blob: 20d9ebe04e1c0031564aa62f32b3a2ddff8cf278 [file] [log] [blame]
//
//
// Copyright 2015 gRPC authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
#ifndef GRPC_SRC_CORE_LIB_IOMGR_EXEC_CTX_H
#define GRPC_SRC_CORE_LIB_IOMGR_EXEC_CTX_H
#include <grpc/support/port_platform.h>
#include <limits>
#include <grpc/impl/grpc_types.h>
#include <grpc/support/atm.h>
#include <grpc/support/cpu.h>
#include <grpc/support/log.h>
#include <grpc/support/time.h>
#include "src/core/lib/gpr/time_precise.h"
#include "src/core/lib/gprpp/crash.h"
#include "src/core/lib/gprpp/debug_location.h"
#include "src/core/lib/gprpp/fork.h"
#include "src/core/lib/gprpp/time.h"
#include "src/core/lib/iomgr/closure.h"
/// A combiner represents a list of work to be executed later.
/// Forward declared here to avoid a circular dependency with combiner.h.
typedef struct grpc_combiner grpc_combiner;
// This exec_ctx is ready to return: either pre-populated, or cached as soon as
// the finish_check returns true
#define GRPC_EXEC_CTX_FLAG_IS_FINISHED 1
// The exec_ctx's thread is (potentially) owned by a call or channel: care
// should be given to not delete said call/channel from this exec_ctx
#define GRPC_EXEC_CTX_FLAG_THREAD_RESOURCE_LOOP 2
// This exec ctx was initialized by an internal thread, and should not
// be counted by fork handlers
#define GRPC_EXEC_CTX_FLAG_IS_INTERNAL_THREAD 4
// This application callback exec ctx was initialized by an internal thread, and
// should not be counted by fork handlers
#define GRPC_APP_CALLBACK_EXEC_CTX_FLAG_IS_INTERNAL_THREAD 1
namespace grpc_core {
class Combiner;
/// Execution context.
/// A bag of data that collects information along a callstack.
/// It is created on the stack at core entry points (public API or iomgr), and
/// stored internally as a thread-local variable.
///
/// Generally, to create an exec_ctx instance, add the following line at the top
/// of the public API entry point or at the start of a thread's work function :
///
/// ExecCtx exec_ctx;
///
/// Access the created ExecCtx instance using :
/// ExecCtx::Get()
///
/// Specific responsibilities (this may grow in the future):
/// - track a list of core work that needs to be delayed until the base of the
/// call stack (this provides a convenient mechanism to run callbacks
/// without worrying about locking issues)
/// - provide a decision maker (via IsReadyToFinish) that provides a
/// signal as to whether a borrowed thread should continue to do work or
/// should actively try to finish up and get this thread back to its owner
///
/// CONVENTIONS:
/// - Instance of this must ALWAYS be constructed on the stack, never
/// heap allocated.
/// - Do not pass exec_ctx as a parameter to a function. Always access it using
/// ExecCtx::Get().
/// - NOTE: In the future, the convention is likely to change to allow only one
/// ExecCtx on a thread's stack at the same time. The TODO below
/// discusses this plan in more detail.
///
/// TODO(yashykt): Only allow one "active" ExecCtx on a thread at the same time.
/// Stage 1: If a new one is created on the stack, it should just
/// pass-through to the underlying ExecCtx deeper in the thread's
/// stack.
/// Stage 2: Assert if a 2nd one is ever created on the stack
/// since that implies a core re-entry outside of application
/// callbacks.
///
class ExecCtx {
public:
/// Default Constructor
ExecCtx() : flags_(GRPC_EXEC_CTX_FLAG_IS_FINISHED) {
Fork::IncExecCtxCount();
Set(this);
}
/// Parameterised Constructor
explicit ExecCtx(uintptr_t fl) : flags_(fl) {
if (!(GRPC_EXEC_CTX_FLAG_IS_INTERNAL_THREAD & flags_)) {
Fork::IncExecCtxCount();
}
Set(this);
}
/// Destructor
virtual ~ExecCtx() {
flags_ |= GRPC_EXEC_CTX_FLAG_IS_FINISHED;
Flush();
Set(last_exec_ctx_);
if (!(GRPC_EXEC_CTX_FLAG_IS_INTERNAL_THREAD & flags_)) {
Fork::DecExecCtxCount();
}
}
/// Disallow copy and assignment operators
ExecCtx(const ExecCtx&) = delete;
ExecCtx& operator=(const ExecCtx&) = delete;
unsigned starting_cpu() {
if (starting_cpu_ == std::numeric_limits<unsigned>::max()) {
starting_cpu_ = gpr_cpu_current_cpu();
}
return starting_cpu_;
}
struct CombinerData {
// currently active combiner: updated only via combiner.c
Combiner* active_combiner;
// last active combiner in the active combiner list
Combiner* last_combiner;
};
/// Only to be used by grpc-combiner code
CombinerData* combiner_data() { return &combiner_data_; }
/// Return pointer to grpc_closure_list
grpc_closure_list* closure_list() { return &closure_list_; }
/// Return flags
uintptr_t flags() { return flags_; }
/// Checks if there is work to be done
bool HasWork() {
return combiner_data_.active_combiner != nullptr ||
!grpc_closure_list_empty(closure_list_);
}
/// Flush any work that has been enqueued onto this grpc_exec_ctx.
/// Caller must guarantee that no interfering locks are held.
/// Returns true if work was performed, false otherwise.
///
bool Flush();
/// Returns true if we'd like to leave this execution context as soon as
/// possible: useful for deciding whether to do something more or not
/// depending on outside context.
///
bool IsReadyToFinish() {
if ((flags_ & GRPC_EXEC_CTX_FLAG_IS_FINISHED) == 0) {
if (CheckReadyToFinish()) {
flags_ |= GRPC_EXEC_CTX_FLAG_IS_FINISHED;
return true;
}
return false;
} else {
return true;
}
}
Timestamp Now() { return Timestamp::Now(); }
void InvalidateNow() { time_cache_.InvalidateCache(); }
void SetNowIomgrShutdown() {
// We get to do a test only set now on this path just because iomgr
// is getting removed and no point adding more interfaces for it.
time_cache_.TestOnlySetNow(Timestamp::InfFuture());
}
void TestOnlySetNow(Timestamp now) { time_cache_.TestOnlySetNow(now); }
/// Gets pointer to current exec_ctx.
static ExecCtx* Get() { return exec_ctx_; }
static void Run(const DebugLocation& location, grpc_closure* closure,
grpc_error_handle error);
static void RunList(const DebugLocation& location, grpc_closure_list* list);
protected:
/// Check if ready to finish.
virtual bool CheckReadyToFinish() { return false; }
/// Disallow delete on ExecCtx.
static void operator delete(void* /* p */) { abort(); }
private:
/// Set exec_ctx_ to exec_ctx.
static void Set(ExecCtx* exec_ctx) { exec_ctx_ = exec_ctx; }
grpc_closure_list closure_list_ = GRPC_CLOSURE_LIST_INIT;
CombinerData combiner_data_ = {nullptr, nullptr};
uintptr_t flags_;
unsigned starting_cpu_ = std::numeric_limits<unsigned>::max();
ScopedTimeCache time_cache_;
static thread_local ExecCtx* exec_ctx_;
ExecCtx* last_exec_ctx_ = Get();
};
/// Application-callback execution context.
/// A bag of data that collects information along a callstack.
/// It is created on the stack at core entry points, and stored internally
/// as a thread-local variable.
///
/// There are three key differences between this structure and ExecCtx:
/// 1. ApplicationCallbackExecCtx builds a list of application-level
/// callbacks, but ExecCtx builds a list of internal callbacks to invoke.
/// 2. ApplicationCallbackExecCtx invokes its callbacks only at destruction;
/// there is no explicit Flush method.
/// 3. If more than one ApplicationCallbackExecCtx is created on the thread's
/// stack, only the one closest to the base of the stack is actually
/// active and this is the only one that enqueues application callbacks.
/// (Unlike ExecCtx, it is not feasible to prevent multiple of these on the
/// stack since the executing application callback may itself enter core.
/// However, the new one created will just pass callbacks through to the
/// base one and those will not be executed until the return to the
/// destructor of the base one, preventing unlimited stack growth.)
///
/// This structure exists because application callbacks may themselves cause a
/// core re-entry (e.g., through a public API call) and if that call in turn
/// causes another application-callback, there could be arbitrarily growing
/// stacks of core re-entries. Instead, any application callbacks instead should
/// not be invoked until other core work is done and other application callbacks
/// have completed. To accomplish this, any application callback should be
/// enqueued using ApplicationCallbackExecCtx::Enqueue .
///
/// CONVENTIONS:
/// - Instances of this must ALWAYS be constructed on the stack, never
/// heap allocated.
/// - Instances of this are generally constructed before ExecCtx when needed.
/// The only exception is for ExecCtx's that are explicitly flushed and
/// that survive beyond the scope of the function that can cause application
/// callbacks to be invoked (e.g., in the timer thread).
///
/// Generally, core entry points that may trigger application-level callbacks
/// will have the following declarations:
///
/// ApplicationCallbackExecCtx callback_exec_ctx;
/// ExecCtx exec_ctx;
///
/// This ordering is important to make sure that the ApplicationCallbackExecCtx
/// is destroyed after the ExecCtx (to prevent the re-entry problem described
/// above, as well as making sure that ExecCtx core callbacks are invoked first)
///
///
class ApplicationCallbackExecCtx {
public:
/// Default Constructor
ApplicationCallbackExecCtx() { Set(this, flags_); }
/// Parameterised Constructor
explicit ApplicationCallbackExecCtx(uintptr_t fl) : flags_(fl) {
Set(this, flags_);
}
~ApplicationCallbackExecCtx() {
if (Get() == this) {
while (head_ != nullptr) {
auto* f = head_;
head_ = f->internal_next;
if (f->internal_next == nullptr) {
tail_ = nullptr;
}
(*f->functor_run)(f, f->internal_success);
}
callback_exec_ctx_ = nullptr;
if (!(GRPC_APP_CALLBACK_EXEC_CTX_FLAG_IS_INTERNAL_THREAD & flags_)) {
Fork::DecExecCtxCount();
}
} else {
GPR_DEBUG_ASSERT(head_ == nullptr);
GPR_DEBUG_ASSERT(tail_ == nullptr);
}
}
uintptr_t Flags() { return flags_; }
static ApplicationCallbackExecCtx* Get() { return callback_exec_ctx_; }
static void Set(ApplicationCallbackExecCtx* exec_ctx, uintptr_t flags) {
if (Get() == nullptr) {
if (!(GRPC_APP_CALLBACK_EXEC_CTX_FLAG_IS_INTERNAL_THREAD & flags)) {
Fork::IncExecCtxCount();
}
callback_exec_ctx_ = exec_ctx;
}
}
static void Enqueue(grpc_completion_queue_functor* functor, int is_success) {
functor->internal_success = is_success;
functor->internal_next = nullptr;
ApplicationCallbackExecCtx* ctx = Get();
if (ctx->head_ == nullptr) {
ctx->head_ = functor;
}
if (ctx->tail_ != nullptr) {
ctx->tail_->internal_next = functor;
}
ctx->tail_ = functor;
}
static bool Available() { return Get() != nullptr; }
private:
uintptr_t flags_{0u};
grpc_completion_queue_functor* head_{nullptr};
grpc_completion_queue_functor* tail_{nullptr};
static thread_local ApplicationCallbackExecCtx* callback_exec_ctx_;
};
template <typename F>
void EnsureRunInExecCtx(F f) {
if (ExecCtx::Get() == nullptr) {
ApplicationCallbackExecCtx app_ctx;
ExecCtx exec_ctx;
f();
} else {
f();
}
}
} // namespace grpc_core
#endif // GRPC_SRC_CORE_LIB_IOMGR_EXEC_CTX_H