freqs_count; i++) {
freq = &signal->freqs[i];
if (freq->channel < 0 || freq->channel == channel)
n++;
}
return n;
}
/** audio_sanity_check:
*
* Make sure our generated signal is not messed up. In particular, make sure
* the maximum reaches a reasonable value but doesn't exceed our
* SYNTHESIZE_AMPLITUDE limit. Same for the minimum.
*
* We want the signal to be powerful enough to be able to hear something. We
* want the signal not to reach 1.0 so that we're sure it won't get capped by
* the audio card or the receiver.
*/
static void audio_sanity_check(double *samples, size_t samples_len)
{
size_t i;
double min = 0, max = 0;
for (i = 0; i < samples_len; i++) {
if (samples[i] < min)
min = samples[i];
if (samples[i] > max)
max = samples[i];
}
igt_assert(-SYNTHESIZE_AMPLITUDE <= min);
igt_assert(min <= -SYNTHESIZE_AMPLITUDE + SYNTHESIZE_ACCURACY);
igt_assert(SYNTHESIZE_AMPLITUDE - SYNTHESIZE_ACCURACY <= max);
igt_assert(max <= SYNTHESIZE_AMPLITUDE);
}
/**
* audio_signal_fill:
* @signal: The target signal structure
* @buffer: The target buffer to fill
* @samples: The number of samples to fill
*
* Fill the requested number of samples to the target buffer with the audio
* signal data (in interleaved double format), at the requested sampling rate
* and number of channels.
*
* Each sample is normalized (ie. between 0 and 1).
*/
void audio_signal_fill(struct audio_signal *signal, double *buffer,
size_t samples)
{
double *dst, *src;
struct audio_signal_freq *freq;
int total;
int count;
int i, j, k;
size_t freqs_per_channel[CHANNELS_MAX];
memset(buffer, 0, sizeof(double) * signal->channels * samples);
for (i = 0; i < signal->channels; i++) {
freqs_per_channel[i] = audio_signal_count_freqs(signal, i);
igt_assert(freqs_per_channel[i] > 0);
}
for (i = 0; i < signal->freqs_count; i++) {
freq = &signal->freqs[i];
total = 0;
igt_assert(freq->period);
while (total < samples) {
src = freq->period + freq->offset;
dst = buffer + total * signal->channels;
count = freq->period_len - freq->offset;
if (count > samples - total)
count = samples - total;
freq->offset += count;
freq->offset %= freq->period_len;
for (j = 0; j < count; j++) {
for (k = 0; k < signal->channels; k++) {
if (freq->channel >= 0 &&
freq->channel != k)
continue;
dst[j * signal->channels + k] +=
src[j] / freqs_per_channel[k];
}
}
total += count;
}
}
audio_sanity_check(buffer, signal->channels * samples);
}
/* See https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows */
static double hann_window(double v, size_t i, size_t N)
{
return v * 0.5 * (1 - cos(2.0 * M_PI * (double) i / (double) N));
}
/**
* Checks that frequencies specified in signal, and only those, are included
* in the input data.
*
* sampling_rate is given in Hz. samples_len is the number of elements in
* samples.
*/
bool audio_signal_detect(struct audio_signal *signal, int sampling_rate,
int channel, const double *samples, size_t samples_len)
{
double *data;
size_t data_len = samples_len;
size_t bin_power_len = data_len / 2 + 1;
double bin_power[bin_power_len];
bool detected[FREQS_MAX];
int ret, freq_accuracy, freq, local_max_freq;
double max, local_max, threshold;
size_t i, j;
bool above, success;
/* gsl will mutate the array in-place, so make a copy */
data = malloc(samples_len * sizeof(double));
memcpy(data, samples, samples_len * sizeof(double));
/* Apply a Hann window to the input signal, to reduce frequency leaks
* due to the endpoints of the signal being discontinuous.
*
* For more info:
* - https://download.ni.com/evaluation/pxi/Understanding%20FFTs%20and%20Windowing.pdf
* - https://en.wikipedia.org/wiki/Window_function
*/
for (i = 0; i < data_len; i++)
data[i] = hann_window(data[i], i, data_len);
/* Allowed error in Hz due to FFT step */
freq_accuracy = sampling_rate / data_len;
igt_debug("Allowed freq. error: %d Hz\n", freq_accuracy);
ret = gsl_fft_real_radix2_transform(data, 1, data_len);
if (ret != 0) {
free(data);
igt_assert(0);
}
/* Compute the power received by every bin of the FFT.
*
* For i < data_len / 2, the real part of the i-th term is stored at
* data[i] and its imaginary part is stored at data[data_len - i].
* i = 0 and i = data_len / 2 are special cases, they are purely real
* so their imaginary part isn't stored.
*
* The power is encoded as the magnitude of the complex number and the
* phase is encoded as its angle.
*/
bin_power[0] = data[0];
for (i = 1; i < bin_power_len - 1; i++) {
bin_power[i] = hypot(data[i], data[data_len - i]);
}
bin_power[bin_power_len - 1] = data[data_len / 2];
/* Normalize the power */
for (i = 0; i < bin_power_len; i++)
bin_power[i] = 2 * bin_power[i] / data_len;
/* Detect noise with a threshold on the power of low frequencies */
for (i = 0; i < bin_power_len; i++) {
freq = sampling_rate * i / data_len;
if (freq > MIN_FREQ - 100)
break;
if (bin_power[i] > NOISE_THRESHOLD) {
igt_debug("Noise level too high: freq=%d power=%f\n",
freq, bin_power[i]);
return false;
}
}
/* Record the maximum power received as a way to normalize all the
* others. */
max = NAN;
for (i = 0; i < bin_power_len; i++) {
if (isnan(max) || bin_power[i] > max)
max = bin_power[i];
}
for (i = 0; i < signal->freqs_count; i++)
detected[i] = false;
/* Do a linear search through the FFT bins' power to find the the local
* maximums that exceed half of the absolute maximum that we previously
* calculated.
*
* Since the frequencies might not be perfectly aligned with the bins of
* the FFT, we need to find the local maximum across some consecutive
* bins. Once the power returns under the power threshold, we compare
* the frequency of the bin that received the maximum power to the
* expected frequencies. If found, we mark this frequency as such,
* otherwise we warn that an unexpected frequency was found.
*/
threshold = max / 2;
success = true;
above = false;
local_max = 0;
local_max_freq = -1;
for (i = 0; i < bin_power_len; i++) {
freq = sampling_rate * i / data_len;
if (bin_power[i] > threshold)
above = true;
if (!above) {
continue;
}
/* If we were above the threshold and we're not anymore, it's
* time to decide whether the peak frequency is correct or
* invalid. */
if (bin_power[i] < threshold) {
for (j = 0; j < signal->freqs_count; j++) {
if (signal->freqs[j].channel >= 0 &&
signal->freqs[j].channel != channel)
continue;
if (signal->freqs[j].freq >
local_max_freq - freq_accuracy &&
signal->freqs[j].freq <
local_max_freq + freq_accuracy) {
detected[j] = true;
igt_debug("Frequency %d detected\n",
local_max_freq);
break;
}
}
/* We haven't generated this frequency, but we detected
* it. */
if (j == signal->freqs_count) {
igt_debug("Detected additional frequency: %d\n",
local_max_freq);
success = false;
}
above = false;
local_max = 0;
local_max_freq = -1;
}
if (bin_power[i] > local_max) {
local_max = bin_power[i];
local_max_freq = freq;
}
}
/* Check that all frequencies we generated have been detected. */
for (i = 0; i < signal->freqs_count; i++) {
if (signal->freqs[i].channel >= 0 &&
signal->freqs[i].channel != channel)
continue;
if (!detected[i]) {
igt_debug("Missing frequency: %d\n",
signal->freqs[i].freq);
success = false;
}
}
free(data);
return success;
}
/**
* audio_extract_channel_s32_le: extracts a single channel from a multi-channel
* S32_LE input buffer.
*
* If dst_cap is zero, no copy is performed. This can be used to compute the
* minimum required capacity.
*
* Returns: the number of samples extracted.
*/
size_t audio_extract_channel_s32_le(double *dst, size_t dst_cap,
int32_t *src, size_t src_len,
int n_channels, int channel)
{
size_t dst_len, i;
igt_assert(channel < n_channels);
igt_assert(src_len % n_channels == 0);
dst_len = src_len / n_channels;
if (dst_cap == 0)
return dst_len;
igt_assert(dst_len <= dst_cap);
for (i = 0; i < dst_len; i++)
dst[i] = (double) src[i * n_channels + channel] / INT32_MAX;
return dst_len;
}
static void audio_convert_to_s16_le(int16_t *dst, double *src, size_t len)
{
size_t i;
for (i = 0; i < len; ++i)
dst[i] = INT16_MAX * src[i];
}
static void audio_convert_to_s24_le(int32_t *dst, double *src, size_t len)
{
size_t i;
for (i = 0; i < len; ++i)
dst[i] = 0x7FFFFF * src[i];
}
static void audio_convert_to_s32_le(int32_t *dst, double *src, size_t len)
{
size_t i;
for (i = 0; i < len; ++i)
dst[i] = INT32_MAX * src[i];
}
void audio_convert_to(void *dst, double *src, size_t len,
snd_pcm_format_t format)
{
switch (format) {
case SND_PCM_FORMAT_S16_LE:
audio_convert_to_s16_le(dst, src, len);
break;
case SND_PCM_FORMAT_S24_LE:
audio_convert_to_s24_le(dst, src, len);
break;
case SND_PCM_FORMAT_S32_LE:
audio_convert_to_s32_le(dst, src, len);
break;
default:
assert(false); /* unreachable */
}
}
#define RIFF_TAG "RIFF"
#define WAVE_TAG "WAVE"
#define FMT_TAG "fmt "
#define DATA_TAG "data"
static void
append_to_buffer(char *dst, size_t *i, const void *src, size_t src_size)
{
memcpy(&dst[*i], src, src_size);
*i += src_size;
}
/**
* audio_create_wav_file_s32_le:
* @qualifier: the basename of the file (the test name will be prepended, and
* the file extension will be appended)
* @sample_rate: the sample rate in Hz
* @channels: the number of channels
* @path: if non-NULL, will be set to a pointer to the new file path (the
* caller is responsible for free-ing it)
*
* Creates a new WAV file.
*
* After calling this function, the caller is expected to write S32_LE PCM data
* to the returned file descriptor.
*
* See http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html for
* a WAV file format specification.
*
* Returns: a file descriptor to the newly created file, or -1 on error.
*/
int audio_create_wav_file_s32_le(const char *qualifier, uint32_t sample_rate,
uint16_t channels, char **path)
{
char _path[PATH_MAX];
const char *test_name, *subtest_name;
int fd;
char header[44];
size_t i = 0;
uint32_t file_size, chunk_size, byte_rate;
uint16_t format, block_align, bits_per_sample;
test_name = igt_test_name();
subtest_name = igt_subtest_name();
igt_assert(igt_frame_dump_path);
snprintf(_path, sizeof(_path), "%s/audio-%s-%s-%s.wav",
igt_frame_dump_path, test_name, subtest_name, qualifier);
if (path)
*path = strdup(_path);
igt_debug("Dumping %s audio to %s\n", qualifier, _path);
fd = open(_path, O_WRONLY | O_CREAT | O_TRUNC, 0644);
if (fd < 0) {
igt_warn("open failed: %s\n", strerror(errno));
return -1;
}
/* File header */
file_size = UINT32_MAX; /* unknown file size */
append_to_buffer(header, &i, RIFF_TAG, strlen(RIFF_TAG));
append_to_buffer(header, &i, &file_size, sizeof(file_size));
append_to_buffer(header, &i, WAVE_TAG, strlen(WAVE_TAG));
/* Format chunk */
chunk_size = 16;
format = 1; /* PCM */
bits_per_sample = 32; /* S32_LE */
byte_rate = sample_rate * channels * bits_per_sample / 8;
block_align = channels * bits_per_sample / 8;
append_to_buffer(header, &i, FMT_TAG, strlen(FMT_TAG));
append_to_buffer(header, &i, &chunk_size, sizeof(chunk_size));
append_to_buffer(header, &i, &format, sizeof(format));
append_to_buffer(header, &i, &channels, sizeof(channels));
append_to_buffer(header, &i, &sample_rate, sizeof(sample_rate));
append_to_buffer(header, &i, &byte_rate, sizeof(byte_rate));
append_to_buffer(header, &i, &block_align, sizeof(block_align));
append_to_buffer(header, &i, &bits_per_sample, sizeof(bits_per_sample));
/* Data chunk */
chunk_size = UINT32_MAX; /* unknown chunk size */
append_to_buffer(header, &i, DATA_TAG, strlen(DATA_TAG));
append_to_buffer(header, &i, &chunk_size, sizeof(chunk_size));
igt_assert(i == sizeof(header));
if (write(fd, header, sizeof(header)) != sizeof(header)) {
igt_warn("write failed: %s'n", strerror(errno));
close(fd);
return -1;
}
return fd;
}