blob: a0c6e3e455fdf81b0d2a89f3e70bbaed93bd8079 [file] [log] [blame]
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* TMP006 temperature sensor module for Chrome EC */
#include "board.h"
#include "config.h"
#include "console.h"
#include "fpu.h"
#include "gpio.h"
#include "hooks.h"
#include "i2c.h"
#include "math.h"
#include "task.h"
#include "temp_sensor.h"
#include "tmp006.h"
#include "util.h"
/* Defined in board_temp_sensor.c. */
extern const struct tmp006_t tmp006_sensors[TMP006_COUNT];
struct tmp006_data_t {
/* Object voltage */
int v;
/* The last four die temperature value. Used as a circular buffer. */
int t[4];
/* The index of the current value in the dir temperature array. */
int tidx;
/* Fail bit: 1 if last read fail. 0 if ok. */
int fail;
};
static struct tmp006_data_t tmp006_data[TMP006_COUNT];
static int tmp006_read_die_temp(int idx)
{
int pidx = (tmp006_data[idx].tidx - 1) & 0x3;
if (tmp006_data[idx].fail == 1)
return -1;
return tmp006_data[idx].t[pidx] / 100;
}
/* Calculate the remote object temperature.
* Parameters:
* Tdie: Die temperature in 1/100 K.
* Vobj: Voltage read from register 0. In nV.
* S0: Sensitivity factor in 1e-17.
* Return:
* Object temperature in 1/100 K.
*/
static int tmp006_calculate_object_temp(int Tdie_i, int Vobj_i, int S0_i)
{
#ifdef CONFIG_FPU
float Tdie, Vobj, S0;
float Tx, S, Vos, Vx, fv, Tobj, T4;
int Tobj_i;
enable_fpu();
Tdie = (float)Tdie_i * 1e-2f;
Vobj = (float)Vobj_i * 1e-9f;
S0 = (float)S0_i * 1e-17f;
/* Calculate according to TMP006 users guide. */
Tx = Tdie - 298.15f;
/* S is the sensitivity */
S = S0 * (1.0f + 1.75e-3f * Tx - 1.678e-5f * Tx * Tx);
/* Vos is the offset voltage */
Vos = -2.94e-5f - 5.7e-7f * Tx + 4.63e-9f * Tx * Tx;
Vx = Vobj - Vos;
/* fv is Seebeck coefficient f(Vobj) */
fv = Vx + 13.4f * Vx * Vx;
T4 = Tdie * Tdie * Tdie * Tdie + fv / S;
Tobj = sqrtf(sqrtf(T4));
Tobj_i = (int32_t)(Tobj * 100.0f);
disable_fpu(Tobj_i);
return Tobj_i;
#else
/* This is the fixed-point version of object temperature calculation.
* Should be accurate but it is hard to prevent and debug
* overflow/underflow problem. Only use this version if there is no
* FPU support.
* Division is delayed when possible to preserve precision, but should
* not cause overflow.
* Assuming Tdie is between 200K and 400K, and S0 between 3e-14 and
* 9e-14, the maximum value during the calculation should be less than
* (1 << 30), which fits in int32_t.
*/
int32_t Tx, S19, Vos, Vx, fv9, ub, lb;
Tx = Tdie - 29815;
/* S19 is the sensitivity multipled by 1e19 */
S19 = S0 * (100000 + 175 * Tx / 100 -
1678 * Tx / 100 * Tx / 100000) / 1000;
/* Vos is the offset voltage in nV */
Vos = -29400 - 570 * Tx / 100 + 463 * Tx / 100 * Tx / 10000;
Vx = Vobj - Vos;
/* fv9 is Seebeck coefficient f(Vobj) multipled by 1e9 */
fv9 = Vx + 134 * Vx / 100000 * Vx / 100000;
/* The last step in the calculation involves square root, so we use
* binary search.
* Assuming the object temperature is between 200K and 400K, the search
* should take at most 14 iterations.
*/
ub = 40000;
lb = 20000;
while (lb != ub) {
int32_t t, rhs, lhs;
t = (ub + lb) / 2;
lhs = t / 100 * t / 10000 * t / 10000 * (S19/100) / 1000 * t;
rhs = Tdie / 100 * Tdie / 10000 * Tdie / 10000 * (S19/100) /
1000 * Tdie + fv9 * 1000;
if (lhs > rhs)
ub = t;
else
lb = t + 1;
}
return ub;
#endif /* CONFIG_FPU */
}
/* Temporal Correction
* Parameters:
* T1-T4: Four die temperature readings separated by 1s in 1/100K.
* v: Voltage read from register 0. In nV.
* Return:
* Corrected object voltage in 1/100K.
*/
static int tmp006_correct_object_voltage(int T1,
int T2,
int T3,
int T4,
int Vobj)
{
int Tslope = 3 * T1 + T2 - T3 - 3 * T4;
return Vobj + 296 * Tslope;
}
static int tmp006_read_object_temp(int idx)
{
int pidx = (tmp006_data[idx].tidx - 1) & 0x3;
int t = tmp006_data[idx].t[pidx];
int v = tmp006_data[idx].v;
if (tmp006_data[idx].fail)
return -1;
v = tmp006_correct_object_voltage(
t,
tmp006_data[idx].t[(pidx + 3) & 3],
tmp006_data[idx].t[(pidx + 2) & 3],
tmp006_data[idx].t[(pidx + 1) & 3],
v);
/* TODO: Calibrate the sensitivity factor. */
return tmp006_calculate_object_temp(t, v,
tmp006_sensors[idx].sens) / 100;
}
static int tmp006_poll_sensor(int sensor_id)
{
int traw, t;
int vraw, v;
int rv;
int addr = tmp006_sensors[sensor_id].addr;
int idx;
/* TODO: For now, all TMP006 sensors are powered by VS. Modify this
* if we have different design.
*/
if (gpio_get_level(GPIO_PGOOD_1_8VS) == 0) {
tmp006_data[sensor_id].fail = 1;
return EC_ERROR_UNKNOWN;
}
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x01, &traw);
if (rv) {
tmp006_data[sensor_id].fail = 1;
return EC_ERROR_UNKNOWN;
}
t = ((int)(int16_t)traw * 100) / 128 + 27300;
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x00, &vraw);
if (rv) {
tmp006_data[sensor_id].fail = 1;
return EC_ERROR_UNKNOWN;
}
v = ((int)(int16_t)vraw * 15625) / 100;
idx = tmp006_data[sensor_id].tidx;
tmp006_data[sensor_id].t[idx] = t;
tmp006_data[sensor_id].v = v;
tmp006_data[sensor_id].tidx = (idx + 1) & 3;
tmp006_data[sensor_id].fail = 0;
return EC_SUCCESS;
}
/* Print temperature info for a sensor; used by console command. */
static int tmp006_print(int idx)
{
int vraw, v;
int traw, t;
int rv;
int d;
int addr = tmp006_sensors[idx].addr;
ccprintf("Debug data from %s:\n", tmp006_sensors[idx].name);
/* TODO: For now, all TMP006 sensors are powered by VS. Modify this
* if we have different design.
*/
if (gpio_get_level(GPIO_PGOOD_1_8VS) == 0) {
ccputs("Sensor powered off.\n");
return EC_ERROR_UNKNOWN;
}
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0xfe, &d);
if (rv)
return rv;
ccprintf(" Manufacturer ID: 0x%04x\n", d);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0xff, &d);
ccprintf(" Device ID: 0x%04x\n", d);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x02, &d);
ccprintf(" Config: 0x%04x\n", d);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x00, &vraw);
v = ((int)(int16_t)vraw * 15625) / 100;
ccprintf(" Voltage: 0x%04x = %d nV\n", vraw, v);
rv = i2c_read16(TMP006_PORT(addr), TMP006_REG(addr), 0x01, &traw);
t = ((int)(int16_t)traw * 100) / 128;
ccprintf(" Temperature: 0x%04x = %d.%02d C\n",
traw, t / 100, t > 0 ? t % 100 : 100 - (t % 100));
return EC_SUCCESS;
}
int tmp006_get_val(int idx)
{
/* Check the low bit to determine which temperature to read. */
if ((idx & 0x1) == 0)
return tmp006_read_die_temp(idx >> 1);
else
return tmp006_read_object_temp(idx >> 1);
}
int tmp006_poll(void)
{
int i;
int rv;
int rv1 = EC_SUCCESS;
for (i = 0; i < TMP006_COUNT; ++i) {
rv = tmp006_poll_sensor(i);
if (rv != EC_SUCCESS)
rv1 = rv;
}
return rv1;
}
static int tmp006_init(void)
{
int i, j;
/*
* Set temperature value to 27 C and we will update it later when
* polled by temperature sensor module.
*/
for (i = 0; i < TMP006_COUNT; ++i) {
for (j = 0; j < 4; ++j)
tmp006_data[i].t[j] = 30000; /* 27 C */
tmp006_data[i].tidx = 0;
/* TODO(victoryang): Default value for V? */
}
return EC_SUCCESS;
}
DECLARE_HOOK(HOOK_INIT, tmp006_init, HOOK_PRIO_DEFAULT);
/*****************************************************************************/
/* Console commands */
static int command_sensor_info(int argc, char **argv)
{
int i;
int rv, rv1;
rv1 = EC_SUCCESS;
for (i = 0; i < TMP006_COUNT; ++i) {
rv = tmp006_print(i);
if (rv != EC_SUCCESS)
rv1 = rv;
cflush();
}
return rv1;
}
DECLARE_CONSOLE_COMMAND(tmp006, command_sensor_info,
NULL,
"Print TMP006 sensors",
NULL);