blob: decb5f1b183d2a82948288727447dbeefd835681 [file] [log] [blame]
/*
* Copyright (C) 2011 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
* in compliance with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software distributed under the License
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
* or implied. See the License for the specific language governing permissions and limitations under
* the License.
*/
package com.google.common.util.concurrent;
import static com.google.common.base.Preconditions.checkNotNull;
import static java.util.Objects.requireNonNull;
import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.MoreObjects;
import com.google.common.base.Preconditions;
import com.google.common.collect.ImmutableSet;
import com.google.common.collect.Lists;
import com.google.common.collect.MapMaker;
import com.google.common.collect.Maps;
import com.google.common.collect.Sets;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import com.google.j2objc.annotations.Weak;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.EnumMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.annotation.CheckForNull;
/**
* The {@code CycleDetectingLockFactory} creates {@link ReentrantLock} instances and {@link
* ReentrantReadWriteLock} instances that detect potential deadlock by checking for cycles in lock
* acquisition order.
*
* <p>Potential deadlocks detected when calling the {@code lock()}, {@code lockInterruptibly()}, or
* {@code tryLock()} methods will result in the execution of the {@link Policy} specified when
* creating the factory. The currently available policies are:
*
* <ul>
* <li>DISABLED
* <li>WARN
* <li>THROW
* </ul>
*
* <p>The locks created by a factory instance will detect lock acquisition cycles with locks created
* by other {@code CycleDetectingLockFactory} instances (except those with {@code Policy.DISABLED}).
* A lock's behavior when a cycle is detected, however, is defined by the {@code Policy} of the
* factory that created it. This allows detection of cycles across components while delegating
* control over lock behavior to individual components.
*
* <p>Applications are encouraged to use a {@code CycleDetectingLockFactory} to create any locks for
* which external/unmanaged code is executed while the lock is held. (See caveats under
* <strong>Performance</strong>).
*
* <p><strong>Cycle Detection</strong>
*
* <p>Deadlocks can arise when locks are acquired in an order that forms a cycle. In a simple
* example involving two locks and two threads, deadlock occurs when one thread acquires Lock A, and
* then Lock B, while another thread acquires Lock B, and then Lock A:
*
* <pre>
* Thread1: acquire(LockA) --X acquire(LockB)
* Thread2: acquire(LockB) --X acquire(LockA)
* </pre>
*
* <p>Neither thread will progress because each is waiting for the other. In more complex
* applications, cycles can arise from interactions among more than 2 locks:
*
* <pre>
* Thread1: acquire(LockA) --X acquire(LockB)
* Thread2: acquire(LockB) --X acquire(LockC)
* ...
* ThreadN: acquire(LockN) --X acquire(LockA)
* </pre>
*
* <p>The implementation detects cycles by constructing a directed graph in which each lock
* represents a node and each edge represents an acquisition ordering between two locks.
*
* <ul>
* <li>Each lock adds (and removes) itself to/from a ThreadLocal Set of acquired locks when the
* Thread acquires its first hold (and releases its last remaining hold).
* <li>Before the lock is acquired, the lock is checked against the current set of acquired
* locks---to each of the acquired locks, an edge from the soon-to-be-acquired lock is either
* verified or created.
* <li>If a new edge needs to be created, the outgoing edges of the acquired locks are traversed
* to check for a cycle that reaches the lock to be acquired. If no cycle is detected, a new
* "safe" edge is created.
* <li>If a cycle is detected, an "unsafe" (cyclic) edge is created to represent a potential
* deadlock situation, and the appropriate Policy is executed.
* </ul>
*
* <p>Note that detection of potential deadlock does not necessarily indicate that deadlock will
* happen, as it is possible that higher level application logic prevents the cyclic lock
* acquisition from occurring. One example of a false positive is:
*
* <pre>
* LockA -&gt; LockB -&gt; LockC
* LockA -&gt; LockC -&gt; LockB
* </pre>
*
* <p><strong>ReadWriteLocks</strong>
*
* <p>While {@code ReadWriteLock} instances have different properties and can form cycles without
* potential deadlock, this class treats {@code ReadWriteLock} instances as equivalent to
* traditional exclusive locks. Although this increases the false positives that the locks detect
* (i.e. cycles that will not actually result in deadlock), it simplifies the algorithm and
* implementation considerably. The assumption is that a user of this factory wishes to eliminate
* any cyclic acquisition ordering.
*
* <p><strong>Explicit Lock Acquisition Ordering</strong>
*
* <p>The {@link CycleDetectingLockFactory.WithExplicitOrdering} class can be used to enforce an
* application-specific ordering in addition to performing general cycle detection.
*
* <p><strong>Garbage Collection</strong>
*
* <p>In order to allow proper garbage collection of unused locks, the edges of the lock graph are
* weak references.
*
* <p><strong>Performance</strong>
*
* <p>The extra bookkeeping done by cycle detecting locks comes at some cost to performance.
* Benchmarks (as of December 2011) show that:
*
* <ul>
* <li>for an unnested {@code lock()} and {@code unlock()}, a cycle detecting lock takes 38ns as
* opposed to the 24ns taken by a plain lock.
* <li>for nested locking, the cost increases with the depth of the nesting:
* <ul>
* <li>2 levels: average of 64ns per lock()/unlock()
* <li>3 levels: average of 77ns per lock()/unlock()
* <li>4 levels: average of 99ns per lock()/unlock()
* <li>5 levels: average of 103ns per lock()/unlock()
* <li>10 levels: average of 184ns per lock()/unlock()
* <li>20 levels: average of 393ns per lock()/unlock()
* </ul>
* </ul>
*
* <p>As such, the CycleDetectingLockFactory may not be suitable for performance-critical
* applications which involve tightly-looped or deeply-nested locking algorithms.
*
* @author Darick Tong
* @since 13.0
*/
@Beta
@CanIgnoreReturnValue // TODO(cpovirk): Consider being more strict.
@GwtIncompatible
@ElementTypesAreNonnullByDefault
public class CycleDetectingLockFactory {
/**
* Encapsulates the action to be taken when a potential deadlock is encountered. Clients can use
* one of the predefined {@link Policies} or specify a custom implementation. Implementations must
* be thread-safe.
*
* @since 13.0
*/
@Beta
public interface Policy {
/**
* Called when a potential deadlock is encountered. Implementations can throw the given {@code
* exception} and/or execute other desired logic.
*
* <p>Note that the method will be called even upon an invocation of {@code tryLock()}. Although
* {@code tryLock()} technically recovers from deadlock by eventually timing out, this behavior
* is chosen based on the assumption that it is the application's wish to prohibit any cyclical
* lock acquisitions.
*/
void handlePotentialDeadlock(PotentialDeadlockException exception);
}
/**
* Pre-defined {@link Policy} implementations.
*
* @since 13.0
*/
@Beta
public enum Policies implements Policy {
/**
* When potential deadlock is detected, this policy results in the throwing of the {@code
* PotentialDeadlockException} indicating the potential deadlock, which includes stack traces
* illustrating the cycle in lock acquisition order.
*/
THROW {
@Override
public void handlePotentialDeadlock(PotentialDeadlockException e) {
throw e;
}
},
/**
* When potential deadlock is detected, this policy results in the logging of a {@link
* Level#SEVERE} message indicating the potential deadlock, which includes stack traces
* illustrating the cycle in lock acquisition order.
*/
WARN {
@Override
public void handlePotentialDeadlock(PotentialDeadlockException e) {
logger.log(Level.SEVERE, "Detected potential deadlock", e);
}
},
/**
* Disables cycle detection. This option causes the factory to return unmodified lock
* implementations provided by the JDK, and is provided to allow applications to easily
* parameterize when cycle detection is enabled.
*
* <p>Note that locks created by a factory with this policy will <em>not</em> participate the
* cycle detection performed by locks created by other factories.
*/
DISABLED {
@Override
public void handlePotentialDeadlock(PotentialDeadlockException e) {}
};
}
/** Creates a new factory with the specified policy. */
public static CycleDetectingLockFactory newInstance(Policy policy) {
return new CycleDetectingLockFactory(policy);
}
/** Equivalent to {@code newReentrantLock(lockName, false)}. */
public ReentrantLock newReentrantLock(String lockName) {
return newReentrantLock(lockName, false);
}
/**
* Creates a {@link ReentrantLock} with the given fairness policy. The {@code lockName} is used in
* the warning or exception output to help identify the locks involved in the detected deadlock.
*/
public ReentrantLock newReentrantLock(String lockName, boolean fair) {
return policy == Policies.DISABLED
? new ReentrantLock(fair)
: new CycleDetectingReentrantLock(new LockGraphNode(lockName), fair);
}
/** Equivalent to {@code newReentrantReadWriteLock(lockName, false)}. */
public ReentrantReadWriteLock newReentrantReadWriteLock(String lockName) {
return newReentrantReadWriteLock(lockName, false);
}
/**
* Creates a {@link ReentrantReadWriteLock} with the given fairness policy. The {@code lockName}
* is used in the warning or exception output to help identify the locks involved in the detected
* deadlock.
*/
public ReentrantReadWriteLock newReentrantReadWriteLock(String lockName, boolean fair) {
return policy == Policies.DISABLED
? new ReentrantReadWriteLock(fair)
: new CycleDetectingReentrantReadWriteLock(new LockGraphNode(lockName), fair);
}
// A static mapping from an Enum type to its set of LockGraphNodes.
private static final ConcurrentMap<
Class<? extends Enum<?>>, Map<? extends Enum<?>, LockGraphNode>>
lockGraphNodesPerType = new MapMaker().weakKeys().makeMap();
/** Creates a {@code CycleDetectingLockFactory.WithExplicitOrdering<E>}. */
public static <E extends Enum<E>> WithExplicitOrdering<E> newInstanceWithExplicitOrdering(
Class<E> enumClass, Policy policy) {
// createNodes maps each enumClass to a Map with the corresponding enum key
// type.
checkNotNull(enumClass);
checkNotNull(policy);
@SuppressWarnings("unchecked")
Map<E, LockGraphNode> lockGraphNodes = (Map<E, LockGraphNode>) getOrCreateNodes(enumClass);
return new WithExplicitOrdering<>(policy, lockGraphNodes);
}
@SuppressWarnings("unchecked")
private static <E extends Enum<E>> Map<? extends E, LockGraphNode> getOrCreateNodes(
Class<E> clazz) {
Map<E, LockGraphNode> existing = (Map<E, LockGraphNode>) lockGraphNodesPerType.get(clazz);
if (existing != null) {
return existing;
}
Map<E, LockGraphNode> created = createNodes(clazz);
existing = (Map<E, LockGraphNode>) lockGraphNodesPerType.putIfAbsent(clazz, created);
return MoreObjects.firstNonNull(existing, created);
}
/**
* For a given Enum type, creates an immutable map from each of the Enum's values to a
* corresponding LockGraphNode, with the {@code allowedPriorLocks} and {@code
* disallowedPriorLocks} prepopulated with nodes according to the natural ordering of the
* associated Enum values.
*/
@VisibleForTesting
static <E extends Enum<E>> Map<E, LockGraphNode> createNodes(Class<E> clazz) {
EnumMap<E, LockGraphNode> map = Maps.newEnumMap(clazz);
E[] keys = clazz.getEnumConstants();
int numKeys = keys.length;
ArrayList<LockGraphNode> nodes = Lists.newArrayListWithCapacity(numKeys);
// Create a LockGraphNode for each enum value.
for (E key : keys) {
LockGraphNode node = new LockGraphNode(getLockName(key));
nodes.add(node);
map.put(key, node);
}
// Pre-populate all allowedPriorLocks with nodes of smaller ordinal.
for (int i = 1; i < numKeys; i++) {
nodes.get(i).checkAcquiredLocks(Policies.THROW, nodes.subList(0, i));
}
// Pre-populate all disallowedPriorLocks with nodes of larger ordinal.
for (int i = 0; i < numKeys - 1; i++) {
nodes.get(i).checkAcquiredLocks(Policies.DISABLED, nodes.subList(i + 1, numKeys));
}
return Collections.unmodifiableMap(map);
}
/**
* For the given Enum value {@code rank}, returns the value's {@code "EnumClass.name"}, which is
* used in exception and warning output.
*/
private static String getLockName(Enum<?> rank) {
return rank.getDeclaringClass().getSimpleName() + "." + rank.name();
}
/**
* A {@code CycleDetectingLockFactory.WithExplicitOrdering} provides the additional enforcement of
* an application-specified ordering of lock acquisitions. The application defines the allowed
* ordering with an {@code Enum} whose values each correspond to a lock type. The order in which
* the values are declared dictates the allowed order of lock acquisition. In other words, locks
* corresponding to smaller values of {@link Enum#ordinal()} should only be acquired before locks
* with larger ordinals. Example:
*
* <pre>{@code
* enum MyLockOrder {
* FIRST, SECOND, THIRD;
* }
*
* CycleDetectingLockFactory.WithExplicitOrdering<MyLockOrder> factory =
* CycleDetectingLockFactory.newInstanceWithExplicitOrdering(Policies.THROW);
*
* Lock lock1 = factory.newReentrantLock(MyLockOrder.FIRST);
* Lock lock2 = factory.newReentrantLock(MyLockOrder.SECOND);
* Lock lock3 = factory.newReentrantLock(MyLockOrder.THIRD);
*
* lock1.lock();
* lock3.lock();
* lock2.lock(); // will throw an IllegalStateException
* }</pre>
*
* <p>As with all locks created by instances of {@code CycleDetectingLockFactory} explicitly
* ordered locks participate in general cycle detection with all other cycle detecting locks, and
* a lock's behavior when detecting a cyclic lock acquisition is defined by the {@code Policy} of
* the factory that created it.
*
* <p>Note, however, that although multiple locks can be created for a given Enum value, whether
* it be through separate factory instances or through multiple calls to the same factory,
* attempting to acquire multiple locks with the same Enum value (within the same thread) will
* result in an IllegalStateException regardless of the factory's policy. For example:
*
* <pre>{@code
* CycleDetectingLockFactory.WithExplicitOrdering<MyLockOrder> factory1 =
* CycleDetectingLockFactory.newInstanceWithExplicitOrdering(...);
* CycleDetectingLockFactory.WithExplicitOrdering<MyLockOrder> factory2 =
* CycleDetectingLockFactory.newInstanceWithExplicitOrdering(...);
*
* Lock lockA = factory1.newReentrantLock(MyLockOrder.FIRST);
* Lock lockB = factory1.newReentrantLock(MyLockOrder.FIRST);
* Lock lockC = factory2.newReentrantLock(MyLockOrder.FIRST);
*
* lockA.lock();
*
* lockB.lock(); // will throw an IllegalStateException
* lockC.lock(); // will throw an IllegalStateException
*
* lockA.lock(); // reentrant acquisition is okay
* }</pre>
*
* <p>It is the responsibility of the application to ensure that multiple lock instances with the
* same rank are never acquired in the same thread.
*
* @param <E> The Enum type representing the explicit lock ordering.
* @since 13.0
*/
@Beta
public static final class WithExplicitOrdering<E extends Enum<E>>
extends CycleDetectingLockFactory {
private final Map<E, LockGraphNode> lockGraphNodes;
@VisibleForTesting
WithExplicitOrdering(Policy policy, Map<E, LockGraphNode> lockGraphNodes) {
super(policy);
this.lockGraphNodes = lockGraphNodes;
}
/** Equivalent to {@code newReentrantLock(rank, false)}. */
public ReentrantLock newReentrantLock(E rank) {
return newReentrantLock(rank, false);
}
/**
* Creates a {@link ReentrantLock} with the given fairness policy and rank. The values returned
* by {@link Enum#getDeclaringClass()} and {@link Enum#name()} are used to describe the lock in
* warning or exception output.
*
* @throws IllegalStateException If the factory has already created a {@code Lock} with the
* specified rank.
*/
public ReentrantLock newReentrantLock(E rank, boolean fair) {
return policy == Policies.DISABLED
? new ReentrantLock(fair)
// requireNonNull is safe because createNodes inserts an entry for every E.
// (If the caller passes `null` for the `rank` parameter, this will throw, but that's OK.)
: new CycleDetectingReentrantLock(requireNonNull(lockGraphNodes.get(rank)), fair);
}
/** Equivalent to {@code newReentrantReadWriteLock(rank, false)}. */
public ReentrantReadWriteLock newReentrantReadWriteLock(E rank) {
return newReentrantReadWriteLock(rank, false);
}
/**
* Creates a {@link ReentrantReadWriteLock} with the given fairness policy and rank. The values
* returned by {@link Enum#getDeclaringClass()} and {@link Enum#name()} are used to describe the
* lock in warning or exception output.
*
* @throws IllegalStateException If the factory has already created a {@code Lock} with the
* specified rank.
*/
public ReentrantReadWriteLock newReentrantReadWriteLock(E rank, boolean fair) {
return policy == Policies.DISABLED
? new ReentrantReadWriteLock(fair)
// requireNonNull is safe because createNodes inserts an entry for every E.
// (If the caller passes `null` for the `rank` parameter, this will throw, but that's OK.)
: new CycleDetectingReentrantReadWriteLock(
requireNonNull(lockGraphNodes.get(rank)), fair);
}
}
//////// Implementation /////////
private static final Logger logger = Logger.getLogger(CycleDetectingLockFactory.class.getName());
final Policy policy;
private CycleDetectingLockFactory(Policy policy) {
this.policy = checkNotNull(policy);
}
/**
* Tracks the currently acquired locks for each Thread, kept up to date by calls to {@link
* #aboutToAcquire(CycleDetectingLock)} and {@link #lockStateChanged(CycleDetectingLock)}.
*/
// This is logically a Set, but an ArrayList is used to minimize the amount
// of allocation done on lock()/unlock().
private static final ThreadLocal<ArrayList<LockGraphNode>> acquiredLocks =
new ThreadLocal<ArrayList<LockGraphNode>>() {
@Override
protected ArrayList<LockGraphNode> initialValue() {
return Lists.<LockGraphNode>newArrayListWithCapacity(3);
}
};
/**
* A Throwable used to record a stack trace that illustrates an example of a specific lock
* acquisition ordering. The top of the stack trace is truncated such that it starts with the
* acquisition of the lock in question, e.g.
*
* <pre>
* com...ExampleStackTrace: LockB -&gt; LockC
* at com...CycleDetectingReentrantLock.lock(CycleDetectingLockFactory.java:443)
* at ...
* at ...
* at com...MyClass.someMethodThatAcquiresLockB(MyClass.java:123)
* </pre>
*/
private static class ExampleStackTrace extends IllegalStateException {
static final StackTraceElement[] EMPTY_STACK_TRACE = new StackTraceElement[0];
static final ImmutableSet<String> EXCLUDED_CLASS_NAMES =
ImmutableSet.of(
CycleDetectingLockFactory.class.getName(),
ExampleStackTrace.class.getName(),
LockGraphNode.class.getName());
ExampleStackTrace(LockGraphNode node1, LockGraphNode node2) {
super(node1.getLockName() + " -> " + node2.getLockName());
StackTraceElement[] origStackTrace = getStackTrace();
for (int i = 0, n = origStackTrace.length; i < n; i++) {
if (WithExplicitOrdering.class.getName().equals(origStackTrace[i].getClassName())) {
// For pre-populated disallowedPriorLocks edges, omit the stack trace.
setStackTrace(EMPTY_STACK_TRACE);
break;
}
if (!EXCLUDED_CLASS_NAMES.contains(origStackTrace[i].getClassName())) {
setStackTrace(Arrays.copyOfRange(origStackTrace, i, n));
break;
}
}
}
}
/**
* Represents a detected cycle in lock acquisition ordering. The exception includes a causal chain
* of {@code ExampleStackTrace} instances to illustrate the cycle, e.g.
*
* <pre>
* com....PotentialDeadlockException: Potential Deadlock from LockC -&gt; ReadWriteA
* at ...
* at ...
* Caused by: com...ExampleStackTrace: LockB -&gt; LockC
* at ...
* at ...
* Caused by: com...ExampleStackTrace: ReadWriteA -&gt; LockB
* at ...
* at ...
* </pre>
*
* <p>Instances are logged for the {@code Policies.WARN}, and thrown for {@code Policies.THROW}.
*
* @since 13.0
*/
@Beta
public static final class PotentialDeadlockException extends ExampleStackTrace {
private final ExampleStackTrace conflictingStackTrace;
private PotentialDeadlockException(
LockGraphNode node1, LockGraphNode node2, ExampleStackTrace conflictingStackTrace) {
super(node1, node2);
this.conflictingStackTrace = conflictingStackTrace;
initCause(conflictingStackTrace);
}
public ExampleStackTrace getConflictingStackTrace() {
return conflictingStackTrace;
}
/**
* Appends the chain of messages from the {@code conflictingStackTrace} to the original {@code
* message}.
*/
@Override
public String getMessage() {
// requireNonNull is safe because ExampleStackTrace sets a non-null message.
StringBuilder message = new StringBuilder(requireNonNull(super.getMessage()));
for (Throwable t = conflictingStackTrace; t != null; t = t.getCause()) {
message.append(", ").append(t.getMessage());
}
return message.toString();
}
}
/**
* Internal Lock implementations implement the {@code CycleDetectingLock} interface, allowing the
* detection logic to treat all locks in the same manner.
*/
private interface CycleDetectingLock {
/** @return the {@link LockGraphNode} associated with this lock. */
LockGraphNode getLockGraphNode();
/** @return {@code true} if the current thread has acquired this lock. */
boolean isAcquiredByCurrentThread();
}
/**
* A {@code LockGraphNode} associated with each lock instance keeps track of the directed edges in
* the lock acquisition graph.
*/
private static class LockGraphNode {
/**
* The map tracking the locks that are known to be acquired before this lock, each associated
* with an example stack trace. Locks are weakly keyed to allow proper garbage collection when
* they are no longer referenced.
*/
final Map<LockGraphNode, ExampleStackTrace> allowedPriorLocks =
new MapMaker().weakKeys().makeMap();
/**
* The map tracking lock nodes that can cause a lock acquisition cycle if acquired before this
* node.
*/
final Map<LockGraphNode, PotentialDeadlockException> disallowedPriorLocks =
new MapMaker().weakKeys().makeMap();
final String lockName;
LockGraphNode(String lockName) {
this.lockName = Preconditions.checkNotNull(lockName);
}
String getLockName() {
return lockName;
}
void checkAcquiredLocks(Policy policy, List<LockGraphNode> acquiredLocks) {
for (LockGraphNode acquiredLock : acquiredLocks) {
checkAcquiredLock(policy, acquiredLock);
}
}
/**
* Checks the acquisition-ordering between {@code this}, which is about to be acquired, and the
* specified {@code acquiredLock}.
*
* <p>When this method returns, the {@code acquiredLock} should be in either the {@code
* preAcquireLocks} map, for the case in which it is safe to acquire {@code this} after the
* {@code acquiredLock}, or in the {@code disallowedPriorLocks} map, in which case it is not
* safe.
*/
void checkAcquiredLock(Policy policy, LockGraphNode acquiredLock) {
// checkAcquiredLock() should never be invoked by a lock that has already
// been acquired. For unordered locks, aboutToAcquire() ensures this by
// checking isAcquiredByCurrentThread(). For ordered locks, however, this
// can happen because multiple locks may share the same LockGraphNode. In
// this situation, throw an IllegalStateException as defined by contract
// described in the documentation of WithExplicitOrdering.
Preconditions.checkState(
this != acquiredLock,
"Attempted to acquire multiple locks with the same rank %s",
acquiredLock.getLockName());
if (allowedPriorLocks.containsKey(acquiredLock)) {
// The acquisition ordering from "acquiredLock" to "this" has already
// been verified as safe. In a properly written application, this is
// the common case.
return;
}
PotentialDeadlockException previousDeadlockException = disallowedPriorLocks.get(acquiredLock);
if (previousDeadlockException != null) {
// Previously determined to be an unsafe lock acquisition.
// Create a new PotentialDeadlockException with the same causal chain
// (the example cycle) as that of the cached exception.
PotentialDeadlockException exception =
new PotentialDeadlockException(
acquiredLock, this, previousDeadlockException.getConflictingStackTrace());
policy.handlePotentialDeadlock(exception);
return;
}
// Otherwise, it's the first time seeing this lock relationship. Look for
// a path from the acquiredLock to this.
Set<LockGraphNode> seen = Sets.newIdentityHashSet();
ExampleStackTrace path = acquiredLock.findPathTo(this, seen);
if (path == null) {
// this can be safely acquired after the acquiredLock.
//
// Note that there is a race condition here which can result in missing
// a cyclic edge: it's possible for two threads to simultaneous find
// "safe" edges which together form a cycle. Preventing this race
// condition efficiently without _introducing_ deadlock is probably
// tricky. For now, just accept the race condition---missing a warning
// now and then is still better than having no deadlock detection.
allowedPriorLocks.put(acquiredLock, new ExampleStackTrace(acquiredLock, this));
} else {
// Unsafe acquisition order detected. Create and cache a
// PotentialDeadlockException.
PotentialDeadlockException exception =
new PotentialDeadlockException(acquiredLock, this, path);
disallowedPriorLocks.put(acquiredLock, exception);
policy.handlePotentialDeadlock(exception);
}
}
/**
* Performs a depth-first traversal of the graph edges defined by each node's {@code
* allowedPriorLocks} to find a path between {@code this} and the specified {@code lock}.
*
* @return If a path was found, a chained {@link ExampleStackTrace} illustrating the path to the
* {@code lock}, or {@code null} if no path was found.
*/
@CheckForNull
private ExampleStackTrace findPathTo(LockGraphNode node, Set<LockGraphNode> seen) {
if (!seen.add(this)) {
return null; // Already traversed this node.
}
ExampleStackTrace found = allowedPriorLocks.get(node);
if (found != null) {
return found; // Found a path ending at the node!
}
// Recurse the edges.
for (Entry<LockGraphNode, ExampleStackTrace> entry : allowedPriorLocks.entrySet()) {
LockGraphNode preAcquiredLock = entry.getKey();
found = preAcquiredLock.findPathTo(node, seen);
if (found != null) {
// One of this node's allowedPriorLocks found a path. Prepend an
// ExampleStackTrace(preAcquiredLock, this) to the returned chain of
// ExampleStackTraces.
ExampleStackTrace path = new ExampleStackTrace(preAcquiredLock, this);
path.setStackTrace(entry.getValue().getStackTrace());
path.initCause(found);
return path;
}
}
return null;
}
}
/**
* CycleDetectingLock implementations must call this method before attempting to acquire the lock.
*/
private void aboutToAcquire(CycleDetectingLock lock) {
if (!lock.isAcquiredByCurrentThread()) {
ArrayList<LockGraphNode> acquiredLockList = acquiredLocks.get();
LockGraphNode node = lock.getLockGraphNode();
node.checkAcquiredLocks(policy, acquiredLockList);
acquiredLockList.add(node);
}
}
/**
* CycleDetectingLock implementations must call this method in a {@code finally} clause after any
* attempt to change the lock state, including both lock and unlock attempts. Failure to do so can
* result in corrupting the acquireLocks set.
*/
private static void lockStateChanged(CycleDetectingLock lock) {
if (!lock.isAcquiredByCurrentThread()) {
ArrayList<LockGraphNode> acquiredLockList = acquiredLocks.get();
LockGraphNode node = lock.getLockGraphNode();
// Iterate in reverse because locks are usually locked/unlocked in a
// LIFO order.
for (int i = acquiredLockList.size() - 1; i >= 0; i--) {
if (acquiredLockList.get(i) == node) {
acquiredLockList.remove(i);
break;
}
}
}
}
final class CycleDetectingReentrantLock extends ReentrantLock implements CycleDetectingLock {
private final LockGraphNode lockGraphNode;
private CycleDetectingReentrantLock(LockGraphNode lockGraphNode, boolean fair) {
super(fair);
this.lockGraphNode = Preconditions.checkNotNull(lockGraphNode);
}
///// CycleDetectingLock methods. /////
@Override
public LockGraphNode getLockGraphNode() {
return lockGraphNode;
}
@Override
public boolean isAcquiredByCurrentThread() {
return isHeldByCurrentThread();
}
///// Overridden ReentrantLock methods. /////
@Override
public void lock() {
aboutToAcquire(this);
try {
super.lock();
} finally {
lockStateChanged(this);
}
}
@Override
public void lockInterruptibly() throws InterruptedException {
aboutToAcquire(this);
try {
super.lockInterruptibly();
} finally {
lockStateChanged(this);
}
}
@Override
public boolean tryLock() {
aboutToAcquire(this);
try {
return super.tryLock();
} finally {
lockStateChanged(this);
}
}
@Override
public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException {
aboutToAcquire(this);
try {
return super.tryLock(timeout, unit);
} finally {
lockStateChanged(this);
}
}
@Override
public void unlock() {
try {
super.unlock();
} finally {
lockStateChanged(this);
}
}
}
final class CycleDetectingReentrantReadWriteLock extends ReentrantReadWriteLock
implements CycleDetectingLock {
// These ReadLock/WriteLock implementations shadow those in the
// ReentrantReadWriteLock superclass. They are simply wrappers around the
// internal Sync object, so this is safe since the shadowed locks are never
// exposed or used.
private final CycleDetectingReentrantReadLock readLock;
private final CycleDetectingReentrantWriteLock writeLock;
private final LockGraphNode lockGraphNode;
private CycleDetectingReentrantReadWriteLock(LockGraphNode lockGraphNode, boolean fair) {
super(fair);
this.readLock = new CycleDetectingReentrantReadLock(this);
this.writeLock = new CycleDetectingReentrantWriteLock(this);
this.lockGraphNode = Preconditions.checkNotNull(lockGraphNode);
}
///// Overridden ReentrantReadWriteLock methods. /////
@Override
public ReadLock readLock() {
return readLock;
}
@Override
public WriteLock writeLock() {
return writeLock;
}
///// CycleDetectingLock methods. /////
@Override
public LockGraphNode getLockGraphNode() {
return lockGraphNode;
}
@Override
public boolean isAcquiredByCurrentThread() {
return isWriteLockedByCurrentThread() || getReadHoldCount() > 0;
}
}
private class CycleDetectingReentrantReadLock extends ReentrantReadWriteLock.ReadLock {
@Weak final CycleDetectingReentrantReadWriteLock readWriteLock;
CycleDetectingReentrantReadLock(CycleDetectingReentrantReadWriteLock readWriteLock) {
super(readWriteLock);
this.readWriteLock = readWriteLock;
}
@Override
public void lock() {
aboutToAcquire(readWriteLock);
try {
super.lock();
} finally {
lockStateChanged(readWriteLock);
}
}
@Override
public void lockInterruptibly() throws InterruptedException {
aboutToAcquire(readWriteLock);
try {
super.lockInterruptibly();
} finally {
lockStateChanged(readWriteLock);
}
}
@Override
public boolean tryLock() {
aboutToAcquire(readWriteLock);
try {
return super.tryLock();
} finally {
lockStateChanged(readWriteLock);
}
}
@Override
public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException {
aboutToAcquire(readWriteLock);
try {
return super.tryLock(timeout, unit);
} finally {
lockStateChanged(readWriteLock);
}
}
@Override
public void unlock() {
try {
super.unlock();
} finally {
lockStateChanged(readWriteLock);
}
}
}
private class CycleDetectingReentrantWriteLock extends ReentrantReadWriteLock.WriteLock {
@Weak final CycleDetectingReentrantReadWriteLock readWriteLock;
CycleDetectingReentrantWriteLock(CycleDetectingReentrantReadWriteLock readWriteLock) {
super(readWriteLock);
this.readWriteLock = readWriteLock;
}
@Override
public void lock() {
aboutToAcquire(readWriteLock);
try {
super.lock();
} finally {
lockStateChanged(readWriteLock);
}
}
@Override
public void lockInterruptibly() throws InterruptedException {
aboutToAcquire(readWriteLock);
try {
super.lockInterruptibly();
} finally {
lockStateChanged(readWriteLock);
}
}
@Override
public boolean tryLock() {
aboutToAcquire(readWriteLock);
try {
return super.tryLock();
} finally {
lockStateChanged(readWriteLock);
}
}
@Override
public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException {
aboutToAcquire(readWriteLock);
try {
return super.tryLock(timeout, unit);
} finally {
lockStateChanged(readWriteLock);
}
}
@Override
public void unlock() {
try {
super.unlock();
} finally {
lockStateChanged(readWriteLock);
}
}
}
}