blob: 187aacf8fd67126873ce06ce224b2883598387d9 [file] [log] [blame]
/*
* Copyright (C) 2007 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.collect;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.collect.CollectPreconditions.checkNonnegative;
import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Function;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map.Entry;
import java.util.NoSuchElementException;
import java.util.SortedMap;
import java.util.SortedSet;
import java.util.TreeSet;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.atomic.AtomicInteger;
import org.checkerframework.checker.nullness.compatqual.NullableDecl;
/**
* A comparator, with additional methods to support common operations. This is an "enriched" version
* of {@code Comparator} for pre-Java-8 users, in the same sense that {@link FluentIterable} is an
* enriched {@link Iterable} for pre-Java-8 users.
*
* <h3>Three types of methods</h3>
*
* Like other fluent types, there are three types of methods present: methods for <i>acquiring</i>,
* <i>chaining</i>, and <i>using</i>.
*
* <h4>Acquiring</h4>
*
* <p>The common ways to get an instance of {@code Ordering} are:
*
* <ul>
* <li>Subclass it and implement {@link #compare} instead of implementing {@link Comparator}
* directly
* <li>Pass a <i>pre-existing</i> {@link Comparator} instance to {@link #from(Comparator)}
* <li>Use the natural ordering, {@link Ordering#natural}
* </ul>
*
* <h4>Chaining</h4>
*
* <p>Then you can use the <i>chaining</i> methods to get an altered version of that {@code
* Ordering}, including:
*
* <ul>
* <li>{@link #reverse}
* <li>{@link #compound(Comparator)}
* <li>{@link #onResultOf(Function)}
* <li>{@link #nullsFirst} / {@link #nullsLast}
* </ul>
*
* <h4>Using</h4>
*
* <p>Finally, use the resulting {@code Ordering} anywhere a {@link Comparator} is required, or use
* any of its special operations, such as:
*
* <ul>
* <li>{@link #immutableSortedCopy}
* <li>{@link #isOrdered} / {@link #isStrictlyOrdered}
* <li>{@link #min} / {@link #max}
* </ul>
*
* <h3>Understanding complex orderings</h3>
*
* <p>Complex chained orderings like the following example can be challenging to understand.
*
* <pre>{@code
* Ordering<Foo> ordering =
* Ordering.natural()
* .nullsFirst()
* .onResultOf(getBarFunction)
* .nullsLast();
* }</pre>
*
* Note that each chaining method returns a new ordering instance which is backed by the previous
* instance, but has the chance to act on values <i>before</i> handing off to that backing instance.
* As a result, it usually helps to read chained ordering expressions <i>backwards</i>. For example,
* when {@code compare} is called on the above ordering:
*
* <ol>
* <li>First, if only one {@code Foo} is null, that null value is treated as <i>greater</i>
* <li>Next, non-null {@code Foo} values are passed to {@code getBarFunction} (we will be
* comparing {@code Bar} values from now on)
* <li>Next, if only one {@code Bar} is null, that null value is treated as <i>lesser</i>
* <li>Finally, natural ordering is used (i.e. the result of {@code Bar.compareTo(Bar)} is
* returned)
* </ol>
*
* <p>Alas, {@link #reverse} is a little different. As you read backwards through a chain and
* encounter a call to {@code reverse}, continue working backwards until a result is determined, and
* then reverse that result.
*
* <h3>Additional notes</h3>
*
* <p>Except as noted, the orderings returned by the factory methods of this class are serializable
* if and only if the provided instances that back them are. For example, if {@code ordering} and
* {@code function} can themselves be serialized, then {@code ordering.onResultOf(function)} can as
* well.
*
* <h3>For Java 8 users</h3>
*
* <p>If you are using Java 8, this class is now obsolete. Most of its functionality is now provided
* by {@link java.util.stream.Stream Stream} and by {@link Comparator} itself, and the rest can now
* be found as static methods in our new {@link Comparators} class. See each method below for
* further instructions. Whenever possible, you should change any references of type {@code
* Ordering} to be of type {@code Comparator} instead. However, at this time we have no plan to
* <i>deprecate</i> this class.
*
* <p>Many replacements involve adopting {@code Stream}, and these changes can sometimes make your
* code verbose. Whenever following this advice, you should check whether {@code Stream} could be
* adopted more comprehensively in your code; the end result may be quite a bit simpler.
*
* <h3>See also</h3>
*
* <p>See the Guava User Guide article on <a href=
* "https://github.com/google/guava/wiki/OrderingExplained">{@code Ordering}</a>.
*
* @author Jesse Wilson
* @author Kevin Bourrillion
* @since 2.0
*/
@GwtCompatible
public abstract class Ordering<T> implements Comparator<T> {
// Natural order
/**
* Returns a serializable ordering that uses the natural order of the values. The ordering throws
* a {@link NullPointerException} when passed a null parameter.
*
* <p>The type specification is {@code <C extends Comparable>}, instead of the technically correct
* {@code <C extends Comparable<? super C>>}, to support legacy types from before Java 5.
*
* <p><b>Java 8 users:</b> use {@link Comparator#naturalOrder} instead.
*/
@GwtCompatible(serializable = true)
@SuppressWarnings("unchecked") // TODO(kevinb): right way to explain this??
public static <C extends Comparable> Ordering<C> natural() {
return (Ordering<C>) NaturalOrdering.INSTANCE;
}
// Static factories
/**
* Returns an ordering based on an <i>existing</i> comparator instance. Note that it is
* unnecessary to create a <i>new</i> anonymous inner class implementing {@code Comparator} just
* to pass it in here. Instead, simply subclass {@code Ordering} and implement its {@code compare}
* method directly.
*
* <p><b>Java 8 users:</b> this class is now obsolete as explained in the class documentation, so
* there is no need to use this method.
*
* @param comparator the comparator that defines the order
* @return comparator itself if it is already an {@code Ordering}; otherwise an ordering that
* wraps that comparator
*/
@GwtCompatible(serializable = true)
public static <T> Ordering<T> from(Comparator<T> comparator) {
return (comparator instanceof Ordering)
? (Ordering<T>) comparator
: new ComparatorOrdering<T>(comparator);
}
/**
* Simply returns its argument.
*
* @deprecated no need to use this
*/
@GwtCompatible(serializable = true)
@Deprecated
public static <T> Ordering<T> from(Ordering<T> ordering) {
return checkNotNull(ordering);
}
/**
* Returns an ordering that compares objects according to the order in which they appear in the
* given list. Only objects present in the list (according to {@link Object#equals}) may be
* compared. This comparator imposes a "partial ordering" over the type {@code T}. Subsequent
* changes to the {@code valuesInOrder} list will have no effect on the returned comparator. Null
* values in the list are not supported.
*
* <p>The returned comparator throws a {@link ClassCastException} when it receives an input
* parameter that isn't among the provided values.
*
* <p>The generated comparator is serializable if all the provided values are serializable.
*
* @param valuesInOrder the values that the returned comparator will be able to compare, in the
* order the comparator should induce
* @return the comparator described above
* @throws NullPointerException if any of the provided values is null
* @throws IllegalArgumentException if {@code valuesInOrder} contains any duplicate values
* (according to {@link Object#equals})
*/
// TODO(kevinb): provide replacement
@GwtCompatible(serializable = true)
public static <T> Ordering<T> explicit(List<T> valuesInOrder) {
return new ExplicitOrdering<T>(valuesInOrder);
}
/**
* Returns an ordering that compares objects according to the order in which they are given to
* this method. Only objects present in the argument list (according to {@link Object#equals}) may
* be compared. This comparator imposes a "partial ordering" over the type {@code T}. Null values
* in the argument list are not supported.
*
* <p>The returned comparator throws a {@link ClassCastException} when it receives an input
* parameter that isn't among the provided values.
*
* <p>The generated comparator is serializable if all the provided values are serializable.
*
* @param leastValue the value which the returned comparator should consider the "least" of all
* values
* @param remainingValuesInOrder the rest of the values that the returned comparator will be able
* to compare, in the order the comparator should follow
* @return the comparator described above
* @throws NullPointerException if any of the provided values is null
* @throws IllegalArgumentException if any duplicate values (according to {@link
* Object#equals(Object)}) are present among the method arguments
*/
// TODO(kevinb): provide replacement
@GwtCompatible(serializable = true)
public static <T> Ordering<T> explicit(T leastValue, T... remainingValuesInOrder) {
return explicit(Lists.asList(leastValue, remainingValuesInOrder));
}
// Ordering<Object> singletons
/**
* Returns an ordering which treats all values as equal, indicating "no ordering." Passing this
* ordering to any <i>stable</i> sort algorithm results in no change to the order of elements.
* Note especially that {@link #sortedCopy} and {@link #immutableSortedCopy} are stable, and in
* the returned instance these are implemented by simply copying the source list.
*
* <p>Example:
*
* <pre>{@code
* Ordering.allEqual().nullsLast().sortedCopy(
* asList(t, null, e, s, null, t, null))
* }</pre>
*
* <p>Assuming {@code t}, {@code e} and {@code s} are non-null, this returns {@code [t, e, s, t,
* null, null, null]} regardless of the true comparison order of those three values (which might
* not even implement {@link Comparable} at all).
*
* <p><b>Warning:</b> by definition, this comparator is not <i>consistent with equals</i> (as
* defined {@linkplain Comparator here}). Avoid its use in APIs, such as {@link
* TreeSet#TreeSet(Comparator)}, where such consistency is expected.
*
* <p>The returned comparator is serializable.
*
* <p><b>Java 8 users:</b> Use the lambda expression {@code (a, b) -> 0} instead (in certain cases
* you may need to cast that to {@code Comparator<YourType>}).
*
* @since 13.0
*/
@GwtCompatible(serializable = true)
@SuppressWarnings("unchecked")
public static Ordering<Object> allEqual() {
return AllEqualOrdering.INSTANCE;
}
/**
* Returns an ordering that compares objects by the natural ordering of their string
* representations as returned by {@code toString()}. It does not support null values.
*
* <p>The comparator is serializable.
*
* <p><b>Java 8 users:</b> Use {@code Comparator.comparing(Object::toString)} instead.
*/
@GwtCompatible(serializable = true)
public static Ordering<Object> usingToString() {
return UsingToStringOrdering.INSTANCE;
}
/**
* Returns an arbitrary ordering over all objects, for which {@code compare(a, b) == 0} implies
* {@code a == b} (identity equality). There is no meaning whatsoever to the order imposed, but it
* is constant for the life of the VM.
*
* <p>Because the ordering is identity-based, it is not "consistent with {@link
* Object#equals(Object)}" as defined by {@link Comparator}. Use caution when building a {@link
* SortedSet} or {@link SortedMap} from it, as the resulting collection will not behave exactly
* according to spec.
*
* <p>This ordering is not serializable, as its implementation relies on {@link
* System#identityHashCode(Object)}, so its behavior cannot be preserved across serialization.
*
* @since 2.0
*/
// TODO(kevinb): copy to Comparators, etc.
public static Ordering<Object> arbitrary() {
return ArbitraryOrderingHolder.ARBITRARY_ORDERING;
}
private static class ArbitraryOrderingHolder {
static final Ordering<Object> ARBITRARY_ORDERING = new ArbitraryOrdering();
}
@VisibleForTesting
static class ArbitraryOrdering extends Ordering<Object> {
private final AtomicInteger counter = new AtomicInteger(0);
private final ConcurrentMap<Object, Integer> uids =
Platform.tryWeakKeys(new MapMaker()).makeMap();
private Integer getUid(Object obj) {
Integer uid = uids.get(obj);
if (uid == null) {
// One or more integer values could be skipped in the event of a race
// to generate a UID for the same object from multiple threads, but
// that shouldn't be a problem.
uid = counter.getAndIncrement();
Integer alreadySet = uids.putIfAbsent(obj, uid);
if (alreadySet != null) {
uid = alreadySet;
}
}
return uid;
}
@Override
public int compare(Object left, Object right) {
if (left == right) {
return 0;
} else if (left == null) {
return -1;
} else if (right == null) {
return 1;
}
int leftCode = identityHashCode(left);
int rightCode = identityHashCode(right);
if (leftCode != rightCode) {
return leftCode < rightCode ? -1 : 1;
}
// identityHashCode collision (rare, but not as rare as you'd think)
int result = getUid(left).compareTo(getUid(right));
if (result == 0) {
throw new AssertionError(); // extremely, extremely unlikely.
}
return result;
}
@Override
public String toString() {
return "Ordering.arbitrary()";
}
/*
* We need to be able to mock identityHashCode() calls for tests, because it
* can take 1-10 seconds to find colliding objects. Mocking frameworks that
* can do magic to mock static method calls still can't do so for a system
* class, so we need the indirection. In production, Hotspot should still
* recognize that the call is 1-morphic and should still be willing to
* inline it if necessary.
*/
int identityHashCode(Object object) {
return System.identityHashCode(object);
}
}
// Constructor
/**
* Constructs a new instance of this class (only invokable by the subclass constructor, typically
* implicit).
*/
protected Ordering() {}
// Instance-based factories (and any static equivalents)
/**
* Returns the reverse of this ordering; the {@code Ordering} equivalent to {@link
* Collections#reverseOrder(Comparator)}.
*
* <p><b>Java 8 users:</b> Use {@code thisComparator.reversed()} instead.
*/
// type parameter <S> lets us avoid the extra <String> in statements like:
// Ordering<String> o = Ordering.<String>natural().reverse();
@GwtCompatible(serializable = true)
public <S extends T> Ordering<S> reverse() {
return new ReverseOrdering<S>(this);
}
/**
* Returns an ordering that treats {@code null} as less than all other values and uses {@code
* this} to compare non-null values.
*
* <p><b>Java 8 users:</b> Use {@code Comparator.nullsFirst(thisComparator)} instead.
*/
// type parameter <S> lets us avoid the extra <String> in statements like:
// Ordering<String> o = Ordering.<String>natural().nullsFirst();
@GwtCompatible(serializable = true)
public <S extends T> Ordering<S> nullsFirst() {
return new NullsFirstOrdering<S>(this);
}
/**
* Returns an ordering that treats {@code null} as greater than all other values and uses this
* ordering to compare non-null values.
*
* <p><b>Java 8 users:</b> Use {@code Comparator.nullsLast(thisComparator)} instead.
*/
// type parameter <S> lets us avoid the extra <String> in statements like:
// Ordering<String> o = Ordering.<String>natural().nullsLast();
@GwtCompatible(serializable = true)
public <S extends T> Ordering<S> nullsLast() {
return new NullsLastOrdering<S>(this);
}
/**
* Returns a new ordering on {@code F} which orders elements by first applying a function to them,
* then comparing those results using {@code this}. For example, to compare objects by their
* string forms, in a case-insensitive manner, use:
*
* <pre>{@code
* Ordering.from(String.CASE_INSENSITIVE_ORDER)
* .onResultOf(Functions.toStringFunction())
* }</pre>
*
* <p><b>Java 8 users:</b> Use {@code Comparator.comparing(function, thisComparator)} instead (you
* can omit the comparator if it is the natural order).
*/
@GwtCompatible(serializable = true)
public <F> Ordering<F> onResultOf(Function<F, ? extends T> function) {
return new ByFunctionOrdering<>(function, this);
}
<T2 extends T> Ordering<Entry<T2, ?>> onKeys() {
return onResultOf(Maps.<T2>keyFunction());
}
/**
* Returns an ordering which first uses the ordering {@code this}, but which in the event of a
* "tie", then delegates to {@code secondaryComparator}. For example, to sort a bug list first by
* status and second by priority, you might use {@code byStatus.compound(byPriority)}. For a
* compound ordering with three or more components, simply chain multiple calls to this method.
*
* <p>An ordering produced by this method, or a chain of calls to this method, is equivalent to
* one created using {@link Ordering#compound(Iterable)} on the same component comparators.
*
* <p><b>Java 8 users:</b> Use {@code thisComparator.thenComparing(secondaryComparator)} instead.
* Depending on what {@code secondaryComparator} is, one of the other overloads of {@code
* thenComparing} may be even more useful.
*/
@GwtCompatible(serializable = true)
public <U extends T> Ordering<U> compound(Comparator<? super U> secondaryComparator) {
return new CompoundOrdering<U>(this, checkNotNull(secondaryComparator));
}
/**
* Returns an ordering which tries each given comparator in order until a non-zero result is
* found, returning that result, and returning zero only if all comparators return zero. The
* returned ordering is based on the state of the {@code comparators} iterable at the time it was
* provided to this method.
*
* <p>The returned ordering is equivalent to that produced using {@code
* Ordering.from(comp1).compound(comp2).compound(comp3) . . .}.
*
* <p><b>Warning:</b> Supplying an argument with undefined iteration order, such as a {@link
* HashSet}, will produce non-deterministic results.
*
* <p><b>Java 8 users:</b> Use a chain of calls to {@link Comparator#thenComparing(Comparator)},
* or {@code comparatorCollection.stream().reduce(Comparator::thenComparing).get()} (if the
* collection might be empty, also provide a default comparator as the {@code identity} parameter
* to {@code reduce}).
*
* @param comparators the comparators to try in order
*/
@GwtCompatible(serializable = true)
public static <T> Ordering<T> compound(Iterable<? extends Comparator<? super T>> comparators) {
return new CompoundOrdering<T>(comparators);
}
/**
* Returns a new ordering which sorts iterables by comparing corresponding elements pairwise until
* a nonzero result is found; imposes "dictionary order". If the end of one iterable is reached,
* but not the other, the shorter iterable is considered to be less than the longer one. For
* example, a lexicographical natural ordering over integers considers {@code [] < [1] < [1, 1] <
* [1, 2] < [2]}.
*
* <p>Note that {@code ordering.lexicographical().reverse()} is not equivalent to {@code
* ordering.reverse().lexicographical()} (consider how each would order {@code [1]} and {@code [1,
* 1]}).
*
* <p><b>Java 8 users:</b> Use {@link Comparators#lexicographical(Comparator)} instead.
*
* @since 2.0
*/
@GwtCompatible(serializable = true)
// type parameter <S> lets us avoid the extra <String> in statements like:
// Ordering<Iterable<String>> o =
// Ordering.<String>natural().lexicographical();
public <S extends T> Ordering<Iterable<S>> lexicographical() {
/*
* Note that technically the returned ordering should be capable of
* handling not just {@code Iterable<S>} instances, but also any {@code
* Iterable<? extends S>}. However, the need for this comes up so rarely
* that it doesn't justify making everyone else deal with the very ugly
* wildcard.
*/
return new LexicographicalOrdering<S>(this);
}
// Regular instance methods
// Override to add @NullableDecl
@CanIgnoreReturnValue // TODO(kak): Consider removing this
@Override
public abstract int compare(@NullableDecl T left, @NullableDecl T right);
/**
* Returns the least of the specified values according to this ordering. If there are multiple
* least values, the first of those is returned. The iterator will be left exhausted: its {@code
* hasNext()} method will return {@code false}.
*
* <p><b>Java 8 users:</b> Use {@code Streams.stream(iterator).min(thisComparator).get()} instead
* (but note that it does not guarantee which tied minimum element is returned).
*
* @param iterator the iterator whose minimum element is to be determined
* @throws NoSuchElementException if {@code iterator} is empty
* @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this
* ordering.
* @since 11.0
*/
public <E extends T> E min(Iterator<E> iterator) {
// let this throw NoSuchElementException as necessary
E minSoFar = iterator.next();
while (iterator.hasNext()) {
minSoFar = min(minSoFar, iterator.next());
}
return minSoFar;
}
/**
* Returns the least of the specified values according to this ordering. If there are multiple
* least values, the first of those is returned.
*
* <p><b>Java 8 users:</b> If {@code iterable} is a {@link Collection}, use {@code
* Collections.min(collection, thisComparator)} instead. Otherwise, use {@code
* Streams.stream(iterable).min(thisComparator).get()} instead. Note that these alternatives do
* not guarantee which tied minimum element is returned)
*
* @param iterable the iterable whose minimum element is to be determined
* @throws NoSuchElementException if {@code iterable} is empty
* @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this
* ordering.
*/
public <E extends T> E min(Iterable<E> iterable) {
return min(iterable.iterator());
}
/**
* Returns the lesser of the two values according to this ordering. If the values compare as 0,
* the first is returned.
*
* <p><b>Implementation note:</b> this method is invoked by the default implementations of the
* other {@code min} overloads, so overriding it will affect their behavior.
*
* <p><b>Note:</b> Consider using {@code Comparators.min(a, b, thisComparator)} instead. If {@code
* thisComparator} is {@link Ordering#natural}, then use {@code Comparators.min(a, b)}.
*
* @param a value to compare, returned if less than or equal to b.
* @param b value to compare.
* @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this
* ordering.
*/
public <E extends T> E min(@NullableDecl E a, @NullableDecl E b) {
return (compare(a, b) <= 0) ? a : b;
}
/**
* Returns the least of the specified values according to this ordering. If there are multiple
* least values, the first of those is returned.
*
* <p><b>Java 8 users:</b> Use {@code Collections.min(Arrays.asList(a, b, c...), thisComparator)}
* instead (but note that it does not guarantee which tied minimum element is returned).
*
* @param a value to compare, returned if less than or equal to the rest.
* @param b value to compare
* @param c value to compare
* @param rest values to compare
* @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this
* ordering.
*/
public <E extends T> E min(@NullableDecl E a, @NullableDecl E b, @NullableDecl E c, E... rest) {
E minSoFar = min(min(a, b), c);
for (E r : rest) {
minSoFar = min(minSoFar, r);
}
return minSoFar;
}
/**
* Returns the greatest of the specified values according to this ordering. If there are multiple
* greatest values, the first of those is returned. The iterator will be left exhausted: its
* {@code hasNext()} method will return {@code false}.
*
* <p><b>Java 8 users:</b> Use {@code Streams.stream(iterator).max(thisComparator).get()} instead
* (but note that it does not guarantee which tied maximum element is returned).
*
* @param iterator the iterator whose maximum element is to be determined
* @throws NoSuchElementException if {@code iterator} is empty
* @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this
* ordering.
* @since 11.0
*/
public <E extends T> E max(Iterator<E> iterator) {
// let this throw NoSuchElementException as necessary
E maxSoFar = iterator.next();
while (iterator.hasNext()) {
maxSoFar = max(maxSoFar, iterator.next());
}
return maxSoFar;
}
/**
* Returns the greatest of the specified values according to this ordering. If there are multiple
* greatest values, the first of those is returned.
*
* <p><b>Java 8 users:</b> If {@code iterable} is a {@link Collection}, use {@code
* Collections.max(collection, thisComparator)} instead. Otherwise, use {@code
* Streams.stream(iterable).max(thisComparator).get()} instead. Note that these alternatives do
* not guarantee which tied maximum element is returned)
*
* @param iterable the iterable whose maximum element is to be determined
* @throws NoSuchElementException if {@code iterable} is empty
* @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this
* ordering.
*/
public <E extends T> E max(Iterable<E> iterable) {
return max(iterable.iterator());
}
/**
* Returns the greater of the two values according to this ordering. If the values compare as 0,
* the first is returned.
*
* <p><b>Implementation note:</b> this method is invoked by the default implementations of the
* other {@code max} overloads, so overriding it will affect their behavior.
*
* <p><b>Note:</b> Consider using {@code Comparators.max(a, b, thisComparator)} instead. If {@code
* thisComparator} is {@link Ordering#natural}, then use {@code Comparators.max(a, b)}.
*
* @param a value to compare, returned if greater than or equal to b.
* @param b value to compare.
* @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this
* ordering.
*/
public <E extends T> E max(@NullableDecl E a, @NullableDecl E b) {
return (compare(a, b) >= 0) ? a : b;
}
/**
* Returns the greatest of the specified values according to this ordering. If there are multiple
* greatest values, the first of those is returned.
*
* <p><b>Java 8 users:</b> Use {@code Collections.max(Arrays.asList(a, b, c...), thisComparator)}
* instead (but note that it does not guarantee which tied maximum element is returned).
*
* @param a value to compare, returned if greater than or equal to the rest.
* @param b value to compare
* @param c value to compare
* @param rest values to compare
* @throws ClassCastException if the parameters are not <i>mutually comparable</i> under this
* ordering.
*/
public <E extends T> E max(@NullableDecl E a, @NullableDecl E b, @NullableDecl E c, E... rest) {
E maxSoFar = max(max(a, b), c);
for (E r : rest) {
maxSoFar = max(maxSoFar, r);
}
return maxSoFar;
}
/**
* Returns the {@code k} least elements of the given iterable according to this ordering, in order
* from least to greatest. If there are fewer than {@code k} elements present, all will be
* included.
*
* <p>The implementation does not necessarily use a <i>stable</i> sorting algorithm; when multiple
* elements are equivalent, it is undefined which will come first.
*
* <p><b>Java 8 users:</b> Continue to use this method for now. After the next release of Guava,
* use {@code Streams.stream(iterable).collect(Comparators.least(k, thisComparator))} instead.
*
* @return an immutable {@code RandomAccess} list of the {@code k} least elements in ascending
* order
* @throws IllegalArgumentException if {@code k} is negative
* @since 8.0
*/
public <E extends T> List<E> leastOf(Iterable<E> iterable, int k) {
if (iterable instanceof Collection) {
Collection<E> collection = (Collection<E>) iterable;
if (collection.size() <= 2L * k) {
// In this case, just dumping the collection to an array and sorting is
// faster than using the implementation for Iterator, which is
// specialized for k much smaller than n.
@SuppressWarnings("unchecked") // c only contains E's and doesn't escape
E[] array = (E[]) collection.toArray();
Arrays.sort(array, this);
if (array.length > k) {
array = Arrays.copyOf(array, k);
}
return Collections.unmodifiableList(Arrays.asList(array));
}
}
return leastOf(iterable.iterator(), k);
}
/**
* Returns the {@code k} least elements from the given iterator according to this ordering, in
* order from least to greatest. If there are fewer than {@code k} elements present, all will be
* included.
*
* <p>The implementation does not necessarily use a <i>stable</i> sorting algorithm; when multiple
* elements are equivalent, it is undefined which will come first.
*
* <p><b>Java 8 users:</b> Use {@code Streams.stream(iterator).collect(Comparators.least(k,
* thisComparator))} instead.
*
* @return an immutable {@code RandomAccess} list of the {@code k} least elements in ascending
* order
* @throws IllegalArgumentException if {@code k} is negative
* @since 14.0
*/
public <E extends T> List<E> leastOf(Iterator<E> iterator, int k) {
checkNotNull(iterator);
checkNonnegative(k, "k");
if (k == 0 || !iterator.hasNext()) {
return Collections.emptyList();
} else if (k >= Integer.MAX_VALUE / 2) {
// k is really large; just do a straightforward sorted-copy-and-sublist
ArrayList<E> list = Lists.newArrayList(iterator);
Collections.sort(list, this);
if (list.size() > k) {
list.subList(k, list.size()).clear();
}
list.trimToSize();
return Collections.unmodifiableList(list);
} else {
TopKSelector<E> selector = TopKSelector.least(k, this);
selector.offerAll(iterator);
return selector.topK();
}
}
/**
* Returns the {@code k} greatest elements of the given iterable according to this ordering, in
* order from greatest to least. If there are fewer than {@code k} elements present, all will be
* included.
*
* <p>The implementation does not necessarily use a <i>stable</i> sorting algorithm; when multiple
* elements are equivalent, it is undefined which will come first.
*
* <p><b>Java 8 users:</b> Continue to use this method for now. After the next release of Guava,
* use {@code Streams.stream(iterable).collect(Comparators.greatest(k, thisComparator))} instead.
*
* @return an immutable {@code RandomAccess} list of the {@code k} greatest elements in
* <i>descending order</i>
* @throws IllegalArgumentException if {@code k} is negative
* @since 8.0
*/
public <E extends T> List<E> greatestOf(Iterable<E> iterable, int k) {
// TODO(kevinb): see if delegation is hurting performance noticeably
// TODO(kevinb): if we change this implementation, add full unit tests.
return reverse().leastOf(iterable, k);
}
/**
* Returns the {@code k} greatest elements from the given iterator according to this ordering, in
* order from greatest to least. If there are fewer than {@code k} elements present, all will be
* included.
*
* <p>The implementation does not necessarily use a <i>stable</i> sorting algorithm; when multiple
* elements are equivalent, it is undefined which will come first.
*
* <p><b>Java 8 users:</b> Use {@code Streams.stream(iterator).collect(Comparators.greatest(k,
* thisComparator))} instead.
*
* @return an immutable {@code RandomAccess} list of the {@code k} greatest elements in
* <i>descending order</i>
* @throws IllegalArgumentException if {@code k} is negative
* @since 14.0
*/
public <E extends T> List<E> greatestOf(Iterator<E> iterator, int k) {
return reverse().leastOf(iterator, k);
}
/**
* Returns a <b>mutable</b> list containing {@code elements} sorted by this ordering; use this
* only when the resulting list may need further modification, or may contain {@code null}. The
* input is not modified. The returned list is serializable and has random access.
*
* <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard elements that are
* duplicates according to the comparator. The sort performed is <i>stable</i>, meaning that such
* elements will appear in the returned list in the same order they appeared in {@code elements}.
*
* <p><b>Performance note:</b> According to our
* benchmarking
* on Open JDK 7, {@link #immutableSortedCopy} generally performs better (in both time and space)
* than this method, and this method in turn generally performs better than copying the list and
* calling {@link Collections#sort(List)}.
*/
// TODO(kevinb): rerun benchmarks including new options
public <E extends T> List<E> sortedCopy(Iterable<E> elements) {
@SuppressWarnings("unchecked") // does not escape, and contains only E's
E[] array = (E[]) Iterables.toArray(elements);
Arrays.sort(array, this);
return Lists.newArrayList(Arrays.asList(array));
}
/**
* Returns an <b>immutable</b> list containing {@code elements} sorted by this ordering. The input
* is not modified.
*
* <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard elements that are
* duplicates according to the comparator. The sort performed is <i>stable</i>, meaning that such
* elements will appear in the returned list in the same order they appeared in {@code elements}.
*
* <p><b>Performance note:</b> According to our
* benchmarking
* on Open JDK 7, this method is the most efficient way to make a sorted copy of a collection.
*
* @throws NullPointerException if any element of {@code elements} is {@code null}
* @since 3.0
*/
// TODO(kevinb): rerun benchmarks including new options
public <E extends T> ImmutableList<E> immutableSortedCopy(Iterable<E> elements) {
return ImmutableList.sortedCopyOf(this, elements);
}
/**
* Returns {@code true} if each element in {@code iterable} after the first is greater than or
* equal to the element that preceded it, according to this ordering. Note that this is always
* true when the iterable has fewer than two elements.
*
* <p><b>Java 8 users:</b> Use the equivalent {@link Comparators#isInOrder(Iterable, Comparator)}
* instead, since the rest of {@code Ordering} is mostly obsolete (as explained in the class
* documentation).
*/
public boolean isOrdered(Iterable<? extends T> iterable) {
Iterator<? extends T> it = iterable.iterator();
if (it.hasNext()) {
T prev = it.next();
while (it.hasNext()) {
T next = it.next();
if (compare(prev, next) > 0) {
return false;
}
prev = next;
}
}
return true;
}
/**
* Returns {@code true} if each element in {@code iterable} after the first is <i>strictly</i>
* greater than the element that preceded it, according to this ordering. Note that this is always
* true when the iterable has fewer than two elements.
*
* <p><b>Java 8 users:</b> Use the equivalent {@link Comparators#isInStrictOrder(Iterable,
* Comparator)} instead, since the rest of {@code Ordering} is mostly obsolete (as explained in
* the class documentation).
*/
public boolean isStrictlyOrdered(Iterable<? extends T> iterable) {
Iterator<? extends T> it = iterable.iterator();
if (it.hasNext()) {
T prev = it.next();
while (it.hasNext()) {
T next = it.next();
if (compare(prev, next) >= 0) {
return false;
}
prev = next;
}
}
return true;
}
/**
* {@link Collections#binarySearch(List, Object, Comparator) Searches} {@code sortedList} for
* {@code key} using the binary search algorithm. The list must be sorted using this ordering.
*
* @param sortedList the list to be searched
* @param key the key to be searched for
* @deprecated Use {@link Collections#binarySearch(List, Object, Comparator)} directly.
*/
@Deprecated
public int binarySearch(List<? extends T> sortedList, @NullableDecl T key) {
return Collections.binarySearch(sortedList, key, this);
}
/**
* Exception thrown by a {@link Ordering#explicit(List)} or {@link Ordering#explicit(Object,
* Object[])} comparator when comparing a value outside the set of values it can compare.
* Extending {@link ClassCastException} may seem odd, but it is required.
*/
@VisibleForTesting
static class IncomparableValueException extends ClassCastException {
final Object value;
IncomparableValueException(Object value) {
super("Cannot compare value: " + value);
this.value = value;
}
private static final long serialVersionUID = 0;
}
// Never make these public
static final int LEFT_IS_GREATER = 1;
static final int RIGHT_IS_GREATER = -1;
}