blob: a4bbbe46aa32aceec779d1362a5bcdb40636284f [file] [log] [blame]
// $Id: io_helpers.cpp,v 1.13 2002/07/02 22:13:56 t1mpy Exp $
// id3lib: a C++ library for creating and manipulating id3v1/v2 tags
// Copyright 1999, 2000 Scott Thomas Haug
// This library is free software; you can redistribute it and/or modify it
// under the terms of the GNU Library General Public License as published by
// the Free Software Foundation; either version 2 of the License, or (at your
// option) any later version.
//
// This library is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
// License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with this library; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
// The id3lib authors encourage improvements and optimisations to be sent to
// the id3lib coordinator. Please see the README file for details on where to
// send such submissions. See the AUTHORS file for a list of people who have
// contributed to id3lib. See the ChangeLog file for a list of changes to
// id3lib. These files are distributed with id3lib at
// http://download.sourceforge.net/id3lib/
#if defined HAVE_CONFIG_H
#include <config.h>
#endif
#include "id3/io_decorators.h" //has "readers.h" "io_helpers.h" "utils.h"
using namespace dami;
String io::readString(ID3_Reader& reader)
{
String str;
while (!reader.atEnd())
{
ID3_Reader::char_type ch = reader.readChar();
if (ch == '\0')
{
break;
}
str += static_cast<char>(ch);
}
return str;
}
String io::readText(ID3_Reader& reader, size_t len)
{
String str;
str.reserve(len);
const size_t SIZE = 1024;
ID3_Reader::char_type buf[SIZE];
size_t remaining = len;
while (remaining > 0 && !reader.atEnd())
{
size_t numRead = reader.readChars(buf, min(remaining, SIZE));
remaining -= numRead;
str.append(reinterpret_cast<String::value_type *>(buf), numRead);
}
return str;
}
namespace
{
bool isNull(unsigned char ch1, unsigned char ch2)
{
return ch1 == '\0' && ch2 == '\0';
}
int isBOM(unsigned char ch1, unsigned char ch2)
{
// The following is taken from the following URL:
// http://community.roxen.com/developers/idocs/rfc/rfc2781.html
/* The Unicode Standard and ISO 10646 define the character "ZERO WIDTH
NON-BREAKING SPACE" (0xFEFF), which is also known informally as
"BYTE ORDER MARK" (abbreviated "BOM"). The latter name hints at a
second possible usage of the character, in addition to its normal
use as a genuine "ZERO WIDTH NON-BREAKING SPACE" within text. This
usage, suggested by Unicode section 2.4 and ISO 10646 Annex F
(informative), is to prepend a 0xFEFF character to a stream of
Unicode characters as a "signature"; a receiver of such a serialized
stream may then use the initial character both as a hint that the
stream consists of Unicode characters and as a way to recognize the
serialization order. In serialized UTF-16 prepended with such a
signature, the order is big-endian if the first two octets are 0xFE
followed by 0xFF; if they are 0xFF followed by 0xFE, the order is
little-endian. Note that 0xFFFE is not a Unicode character,
precisely to preserve the usefulness of 0xFEFF as a byte-order
mark. */
if (ch1 == 0xFE && ch2 == 0xFF)
{
return 1;
}
else if (ch1 == 0xFF && ch2 == 0xFE)
{
return -1;
}
return 0;
}
bool readTwoChars(ID3_Reader& reader,
ID3_Reader::char_type& ch1,
ID3_Reader::char_type& ch2)
{
if (reader.atEnd())
{
return false;
}
io::ExitTrigger et(reader);
ch1 = reader.readChar();
if (reader.atEnd())
{
return false;
}
et.release();
ch2 = reader.readChar();
return true;
}
}
String io::readUnicodeString(ID3_Reader& reader)
{
String unicode;
ID3_Reader::char_type ch1, ch2;
if (!readTwoChars(reader, ch1, ch2) || isNull(ch1, ch2))
{
return unicode;
}
int bom = isBOM(ch1, ch2);
if (!bom)
{
unicode += static_cast<char>(ch1);
unicode += static_cast<char>(ch2);
}
while (!reader.atEnd())
{
if (!readTwoChars(reader, ch1, ch2) || isNull(ch1, ch2))
{
break;
}
if (bom == -1)
{
unicode += static_cast<char>(ch2);
unicode += static_cast<char>(ch1);
}
else
{
unicode += static_cast<char>(ch1);
unicode += static_cast<char>(ch2);
}
}
return unicode;
}
String io::readUnicodeText(ID3_Reader& reader, size_t len)
{
String unicode;
ID3_Reader::char_type ch1, ch2;
if (!readTwoChars(reader, ch1, ch2))
{
return unicode;
}
len -= 2;
int bom = isBOM(ch1, ch2);
#ifdef WORDS_BIGENDIAN
bom = -bom; // switch things around for big endian
#endif
if (!bom)
{
#ifdef WORDS_BIGENDIAN
unicode += ch2;
unicode += ch1;
for (size_t i = 0; i < len; i += 2)
{
if (!readTwoChars(reader, ch1, ch2))
{
break;
}
unicode += ch2;
unicode += ch1;
}
#else
unicode += ch1;
unicode += ch2;
unicode += readText(reader, len);
#endif
}
else if (bom == -1)
{
unicode = readText(reader, len);
}
else
{
for (size_t i = 0; i < len; i += 2)
{
if (!readTwoChars(reader, ch1, ch2))
{
break;
}
unicode += ch2;
unicode += ch1;
}
}
unicode += '\0'; // ESL: need to terminate double-byte string properly.
return unicode;
}
BString io::readAllBinary(ID3_Reader& reader)
{
return readBinary(reader, reader.remainingBytes());
}
BString io::readBinary(ID3_Reader& reader, size_t len)
{
BString binary;
binary.reserve(len);
size_t remaining = len;
const size_t SIZE = 1024;
ID3_Reader::char_type buf[SIZE];
while (!reader.atEnd() && remaining > 0)
{
size_t numRead = reader.readChars(buf, min(remaining, SIZE));
remaining -= numRead;
binary.append(reinterpret_cast<BString::value_type *>(buf), numRead);
}
return binary;
}
uint32 io::readLENumber(ID3_Reader& reader, size_t len)
{
uint32 val = 0;
for (size_t i = 0; i < len; i++)
{
if (reader.atEnd())
{
break;
}
val += (static_cast<uint32>(0xFF & reader.readChar()) << (i * 8));
}
return val;
}
uint32 io::readBENumber(ID3_Reader& reader, size_t len)
{
uint32 val = 0;
for (ID3_Reader::size_type i = 0; i < len && !reader.atEnd(); ++i)
{
val *= 256; // 2^8
val += static_cast<uint32>(0xFF & reader.readChar());
}
return val;
}
String io::readTrailingSpaces(ID3_Reader& reader, size_t len)
{
io::WindowedReader wr(reader, len);
String str;
String spaces;
str.reserve(len);
spaces.reserve(len);
while (!wr.atEnd())
{
ID3_Reader::char_type ch = wr.readChar();
if (ch == '\0' || ch == ' ')
{
spaces += ch;
}
else
{
str += spaces + (char) ch;
spaces.erase();
}
}
return str;
}
uint32 io::readUInt28(ID3_Reader& reader)
{
uint32 val = 0;
const unsigned short BITSUSED = 7;
const uint32 MAXVAL = MASK(BITSUSED * sizeof(uint32));
// For each byte of the first 4 bytes in the string...
for (size_t i = 0; i < sizeof(uint32); ++i)
{
if (reader.atEnd())
{
break;
}
// ...append the last 7 bits to the end of the temp integer...
val = (val << BITSUSED) | static_cast<uint32>(reader.readChar()) & MASK(BITSUSED);
}
// We should always parse 4 characters
return min(val, MAXVAL);
}
size_t io::writeBENumber(ID3_Writer& writer, uint32 val, size_t len)
{
ID3_Writer::char_type bytes[sizeof(uint32)];
ID3_Writer::size_type size = min<ID3_Reader::size_type>(len, sizeof(uint32));
renderNumber(bytes, val, size);
return writer.writeChars(bytes, size);
}
size_t io::writeTrailingSpaces(ID3_Writer& writer, String buf, size_t len)
{
ID3_Writer::pos_type beg = writer.getCur();
ID3_Writer::size_type strLen = buf.size();
ID3_Writer::size_type size = min((unsigned int)len, (unsigned int)strLen);
writer.writeChars(buf.data(), size);
for (; size < len; ++size)
{
writer.writeChar('\0');
}
return writer.getCur() - beg;
}
size_t io::writeUInt28(ID3_Writer& writer, uint32 val)
{
uchar data[sizeof(uint32)];
const unsigned short BITSUSED = 7;
const uint32 MAXVAL = MASK(BITSUSED * sizeof(uint32));
val = min(val, MAXVAL);
// This loop renders the value to the character buffer in reverse order, as
// it is easy to extract the last 7 bits of an integer. This is why the
// loop shifts the value of the integer by 7 bits for each iteration.
for (size_t i = 0; i < sizeof(uint32); ++i)
{
// Extract the last BITSUSED bits from val and put it in its appropriate
// place in the data buffer
data[sizeof(uint32) - i - 1] = static_cast<uchar>(val & MASK(BITSUSED));
// The last BITSUSED bits were extracted from the val. So shift it to the
// right by that many bits for the next iteration
val >>= BITSUSED;
}
// Should always render 4 bytes
return writer.writeChars(data, sizeof(uint32));
}
size_t io::writeString(ID3_Writer& writer, String data)
{
size_t size = writeText(writer, data);
writer.writeChar('\0');
return size + 1;
}
size_t io::writeText(ID3_Writer& writer, String data)
{
ID3_Writer::pos_type beg = writer.getCur();
writer.writeChars(data.data(), data.size());
return writer.getCur() - beg;
}
size_t io::writeUnicodeString(ID3_Writer& writer, String data, bool bom)
{
size_t size = writeUnicodeText(writer, data, bom);
unicode_t null = NULL_UNICODE;
writer.writeChars((const unsigned char*) &null, 2);
return size + 2;
}
size_t io::writeUnicodeText(ID3_Writer& writer, String data, bool bom)
{
ID3_Writer::pos_type beg = writer.getCur();
size_t size = (data.size() / 2) * 2;
if (size == 0)
{
return 0;
}
int is_bom = isBOM(data[0],data[1]);
if (!is_bom && bom) {
// Write the BOM: 0xFEFF
const unsigned char BOMch1 = 0xFE;
const unsigned char BOMch2 = 0xFF;
writer.writeChars(&BOMch1, 1);
writer.writeChars(&BOMch2, 1);
}
for (size_t i = 0; i < size; i += 2)
{
if (!i && !bom && is_bom) {
// Skip unneeded leading BOM
continue;
}
if (is_bom >= 0) {
writer.writeChars(data.data()+i, 1);
writer.writeChars(data.data()+i+1, 1);
}
else {
writer.writeChars(data.data()+i+1, 1);
writer.writeChars(data.data()+i, 1);
}
}
return writer.getCur() - beg;
}