blob: 07de5cbb4d04f0238a24dca70a6b23bf17398bff [file] [log] [blame]
/**************************************************************************
*
* Copyright 2006 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include <inttypes.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "drm.h"
#include "drmtest.h"
#include "intel_batchbuffer.h"
#include "intel_bufmgr.h"
#include "intel_chipset.h"
#include "intel_reg.h"
#include "rendercopy.h"
#include "media_fill.h"
#include "ioctl_wrappers.h"
#include "media_spin.h"
#include "gpgpu_fill.h"
#include <i915_drm.h>
/**
* SECTION:intel_batchbuffer
* @short_description: Batchbuffer and blitter support
* @title: Batch Buffer
* @include: igt.h
*
* This library provides some basic support for batchbuffers and using the
* blitter engine based upon libdrm. A new batchbuffer is allocated with
* intel_batchbuffer_alloc() and for simple blitter commands submitted with
* intel_batchbuffer_flush().
*
* It also provides some convenient macros to easily emit commands into
* batchbuffers. All those macros presume that a pointer to a #intel_batchbuffer
* structure called batch is in scope. The basic macros are #BEGIN_BATCH,
* #OUT_BATCH, #OUT_RELOC and #ADVANCE_BATCH.
*
* Note that this library's header pulls in the [i-g-t core](igt-gpu-tools-i-g-t-core.html)
* library as a dependency.
*/
/**
* intel_batchbuffer_align:
* @batch: batchbuffer object
* @align: value in bytes to which we want to align
*
* Aligns the current in-batch offset to the given value.
*
* Returns: Batchbuffer offset aligned to the given value.
*/
uint32_t
intel_batchbuffer_align(struct intel_batchbuffer *batch, uint32_t align)
{
uint32_t offset = batch->ptr - batch->buffer;
offset = ALIGN(offset, align);
batch->ptr = batch->buffer + offset;
return offset;
}
/**
* intel_batchbuffer_subdata_alloc:
* @batch: batchbuffer object
* @size: amount of bytes need to allocate
* @align: value in bytes to which we want to align
*
* Verify if sufficient @size within @batch is available to deny overflow.
* Then allocate @size bytes within @batch.
*
* Returns: Offset within @batch between allocated subdata and base of @batch.
*/
void *
intel_batchbuffer_subdata_alloc(struct intel_batchbuffer *batch, uint32_t size,
uint32_t align)
{
uint32_t offset = intel_batchbuffer_align(batch, align);
igt_assert(size <= intel_batchbuffer_space(batch));
batch->ptr += size;
return memset(batch->buffer + offset, 0, size);
}
/**
* intel_batchbuffer_subdata_offset:
* @batch: batchbuffer object
* @ptr: pointer to given data
*
* Returns: Offset within @batch between @ptr and base of @batch.
*/
uint32_t
intel_batchbuffer_subdata_offset(struct intel_batchbuffer *batch, void *ptr)
{
return (uint8_t *)ptr - batch->buffer;
}
/**
* intel_batchbuffer_reset:
* @batch: batchbuffer object
*
* Resets @batch by allocating a new gem buffer object as backing storage.
*/
void
intel_batchbuffer_reset(struct intel_batchbuffer *batch)
{
if (batch->bo != NULL) {
drm_intel_bo_unreference(batch->bo);
batch->bo = NULL;
}
batch->bo = drm_intel_bo_alloc(batch->bufmgr, "batchbuffer",
BATCH_SZ, 4096);
memset(batch->buffer, 0, sizeof(batch->buffer));
batch->ctx = NULL;
batch->ptr = batch->buffer;
batch->end = NULL;
}
/**
* intel_batchbuffer_alloc:
* @bufmgr: libdrm buffer manager
* @devid: pci device id of the drm device
*
* Allocates a new batchbuffer object. @devid must be supplied since libdrm
* doesn't expose it directly.
*
* Returns: The allocated and initialized batchbuffer object.
*/
struct intel_batchbuffer *
intel_batchbuffer_alloc(drm_intel_bufmgr *bufmgr, uint32_t devid)
{
struct intel_batchbuffer *batch = calloc(sizeof(*batch), 1);
batch->bufmgr = bufmgr;
batch->devid = devid;
batch->gen = intel_gen(devid);
intel_batchbuffer_reset(batch);
return batch;
}
/**
* intel_batchbuffer_free:
* @batch: batchbuffer object
*
* Releases all resource of the batchbuffer object @batch.
*/
void
intel_batchbuffer_free(struct intel_batchbuffer *batch)
{
drm_intel_bo_unreference(batch->bo);
batch->bo = NULL;
free(batch);
}
#define CMD_POLY_STIPPLE_OFFSET 0x7906
static unsigned int
flush_on_ring_common(struct intel_batchbuffer *batch, int ring)
{
unsigned int used = batch->ptr - batch->buffer;
if (used == 0)
return 0;
if (IS_GEN5(batch->devid)) {
/* emit gen5 w/a without batch space checks - we reserve that
* already. */
*(uint32_t *) (batch->ptr) = CMD_POLY_STIPPLE_OFFSET << 16;
batch->ptr += 4;
*(uint32_t *) (batch->ptr) = 0;
batch->ptr += 4;
}
/* Round batchbuffer usage to 2 DWORDs. */
if ((used & 4) == 0) {
*(uint32_t *) (batch->ptr) = 0; /* noop */
batch->ptr += 4;
}
/* Mark the end of the buffer. */
*(uint32_t *)(batch->ptr) = MI_BATCH_BUFFER_END; /* noop */
batch->ptr += 4;
return batch->ptr - batch->buffer;
}
/**
* intel_batchbuffer_flush_on_ring:
* @batch: batchbuffer object
* @ring: execbuf ring flag
*
* Submits the batch for execution on @ring.
*/
void
intel_batchbuffer_flush_on_ring(struct intel_batchbuffer *batch, int ring)
{
unsigned int used = flush_on_ring_common(batch, ring);
drm_intel_context *ctx;
if (used == 0)
return;
do_or_die(drm_intel_bo_subdata(batch->bo, 0, used, batch->buffer));
batch->ptr = NULL;
/* XXX bad kernel API */
ctx = batch->ctx;
if (ring != I915_EXEC_RENDER)
ctx = NULL;
do_or_die(drm_intel_gem_bo_context_exec(batch->bo, ctx, used, ring));
intel_batchbuffer_reset(batch);
}
void
intel_batchbuffer_set_context(struct intel_batchbuffer *batch,
drm_intel_context *context)
{
batch->ctx = context;
}
/**
* intel_batchbuffer_flush_with_context:
* @batch: batchbuffer object
* @context: libdrm hardware context object
*
* Submits the batch for execution on the render engine with the supplied
* hardware context.
*/
void
intel_batchbuffer_flush_with_context(struct intel_batchbuffer *batch,
drm_intel_context *context)
{
int ret;
unsigned int used = flush_on_ring_common(batch, I915_EXEC_RENDER);
if (used == 0)
return;
ret = drm_intel_bo_subdata(batch->bo, 0, used, batch->buffer);
igt_assert(ret == 0);
batch->ptr = NULL;
ret = drm_intel_gem_bo_context_exec(batch->bo, context, used,
I915_EXEC_RENDER);
igt_assert(ret == 0);
intel_batchbuffer_reset(batch);
}
/**
* intel_batchbuffer_flush:
* @batch: batchbuffer object
*
* Submits the batch for execution on the blitter engine, selecting the right
* ring depending upon the hardware platform.
*/
void
intel_batchbuffer_flush(struct intel_batchbuffer *batch)
{
int ring = 0;
if (HAS_BLT_RING(batch->devid))
ring = I915_EXEC_BLT;
intel_batchbuffer_flush_on_ring(batch, ring);
}
/**
* intel_batchbuffer_emit_reloc:
* @batch: batchbuffer object
* @buffer: relocation target libdrm buffer object
* @delta: delta value to add to @buffer's gpu address
* @read_domains: gem domain bits for the relocation
* @write_domain: gem domain bit for the relocation
* @fenced: whether this gpu access requires fences
*
* Emits both a libdrm relocation entry pointing at @buffer and the pre-computed
* DWORD of @batch's presumed gpu address plus the supplied @delta into @batch.
*
* Note that @fenced is only relevant if @buffer is actually tiled.
*
* This is the only way buffers get added to the validate list.
*/
void
intel_batchbuffer_emit_reloc(struct intel_batchbuffer *batch,
drm_intel_bo *buffer, uint64_t delta,
uint32_t read_domains, uint32_t write_domain,
int fenced)
{
uint64_t offset;
int ret;
if (batch->ptr - batch->buffer > BATCH_SZ)
igt_info("bad relocation ptr %p map %p offset %d size %d\n",
batch->ptr, batch->buffer,
(int)(batch->ptr - batch->buffer), BATCH_SZ);
if (fenced)
ret = drm_intel_bo_emit_reloc_fence(batch->bo, batch->ptr - batch->buffer,
buffer, delta,
read_domains, write_domain);
else
ret = drm_intel_bo_emit_reloc(batch->bo, batch->ptr - batch->buffer,
buffer, delta,
read_domains, write_domain);
offset = buffer->offset64;
offset += delta;
intel_batchbuffer_emit_dword(batch, offset);
if (batch->gen >= 8)
intel_batchbuffer_emit_dword(batch, offset >> 32);
igt_assert(ret == 0);
}
/**
* intel_batchbuffer_copy_data:
* @batch: batchbuffer object
* @data: pointer to the data to write into the batchbuffer
* @bytes: number of bytes to write into the batchbuffer
* @align: value in bytes to which we want to align
*
* This transfers the given @data into the batchbuffer. Note that the length
* must be DWORD aligned, i.e. multiples of 32bits. The caller must
* confirm that there is enough space in the batch for the data to be
* copied.
*
* Returns: Offset of copied data.
*/
uint32_t
intel_batchbuffer_copy_data(struct intel_batchbuffer *batch,
const void *data, unsigned int bytes,
uint32_t align)
{
uint32_t *subdata;
igt_assert((bytes & 3) == 0);
subdata = intel_batchbuffer_subdata_alloc(batch, bytes, align);
memcpy(subdata, data, bytes);
return intel_batchbuffer_subdata_offset(batch, subdata);
}
#define CHECK_RANGE(x) do { \
igt_assert_lte(0, (x)); \
igt_assert_lt((x), (1 << 15)); \
} while (0)
/**
* intel_blt_copy:
* @batch: batchbuffer object
* @src_bo: source libdrm buffer object
* @src_x1: source pixel x-coordination
* @src_y1: source pixel y-coordination
* @src_pitch: @src_bo's pitch in bytes
* @dst_bo: destination libdrm buffer object
* @dst_x1: destination pixel x-coordination
* @dst_y1: destination pixel y-coordination
* @dst_pitch: @dst_bo's pitch in bytes
* @width: width of the copied rectangle
* @height: height of the copied rectangle
* @bpp: bits per pixel
*
* This emits a 2D copy operation using blitter commands into the supplied batch
* buffer object.
*/
void
intel_blt_copy(struct intel_batchbuffer *batch,
drm_intel_bo *src_bo, int src_x1, int src_y1, int src_pitch,
drm_intel_bo *dst_bo, int dst_x1, int dst_y1, int dst_pitch,
int width, int height, int bpp)
{
const int gen = batch->gen;
uint32_t src_tiling, dst_tiling, swizzle;
uint32_t cmd_bits = 0;
uint32_t br13_bits;
igt_assert(bpp*(src_x1 + width) <= 8*src_pitch);
igt_assert(bpp*(dst_x1 + width) <= 8*dst_pitch);
igt_assert(src_pitch * (src_y1 + height) <= src_bo->size);
igt_assert(dst_pitch * (dst_y1 + height) <= dst_bo->size);
drm_intel_bo_get_tiling(src_bo, &src_tiling, &swizzle);
drm_intel_bo_get_tiling(dst_bo, &dst_tiling, &swizzle);
if (gen >= 4 && src_tiling != I915_TILING_NONE) {
src_pitch /= 4;
cmd_bits |= XY_SRC_COPY_BLT_SRC_TILED;
}
if (gen >= 4 && dst_tiling != I915_TILING_NONE) {
dst_pitch /= 4;
cmd_bits |= XY_SRC_COPY_BLT_DST_TILED;
}
CHECK_RANGE(src_x1); CHECK_RANGE(src_y1);
CHECK_RANGE(dst_x1); CHECK_RANGE(dst_y1);
CHECK_RANGE(width); CHECK_RANGE(height);
CHECK_RANGE(src_x1 + width); CHECK_RANGE(src_y1 + height);
CHECK_RANGE(dst_x1 + width); CHECK_RANGE(dst_y1 + height);
CHECK_RANGE(src_pitch); CHECK_RANGE(dst_pitch);
br13_bits = 0;
switch (bpp) {
case 8:
break;
case 16: /* supporting only RGB565, not ARGB1555 */
br13_bits |= 1 << 24;
break;
case 32:
br13_bits |= 3 << 24;
cmd_bits |= XY_SRC_COPY_BLT_WRITE_ALPHA |
XY_SRC_COPY_BLT_WRITE_RGB;
break;
default:
igt_fail(IGT_EXIT_FAILURE);
}
BLIT_COPY_BATCH_START(cmd_bits);
OUT_BATCH((br13_bits) |
(0xcc << 16) | /* copy ROP */
dst_pitch);
OUT_BATCH((dst_y1 << 16) | dst_x1); /* dst x1,y1 */
OUT_BATCH(((dst_y1 + height) << 16) | (dst_x1 + width)); /* dst x2,y2 */
OUT_RELOC_FENCED(dst_bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, 0);
OUT_BATCH((src_y1 << 16) | src_x1); /* src x1,y1 */
OUT_BATCH(src_pitch);
OUT_RELOC_FENCED(src_bo, I915_GEM_DOMAIN_RENDER, 0, 0);
ADVANCE_BATCH();
#define CMD_POLY_STIPPLE_OFFSET 0x7906
if (gen == 5) {
BEGIN_BATCH(2, 0);
OUT_BATCH(CMD_POLY_STIPPLE_OFFSET << 16);
OUT_BATCH(0);
ADVANCE_BATCH();
}
if (gen >= 6 && src_bo == dst_bo) {
BEGIN_BATCH(3, 0);
OUT_BATCH(XY_SETUP_CLIP_BLT_CMD);
OUT_BATCH(0);
OUT_BATCH(0);
ADVANCE_BATCH();
}
intel_batchbuffer_flush(batch);
}
/**
* intel_copy_bo:
* @batch: batchbuffer object
* @src_bo: source libdrm buffer object
* @dst_bo: destination libdrm buffer object
* @size: size of the copy range in bytes
*
* This emits a copy operation using blitter commands into the supplied batch
* buffer object. A total of @size bytes from the start of @src_bo is copied
* over to @dst_bo. Note that @size must be page-aligned.
*/
void
intel_copy_bo(struct intel_batchbuffer *batch,
drm_intel_bo *dst_bo, drm_intel_bo *src_bo,
long int size)
{
igt_assert(size % 4096 == 0);
intel_blt_copy(batch,
src_bo, 0, 0, 4096,
dst_bo, 0, 0, 4096,
4096/4, size/4096, 32);
}
/**
* igt_buf_width:
* @buf: the i-g-t buffer object
*
* Computes the width in 32-bit pixels of the given buffer.
*
* Returns:
* The width of the buffer.
*/
unsigned igt_buf_width(const struct igt_buf *buf)
{
return buf->stride/(buf->bpp / 8);
}
/**
* igt_buf_height:
* @buf: the i-g-t buffer object
*
* Computes the height in 32-bit pixels of the given buffer.
*
* Returns:
* The height of the buffer.
*/
unsigned igt_buf_height(const struct igt_buf *buf)
{
return buf->size/buf->stride;
}
/*
* pitches are in bytes if the surfaces are linear, number of dwords
* otherwise
*/
static uint32_t fast_copy_pitch(unsigned int stride, unsigned int tiling)
{
if (tiling != I915_TILING_NONE)
return stride / 4;
else
return stride;
}
static uint32_t fast_copy_dword0(unsigned int src_tiling,
unsigned int dst_tiling)
{
uint32_t dword0 = 0;
dword0 |= XY_FAST_COPY_BLT;
switch (src_tiling) {
case I915_TILING_X:
dword0 |= XY_FAST_COPY_SRC_TILING_X;
break;
case I915_TILING_Y:
case I915_TILING_Yf:
dword0 |= XY_FAST_COPY_SRC_TILING_Yb_Yf;
break;
case I915_TILING_Ys:
dword0 |= XY_FAST_COPY_SRC_TILING_Ys;
break;
case I915_TILING_NONE:
default:
break;
}
switch (dst_tiling) {
case I915_TILING_X:
dword0 |= XY_FAST_COPY_DST_TILING_X;
break;
case I915_TILING_Y:
case I915_TILING_Yf:
dword0 |= XY_FAST_COPY_DST_TILING_Yb_Yf;
break;
case I915_TILING_Ys:
dword0 |= XY_FAST_COPY_DST_TILING_Ys;
break;
case I915_TILING_NONE:
default:
break;
}
return dword0;
}
static uint32_t fast_copy_dword1(unsigned int src_tiling,
unsigned int dst_tiling,
int bpp)
{
uint32_t dword1 = 0;
if (src_tiling == I915_TILING_Yf)
dword1 |= XY_FAST_COPY_SRC_TILING_Yf;
if (dst_tiling == I915_TILING_Yf)
dword1 |= XY_FAST_COPY_DST_TILING_Yf;
switch (bpp) {
case 8:
dword1 |= XY_FAST_COPY_COLOR_DEPTH_8;
break;
case 16:
dword1 |= XY_FAST_COPY_COLOR_DEPTH_16;
break;
case 32:
dword1 |= XY_FAST_COPY_COLOR_DEPTH_32;
break;
case 64:
dword1 |= XY_FAST_COPY_COLOR_DEPTH_64;
break;
case 128:
dword1 |= XY_FAST_COPY_COLOR_DEPTH_128;
break;
default:
igt_assert(0);
}
return dword1;
}
static void
fill_relocation(struct drm_i915_gem_relocation_entry *reloc,
uint32_t gem_handle, uint32_t delta, /* in bytes */
uint32_t offset, /* in dwords */
uint32_t read_domains, uint32_t write_domains)
{
reloc->target_handle = gem_handle;
reloc->delta = delta;
reloc->offset = offset * sizeof(uint32_t);
reloc->presumed_offset = 0;
reloc->read_domains = read_domains;
reloc->write_domain = write_domains;
}
static void
fill_object(struct drm_i915_gem_exec_object2 *obj, uint32_t gem_handle,
struct drm_i915_gem_relocation_entry *relocs, uint32_t count)
{
memset(obj, 0, sizeof(*obj));
obj->handle = gem_handle;
obj->relocation_count = count;
obj->relocs_ptr = to_user_pointer(relocs);
}
static void exec_blit(int fd,
struct drm_i915_gem_exec_object2 *objs, uint32_t count,
uint32_t batch_len /* in dwords */)
{
struct drm_i915_gem_execbuffer2 exec;
exec.buffers_ptr = to_user_pointer(objs);
exec.buffer_count = count;
exec.batch_start_offset = 0;
exec.batch_len = batch_len * 4;
exec.DR1 = exec.DR4 = 0;
exec.num_cliprects = 0;
exec.cliprects_ptr = 0;
exec.flags = I915_EXEC_BLT;
i915_execbuffer2_set_context_id(exec, 0);
exec.rsvd2 = 0;
gem_execbuf(fd, &exec);
}
/**
* igt_blitter_fast_copy__raw:
* @fd: file descriptor of the i915 driver
* @src_handle: GEM handle of the source buffer
* @src_delta: offset into the source GEM bo, in bytes
* @src_stride: Stride (in bytes) of the source buffer
* @src_tiling: Tiling mode of the source buffer
* @src_x: X coordinate of the source region to copy
* @src_y: Y coordinate of the source region to copy
* @width: Width of the region to copy
* @height: Height of the region to copy
* @bpp: source and destination bits per pixel
* @dst_handle: GEM handle of the destination buffer
* @dst_delta: offset into the destination GEM bo, in bytes
* @dst_stride: Stride (in bytes) of the destination buffer
* @dst_tiling: Tiling mode of the destination buffer
* @dst_x: X coordinate of destination
* @dst_y: Y coordinate of destination
*
* Like igt_blitter_fast_copy(), but talking to the kernel directly.
*/
void igt_blitter_fast_copy__raw(int fd,
/* src */
uint32_t src_handle,
unsigned int src_delta,
unsigned int src_stride,
unsigned int src_tiling,
unsigned int src_x, unsigned src_y,
/* size */
unsigned int width, unsigned int height,
/* bpp */
int bpp,
/* dst */
uint32_t dst_handle,
unsigned dst_delta,
unsigned int dst_stride,
unsigned int dst_tiling,
unsigned int dst_x, unsigned dst_y)
{
uint32_t batch[12];
struct drm_i915_gem_exec_object2 objs[3];
struct drm_i915_gem_relocation_entry relocs[2];
uint32_t batch_handle;
uint32_t dword0, dword1;
uint32_t src_pitch, dst_pitch;
int i = 0;
src_pitch = fast_copy_pitch(src_stride, src_tiling);
dst_pitch = fast_copy_pitch(dst_stride, dst_tiling);
dword0 = fast_copy_dword0(src_tiling, dst_tiling);
dword1 = fast_copy_dword1(src_tiling, dst_tiling, bpp);
CHECK_RANGE(src_x); CHECK_RANGE(src_y);
CHECK_RANGE(dst_x); CHECK_RANGE(dst_y);
CHECK_RANGE(width); CHECK_RANGE(height);
CHECK_RANGE(src_x + width); CHECK_RANGE(src_y + height);
CHECK_RANGE(dst_x + width); CHECK_RANGE(dst_y + height);
CHECK_RANGE(src_pitch); CHECK_RANGE(dst_pitch);
batch[i++] = dword0;
batch[i++] = dword1 | dst_pitch;
batch[i++] = (dst_y << 16) | dst_x; /* dst x1,y1 */
batch[i++] = ((dst_y + height) << 16) | (dst_x + width); /* dst x2,y2 */
batch[i++] = dst_delta; /* dst address lower bits */
batch[i++] = 0; /* dst address upper bits */
batch[i++] = (src_y << 16) | src_x; /* src x1,y1 */
batch[i++] = src_pitch;
batch[i++] = src_delta; /* src address lower bits */
batch[i++] = 0; /* src address upper bits */
batch[i++] = MI_BATCH_BUFFER_END;
batch[i++] = MI_NOOP;
igt_assert(i == ARRAY_SIZE(batch));
batch_handle = gem_create(fd, 4096);
gem_write(fd, batch_handle, 0, batch, sizeof(batch));
fill_relocation(&relocs[0], dst_handle, dst_delta, 4,
I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER);
fill_relocation(&relocs[1], src_handle, src_delta, 8, I915_GEM_DOMAIN_RENDER, 0);
fill_object(&objs[0], dst_handle, NULL, 0);
fill_object(&objs[1], src_handle, NULL, 0);
fill_object(&objs[2], batch_handle, relocs, 2);
exec_blit(fd, objs, 3, ARRAY_SIZE(batch));
gem_close(fd, batch_handle);
}
/**
* igt_blitter_fast_copy:
* @batch: batchbuffer object
* @src: source i-g-t buffer object
* @src_delta: offset into the source i-g-t bo
* @src_x: source pixel x-coordination
* @src_y: source pixel y-coordination
* @width: width of the copied rectangle
* @height: height of the copied rectangle
* @dst: destination i-g-t buffer object
* @dst_delta: offset into the destination i-g-t bo
* @dst_x: destination pixel x-coordination
* @dst_y: destination pixel y-coordination
*
* Copy @src into @dst using the gen9 fast copy blitter command.
*
* The source and destination surfaces cannot overlap.
*/
void igt_blitter_fast_copy(struct intel_batchbuffer *batch,
const struct igt_buf *src, unsigned src_delta,
unsigned src_x, unsigned src_y,
unsigned width, unsigned height,
int bpp,
const struct igt_buf *dst, unsigned dst_delta,
unsigned dst_x, unsigned dst_y)
{
uint32_t src_pitch, dst_pitch;
uint32_t dword0, dword1;
igt_assert(src->bpp == dst->bpp);
src_pitch = fast_copy_pitch(src->stride, src->tiling);
dst_pitch = fast_copy_pitch(dst->stride, src->tiling);
dword0 = fast_copy_dword0(src->tiling, dst->tiling);
dword1 = fast_copy_dword1(src->tiling, dst->tiling, dst->bpp);
CHECK_RANGE(src_x); CHECK_RANGE(src_y);
CHECK_RANGE(dst_x); CHECK_RANGE(dst_y);
CHECK_RANGE(width); CHECK_RANGE(height);
CHECK_RANGE(src_x + width); CHECK_RANGE(src_y + height);
CHECK_RANGE(dst_x + width); CHECK_RANGE(dst_y + height);
CHECK_RANGE(src_pitch); CHECK_RANGE(dst_pitch);
BEGIN_BATCH(10, 2);
OUT_BATCH(dword0);
OUT_BATCH(dword1 | dst_pitch);
OUT_BATCH((dst_y << 16) | dst_x); /* dst x1,y1 */
OUT_BATCH(((dst_y + height) << 16) | (dst_x + width)); /* dst x2,y2 */
OUT_RELOC(dst->bo, I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER, dst_delta);
OUT_BATCH(0); /* dst address upper bits */
OUT_BATCH((src_y << 16) | src_x); /* src x1,y1 */
OUT_BATCH(src_pitch);
OUT_RELOC(src->bo, I915_GEM_DOMAIN_RENDER, 0, src_delta);
OUT_BATCH(0); /* src address upper bits */
ADVANCE_BATCH();
intel_batchbuffer_flush(batch);
}
#undef CHECK_RANGE
/**
* igt_get_render_copyfunc:
* @devid: pci device id
*
* Returns:
*
* The platform-specific render copy function pointer for the device
* specified with @devid. Will return NULL when no render copy function is
* implemented.
*/
igt_render_copyfunc_t igt_get_render_copyfunc(int devid)
{
igt_render_copyfunc_t copy = NULL;
if (IS_GEN2(devid))
copy = gen2_render_copyfunc;
else if (IS_GEN3(devid))
copy = gen3_render_copyfunc;
else if (IS_GEN4(devid) || IS_GEN5(devid))
copy = gen4_render_copyfunc;
else if (IS_GEN6(devid))
copy = gen6_render_copyfunc;
else if (IS_GEN7(devid))
copy = gen7_render_copyfunc;
else if (IS_GEN8(devid))
copy = gen8_render_copyfunc;
else if (IS_GEN9(devid) || IS_GEN10(devid))
copy = gen9_render_copyfunc;
else if (IS_GEN11(devid))
copy = gen11_render_copyfunc;
return copy;
}
/**
* igt_get_media_fillfunc:
* @devid: pci device id
*
* Returns:
*
* The platform-specific media fill function pointer for the device specified
* with @devid. Will return NULL when no media fill function is implemented.
*/
igt_fillfunc_t igt_get_media_fillfunc(int devid)
{
igt_fillfunc_t fill = NULL;
if (IS_GEN9(devid) || IS_GEN10(devid) || IS_GEN11(devid))
fill = gen9_media_fillfunc;
else if (IS_GEN8(devid))
fill = gen8_media_fillfunc;
else if (IS_GEN7(devid))
fill = gen7_media_fillfunc;
return fill;
}
igt_vme_func_t igt_get_media_vme_func(int devid)
{
igt_vme_func_t fill = NULL;
if (IS_GEN11(devid))
fill = gen11_media_vme_func;
return fill;
}
/**
* igt_get_gpgpu_fillfunc:
* @devid: pci device id
*
* Returns:
*
* The platform-specific gpgpu fill function pointer for the device specified
* with @devid. Will return NULL when no gpgpu fill function is implemented.
*/
igt_fillfunc_t igt_get_gpgpu_fillfunc(int devid)
{
igt_fillfunc_t fill = NULL;
if (IS_GEN7(devid))
fill = gen7_gpgpu_fillfunc;
else if (IS_BROADWELL(devid))
fill = gen8_gpgpu_fillfunc;
else if (IS_GEN9(devid) || IS_GEN10(devid))
fill = gen9_gpgpu_fillfunc;
else if (IS_GEN11(devid))
fill = gen11_gpgpu_fillfunc;
return fill;
}
/**
* igt_get_media_spinfunc:
* @devid: pci device id
*
* Returns:
*
* The platform-specific media spin function pointer for the device specified
* with @devid. Will return NULL when no media spin function is implemented.
*/
igt_media_spinfunc_t igt_get_media_spinfunc(int devid)
{
igt_media_spinfunc_t spin = NULL;
if (IS_GEN9(devid))
spin = gen9_media_spinfunc;
else if (IS_GEN8(devid))
spin = gen8_media_spinfunc;
return spin;
}