| /* gpt.cc -- Functions for loading, saving, and manipulating legacy MBR and GPT partition |
| data. */ |
| |
| /* By Rod Smith, initial coding January to February, 2009 */ |
| |
| /* This program is copyright (c) 2009-2013 by Roderick W. Smith. It is distributed |
| under the terms of the GNU GPL version 2, as detailed in the COPYING file. */ |
| |
| #define __STDC_LIMIT_MACROS |
| #ifndef __STDC_CONSTANT_MACROS |
| #define __STDC_CONSTANT_MACROS |
| #endif |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <stdint.h> |
| #include <fcntl.h> |
| #include <string.h> |
| #include <math.h> |
| #include <time.h> |
| #include <sys/stat.h> |
| #include <errno.h> |
| #include <iostream> |
| #include <algorithm> |
| #include "crc32.h" |
| #include "gpt.h" |
| #include "bsd.h" |
| #include "support.h" |
| #include "parttypes.h" |
| #include "attributes.h" |
| #include "diskio.h" |
| |
| using namespace std; |
| |
| #ifdef __FreeBSD__ |
| #define log2(x) (log(x) / M_LN2) |
| #endif // __FreeBSD__ |
| |
| #ifdef _MSC_VER |
| #define log2(x) (log((double) x) / log(2.0)) |
| #endif // Microsoft Visual C++ |
| |
| #ifdef EFI |
| // in UEFI mode MMX registers are not yet available so using the |
| // x86_64 ABI to move "double" values around is not an option. |
| #ifdef log2 |
| #undef log2 |
| #endif |
| #define log2(x) log2_32( x ) |
| static inline uint32_t log2_32(uint32_t v) { |
| int r = -1; |
| while (v >= 1) { |
| r++; |
| v >>= 1; |
| } |
| return r; |
| } |
| #endif |
| |
| /**************************************** |
| * * |
| * GPTData class and related structures * |
| * * |
| ****************************************/ |
| |
| // Default constructor |
| GPTData::GPTData(void) { |
| blockSize = SECTOR_SIZE; // set a default |
| diskSize = 0; |
| partitions = NULL; |
| state = gpt_valid; |
| device = ""; |
| justLooking = 0; |
| syncing = 1; |
| mainCrcOk = 0; |
| secondCrcOk = 0; |
| mainPartsCrcOk = 0; |
| secondPartsCrcOk = 0; |
| apmFound = 0; |
| bsdFound = 0; |
| sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default |
| beQuiet = 0; |
| whichWasUsed = use_new; |
| mainHeader.numParts = 0; |
| numParts = 0; |
| SetGPTSize(NUM_GPT_ENTRIES); |
| // Initialize CRC functions... |
| chksum_crc32gentab(); |
| } // GPTData default constructor |
| |
| // The following constructor loads GPT data from a device file |
| GPTData::GPTData(string filename) { |
| blockSize = SECTOR_SIZE; // set a default |
| diskSize = 0; |
| partitions = NULL; |
| state = gpt_invalid; |
| device = ""; |
| justLooking = 0; |
| syncing = 1; |
| mainCrcOk = 0; |
| secondCrcOk = 0; |
| mainPartsCrcOk = 0; |
| secondPartsCrcOk = 0; |
| apmFound = 0; |
| bsdFound = 0; |
| sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default |
| beQuiet = 0; |
| whichWasUsed = use_new; |
| mainHeader.numParts = 0; |
| numParts = 0; |
| // Initialize CRC functions... |
| chksum_crc32gentab(); |
| if (!LoadPartitions(filename)) |
| exit(2); |
| } // GPTData(string filename) constructor |
| |
| // Destructor |
| GPTData::~GPTData(void) { |
| delete[] partitions; |
| } // GPTData destructor |
| |
| // Assignment operator |
| GPTData & GPTData::operator=(const GPTData & orig) { |
| uint32_t i; |
| |
| mainHeader = orig.mainHeader; |
| numParts = orig.numParts; |
| secondHeader = orig.secondHeader; |
| protectiveMBR = orig.protectiveMBR; |
| device = orig.device; |
| blockSize = orig.blockSize; |
| diskSize = orig.diskSize; |
| state = orig.state; |
| justLooking = orig.justLooking; |
| syncing = orig.syncing; |
| mainCrcOk = orig.mainCrcOk; |
| secondCrcOk = orig.secondCrcOk; |
| mainPartsCrcOk = orig.mainPartsCrcOk; |
| secondPartsCrcOk = orig.secondPartsCrcOk; |
| apmFound = orig.apmFound; |
| bsdFound = orig.bsdFound; |
| sectorAlignment = orig.sectorAlignment; |
| beQuiet = orig.beQuiet; |
| whichWasUsed = orig.whichWasUsed; |
| |
| myDisk.OpenForRead(orig.myDisk.GetName()); |
| |
| delete[] partitions; |
| partitions = new GPTPart [numParts]; |
| if (partitions == NULL) { |
| cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n" |
| << "Terminating!\n"; |
| exit(1); |
| } // if |
| for (i = 0; i < numParts; i++) { |
| partitions[i] = orig.partitions[i]; |
| } // for |
| |
| return *this; |
| } // GPTData::operator=() |
| |
| /********************************************************************* |
| * * |
| * Begin functions that verify data, or that adjust the verification * |
| * information (compute CRCs, rebuild headers) * |
| * * |
| *********************************************************************/ |
| |
| // Perform detailed verification, reporting on any problems found, but |
| // do *NOT* recover from these problems. Returns the total number of |
| // problems identified. |
| int GPTData::Verify(void) { |
| int problems = 0, alignProbs = 0; |
| uint32_t i, numSegments; |
| uint64_t totalFree, largestSegment; |
| |
| // First, check for CRC errors in the GPT data.... |
| if (!mainCrcOk) { |
| problems++; |
| cout << "\nProblem: The CRC for the main GPT header is invalid. The main GPT header may\n" |
| << "be corrupt. Consider loading the backup GPT header to rebuild the main GPT\n" |
| << "header ('b' on the recovery & transformation menu). This report may be a false\n" |
| << "alarm if you've already corrected other problems.\n"; |
| } // if |
| if (!mainPartsCrcOk) { |
| problems++; |
| cout << "\nProblem: The CRC for the main partition table is invalid. This table may be\n" |
| << "corrupt. Consider loading the backup partition table ('c' on the recovery &\n" |
| << "transformation menu). This report may be a false alarm if you've already\n" |
| << "corrected other problems.\n"; |
| } // if |
| if (!secondCrcOk) { |
| problems++; |
| cout << "\nProblem: The CRC for the backup GPT header is invalid. The backup GPT header\n" |
| << "may be corrupt. Consider using the main GPT header to rebuild the backup GPT\n" |
| << "header ('d' on the recovery & transformation menu). This report may be a false\n" |
| << "alarm if you've already corrected other problems.\n"; |
| } // if |
| if (!secondPartsCrcOk) { |
| problems++; |
| cout << "\nCaution: The CRC for the backup partition table is invalid. This table may\n" |
| << "be corrupt. This program will automatically create a new backup partition\n" |
| << "table when you save your partitions.\n"; |
| } // if |
| |
| // Now check that the main and backup headers both point to themselves.... |
| if (mainHeader.currentLBA != 1) { |
| problems++; |
| cout << "\nProblem: The main header's self-pointer doesn't point to itself. This problem\n" |
| << "is being automatically corrected, but it may be a symptom of more serious\n" |
| << "problems. Think carefully before saving changes with 'w' or using this disk.\n"; |
| mainHeader.currentLBA = 1; |
| } // if |
| if (secondHeader.currentLBA != (diskSize - UINT64_C(1))) { |
| problems++; |
| cout << "\nProblem: The secondary header's self-pointer indicates that it doesn't reside\n" |
| << "at the end of the disk. If you've added a disk to a RAID array, use the 'e'\n" |
| << "option on the experts' menu to adjust the secondary header's and partition\n" |
| << "table's locations.\n"; |
| } // if |
| |
| // Now check that critical main and backup GPT entries match each other |
| if (mainHeader.currentLBA != secondHeader.backupLBA) { |
| problems++; |
| cout << "\nProblem: main GPT header's current LBA pointer (" << mainHeader.currentLBA |
| << ") doesn't\nmatch the backup GPT header's alternate LBA pointer(" |
| << secondHeader.backupLBA << ").\n"; |
| } // if |
| if (mainHeader.backupLBA != secondHeader.currentLBA) { |
| problems++; |
| cout << "\nProblem: main GPT header's backup LBA pointer (" << mainHeader.backupLBA |
| << ") doesn't\nmatch the backup GPT header's current LBA pointer (" |
| << secondHeader.currentLBA << ").\n" |
| << "The 'e' option on the experts' menu may fix this problem.\n"; |
| } // if |
| if (mainHeader.firstUsableLBA != secondHeader.firstUsableLBA) { |
| problems++; |
| cout << "\nProblem: main GPT header's first usable LBA pointer (" << mainHeader.firstUsableLBA |
| << ") doesn't\nmatch the backup GPT header's first usable LBA pointer (" |
| << secondHeader.firstUsableLBA << ")\n"; |
| } // if |
| if (mainHeader.lastUsableLBA != secondHeader.lastUsableLBA) { |
| problems++; |
| cout << "\nProblem: main GPT header's last usable LBA pointer (" << mainHeader.lastUsableLBA |
| << ") doesn't\nmatch the backup GPT header's last usable LBA pointer (" |
| << secondHeader.lastUsableLBA << ")\n" |
| << "The 'e' option on the experts' menu can probably fix this problem.\n"; |
| } // if |
| if ((mainHeader.diskGUID != secondHeader.diskGUID)) { |
| problems++; |
| cout << "\nProblem: main header's disk GUID (" << mainHeader.diskGUID |
| << ") doesn't\nmatch the backup GPT header's disk GUID (" |
| << secondHeader.diskGUID << ")\n" |
| << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n" |
| << "select one or the other header.\n"; |
| } // if |
| if (mainHeader.numParts != secondHeader.numParts) { |
| problems++; |
| cout << "\nProblem: main GPT header's number of partitions (" << mainHeader.numParts |
| << ") doesn't\nmatch the backup GPT header's number of partitions (" |
| << secondHeader.numParts << ")\n" |
| << "Resizing the partition table ('s' on the experts' menu) may help.\n"; |
| } // if |
| if (mainHeader.sizeOfPartitionEntries != secondHeader.sizeOfPartitionEntries) { |
| problems++; |
| cout << "\nProblem: main GPT header's size of partition entries (" |
| << mainHeader.sizeOfPartitionEntries << ") doesn't\n" |
| << "match the backup GPT header's size of partition entries (" |
| << secondHeader.sizeOfPartitionEntries << ")\n" |
| << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n" |
| << "select one or the other header.\n"; |
| } // if |
| |
| // Now check for a few other miscellaneous problems... |
| // Check that the disk size will hold the data... |
| if (mainHeader.backupLBA >= diskSize) { |
| problems++; |
| cout << "\nProblem: Disk is too small to hold all the data!\n" |
| << "(Disk size is " << diskSize << " sectors, needs to be " |
| << mainHeader.backupLBA + UINT64_C(1) << " sectors.)\n" |
| << "The 'e' option on the experts' menu may fix this problem.\n"; |
| } // if |
| |
| if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) { |
| problems++; |
| cout << "\nProblem: GPT claims the disk is larger than it is! (Claimed last usable\n" |
| << "sector is " << mainHeader.lastUsableLBA << ", but backup header is at\n" |
| << mainHeader.backupLBA << " and disk size is " << diskSize << " sectors.\n" |
| << "The 'e' option on the experts' menu will probably fix this problem\n"; |
| } |
| |
| // Check for overlapping partitions.... |
| problems += FindOverlaps(); |
| |
| // Check for insane partitions (start after end, hugely big, etc.) |
| problems += FindInsanePartitions(); |
| |
| // Check for mismatched MBR and GPT partitions... |
| problems += FindHybridMismatches(); |
| |
| // Check for MBR-specific problems.... |
| problems += VerifyMBR(); |
| |
| // Check for a 0xEE protective partition that's marked as active.... |
| if (protectiveMBR.IsEEActive()) { |
| cout << "\nWarning: The 0xEE protective partition in the MBR is marked as active. This is\n" |
| << "technically a violation of the GPT specification, and can cause some EFIs to\n" |
| << "ignore the disk, but it is required to boot from a GPT disk on some BIOS-based\n" |
| << "computers. You can clear this flag by creating a fresh protective MBR using\n" |
| << "the 'n' option on the experts' menu.\n"; |
| } |
| |
| // Verify that partitions don't run into GPT data areas.... |
| problems += CheckGPTSize(); |
| |
| if (!protectiveMBR.DoTheyFit()) { |
| cout << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n" |
| << "fresh protective or hybrid MBR is recommended.\n"; |
| problems++; |
| } |
| |
| // Check that partitions are aligned on proper boundaries (for WD Advanced |
| // Format and similar disks).... |
| for (i = 0; i < numParts; i++) { |
| if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() % sectorAlignment) != 0) { |
| cout << "\nCaution: Partition " << i + 1 << " doesn't begin on a " |
| << sectorAlignment << "-sector boundary. This may\nresult " |
| << "in degraded performance on some modern (2009 and later) hard disks.\n"; |
| alignProbs++; |
| } // if |
| } // for |
| if (alignProbs > 0) |
| cout << "\nConsult http://www.ibm.com/developerworks/linux/library/l-4kb-sector-disks/\n" |
| << "for information on disk alignment.\n"; |
| |
| // Now compute available space, but only if no problems found, since |
| // problems could affect the results |
| if (problems == 0) { |
| totalFree = FindFreeBlocks(&numSegments, &largestSegment); |
| cout << "\nNo problems found. " << totalFree << " free sectors (" |
| << BytesToIeee(totalFree, blockSize) << ") available in " |
| << numSegments << "\nsegments, the largest of which is " |
| << largestSegment << " (" << BytesToIeee(largestSegment, blockSize) |
| << ") in size.\n"; |
| } else { |
| cout << "\nIdentified " << problems << " problems!\n"; |
| } // if/else |
| |
| return (problems); |
| } // GPTData::Verify() |
| |
| // Checks to see if the GPT tables overrun existing partitions; if they |
| // do, issues a warning but takes no action. Returns number of problems |
| // detected (0 if OK, 1 to 2 if problems). |
| int GPTData::CheckGPTSize(void) { |
| uint64_t overlap, firstUsedBlock, lastUsedBlock; |
| uint32_t i; |
| int numProbs = 0; |
| |
| // first, locate the first & last used blocks |
| firstUsedBlock = UINT64_MAX; |
| lastUsedBlock = 0; |
| for (i = 0; i < numParts; i++) { |
| if (partitions[i].IsUsed()) { |
| if (partitions[i].GetFirstLBA() < firstUsedBlock) |
| firstUsedBlock = partitions[i].GetFirstLBA(); |
| if (partitions[i].GetLastLBA() > lastUsedBlock) { |
| lastUsedBlock = partitions[i].GetLastLBA(); |
| } // if |
| } // if |
| } // for |
| |
| // If the disk size is 0 (the default), then it means that various |
| // variables aren't yet set, so the below tests will be useless; |
| // therefore we should skip everything |
| if (diskSize != 0) { |
| if (mainHeader.firstUsableLBA > firstUsedBlock) { |
| overlap = mainHeader.firstUsableLBA - firstUsedBlock; |
| cout << "Warning! Main partition table overlaps the first partition by " |
| << overlap << " blocks!\n"; |
| if (firstUsedBlock > 2) { |
| cout << "Try reducing the partition table size by " << overlap * 4 |
| << " entries.\n(Use the 's' item on the experts' menu.)\n"; |
| } else { |
| cout << "You will need to delete this partition or resize it in another utility.\n"; |
| } // if/else |
| numProbs++; |
| } // Problem at start of disk |
| if (mainHeader.lastUsableLBA < lastUsedBlock) { |
| overlap = lastUsedBlock - mainHeader.lastUsableLBA; |
| cout << "\nWarning! Secondary partition table overlaps the last partition by\n" |
| << overlap << " blocks!\n"; |
| if (lastUsedBlock > (diskSize - 2)) { |
| cout << "You will need to delete this partition or resize it in another utility.\n"; |
| } else { |
| cout << "Try reducing the partition table size by " << overlap * 4 |
| << " entries.\n(Use the 's' item on the experts' menu.)\n"; |
| } // if/else |
| numProbs++; |
| } // Problem at end of disk |
| } // if (diskSize != 0) |
| return numProbs; |
| } // GPTData::CheckGPTSize() |
| |
| // Check the validity of the GPT header. Returns 1 if the main header |
| // is valid, 2 if the backup header is valid, 3 if both are valid, and |
| // 0 if neither is valid. Note that this function checks the GPT signature, |
| // revision value, and CRCs in both headers. |
| int GPTData::CheckHeaderValidity(void) { |
| int valid = 3; |
| |
| cout.setf(ios::uppercase); |
| cout.fill('0'); |
| |
| // Note: failed GPT signature checks produce no error message because |
| // a message is displayed in the ReversePartitionBytes() function |
| if ((mainHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&mainHeader, 1))) { |
| valid -= 1; |
| } else if ((mainHeader.revision != 0x00010000) && valid) { |
| valid -= 1; |
| cout << "Unsupported GPT version in main header; read 0x"; |
| cout.width(8); |
| cout << hex << mainHeader.revision << ", should be\n0x"; |
| cout.width(8); |
| cout << UINT32_C(0x00010000) << dec << "\n"; |
| } // if/else/if |
| |
| if ((secondHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&secondHeader))) { |
| valid -= 2; |
| } else if ((secondHeader.revision != 0x00010000) && valid) { |
| valid -= 2; |
| cout << "Unsupported GPT version in backup header; read 0x"; |
| cout.width(8); |
| cout << hex << secondHeader.revision << ", should be\n0x"; |
| cout.width(8); |
| cout << UINT32_C(0x00010000) << dec << "\n"; |
| } // if/else/if |
| |
| // Check for an Apple disk signature |
| if (((mainHeader.signature << 32) == APM_SIGNATURE1) || |
| (mainHeader.signature << 32) == APM_SIGNATURE2) { |
| apmFound = 1; // Will display warning message later |
| } // if |
| cout.fill(' '); |
| |
| return valid; |
| } // GPTData::CheckHeaderValidity() |
| |
| // Check the header CRC to see if it's OK... |
| // Note: Must be called with header in platform-ordered byte order. |
| // Returns 1 if header's computed CRC matches the stored value, 0 if the |
| // computed and stored values don't match |
| int GPTData::CheckHeaderCRC(struct GPTHeader* header, int warn) { |
| uint32_t oldCRC, newCRC, hSize; |
| uint8_t *temp; |
| |
| // Back up old header CRC and then blank it, since it must be 0 for |
| // computation to be valid |
| oldCRC = header->headerCRC; |
| header->headerCRC = UINT32_C(0); |
| |
| hSize = header->headerSize; |
| |
| if (IsLittleEndian() == 0) |
| ReverseHeaderBytes(header); |
| |
| if ((hSize > blockSize) || (hSize < HEADER_SIZE)) { |
| if (warn) { |
| cerr << "\aWarning! Header size is specified as " << hSize << ", which is invalid.\n"; |
| cerr << "Setting the header size for CRC computation to " << HEADER_SIZE << "\n"; |
| } // if |
| hSize = HEADER_SIZE; |
| } else if ((hSize > sizeof(GPTHeader)) && warn) { |
| cout << "\aCaution! Header size for CRC check is " << hSize << ", which is greater than " << sizeof(GPTHeader) << ".\n"; |
| cout << "If stray data exists after the header on the header sector, it will be ignored,\n" |
| << "which may result in a CRC false alarm.\n"; |
| } // if/elseif |
| temp = new uint8_t[hSize]; |
| if (temp != NULL) { |
| memset(temp, 0, hSize); |
| if (hSize < sizeof(GPTHeader)) |
| memcpy(temp, header, hSize); |
| else |
| memcpy(temp, header, sizeof(GPTHeader)); |
| |
| newCRC = chksum_crc32((unsigned char*) temp, hSize); |
| delete[] temp; |
| } else { |
| cerr << "Could not allocate memory in GPTData::CheckHeaderCRC()! Aborting!\n"; |
| exit(1); |
| } |
| if (IsLittleEndian() == 0) |
| ReverseHeaderBytes(header); |
| header->headerCRC = oldCRC; |
| return (oldCRC == newCRC); |
| } // GPTData::CheckHeaderCRC() |
| |
| // Recompute all the CRCs. Must be called before saving if any changes have |
| // been made. Must be called on platform-ordered data (this function reverses |
| // byte order and then undoes that reversal.) |
| void GPTData::RecomputeCRCs(void) { |
| uint32_t crc, hSize; |
| int littleEndian = 1; |
| |
| // If the header size is bigger than the GPT header data structure, reset it; |
| // otherwise, set both header sizes to whatever the main one is.... |
| if (mainHeader.headerSize > sizeof(GPTHeader)) |
| hSize = secondHeader.headerSize = mainHeader.headerSize = HEADER_SIZE; |
| else |
| hSize = secondHeader.headerSize = mainHeader.headerSize; |
| |
| if ((littleEndian = IsLittleEndian()) == 0) { |
| ReversePartitionBytes(); |
| ReverseHeaderBytes(&mainHeader); |
| ReverseHeaderBytes(&secondHeader); |
| } // if |
| |
| // Compute CRC of partition tables & store in main and secondary headers |
| crc = chksum_crc32((unsigned char*) partitions, numParts * GPT_SIZE); |
| mainHeader.partitionEntriesCRC = crc; |
| secondHeader.partitionEntriesCRC = crc; |
| if (littleEndian == 0) { |
| ReverseBytes(&mainHeader.partitionEntriesCRC, 4); |
| ReverseBytes(&secondHeader.partitionEntriesCRC, 4); |
| } // if |
| |
| // Zero out GPT headers' own CRCs (required for correct computation) |
| mainHeader.headerCRC = 0; |
| secondHeader.headerCRC = 0; |
| |
| crc = chksum_crc32((unsigned char*) &mainHeader, hSize); |
| if (littleEndian == 0) |
| ReverseBytes(&crc, 4); |
| mainHeader.headerCRC = crc; |
| crc = chksum_crc32((unsigned char*) &secondHeader, hSize); |
| if (littleEndian == 0) |
| ReverseBytes(&crc, 4); |
| secondHeader.headerCRC = crc; |
| |
| if (littleEndian == 0) { |
| ReverseHeaderBytes(&mainHeader); |
| ReverseHeaderBytes(&secondHeader); |
| ReversePartitionBytes(); |
| } // if |
| } // GPTData::RecomputeCRCs() |
| |
| // Rebuild the main GPT header, using the secondary header as a model. |
| // Typically called when the main header has been found to be corrupt. |
| void GPTData::RebuildMainHeader(void) { |
| mainHeader.signature = GPT_SIGNATURE; |
| mainHeader.revision = secondHeader.revision; |
| mainHeader.headerSize = secondHeader.headerSize; |
| mainHeader.headerCRC = UINT32_C(0); |
| mainHeader.reserved = secondHeader.reserved; |
| mainHeader.currentLBA = secondHeader.backupLBA; |
| mainHeader.backupLBA = secondHeader.currentLBA; |
| mainHeader.firstUsableLBA = secondHeader.firstUsableLBA; |
| mainHeader.lastUsableLBA = secondHeader.lastUsableLBA; |
| mainHeader.diskGUID = secondHeader.diskGUID; |
| mainHeader.partitionEntriesLBA = UINT64_C(2); |
| mainHeader.numParts = secondHeader.numParts; |
| mainHeader.sizeOfPartitionEntries = secondHeader.sizeOfPartitionEntries; |
| mainHeader.partitionEntriesCRC = secondHeader.partitionEntriesCRC; |
| memcpy(mainHeader.reserved2, secondHeader.reserved2, sizeof(mainHeader.reserved2)); |
| mainCrcOk = secondCrcOk; |
| SetGPTSize(mainHeader.numParts, 0); |
| } // GPTData::RebuildMainHeader() |
| |
| // Rebuild the secondary GPT header, using the main header as a model. |
| void GPTData::RebuildSecondHeader(void) { |
| secondHeader.signature = GPT_SIGNATURE; |
| secondHeader.revision = mainHeader.revision; |
| secondHeader.headerSize = mainHeader.headerSize; |
| secondHeader.headerCRC = UINT32_C(0); |
| secondHeader.reserved = mainHeader.reserved; |
| secondHeader.currentLBA = mainHeader.backupLBA; |
| secondHeader.backupLBA = mainHeader.currentLBA; |
| secondHeader.firstUsableLBA = mainHeader.firstUsableLBA; |
| secondHeader.lastUsableLBA = mainHeader.lastUsableLBA; |
| secondHeader.diskGUID = mainHeader.diskGUID; |
| secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1); |
| secondHeader.numParts = mainHeader.numParts; |
| secondHeader.sizeOfPartitionEntries = mainHeader.sizeOfPartitionEntries; |
| secondHeader.partitionEntriesCRC = mainHeader.partitionEntriesCRC; |
| memcpy(secondHeader.reserved2, mainHeader.reserved2, sizeof(secondHeader.reserved2)); |
| secondCrcOk = mainCrcOk; |
| SetGPTSize(secondHeader.numParts, 0); |
| } // GPTData::RebuildSecondHeader() |
| |
| // Search for hybrid MBR entries that have no corresponding GPT partition. |
| // Returns number of such mismatches found |
| int GPTData::FindHybridMismatches(void) { |
| int i, found, numFound = 0; |
| uint32_t j; |
| uint64_t mbrFirst, mbrLast; |
| |
| for (i = 0; i < 4; i++) { |
| if ((protectiveMBR.GetType(i) != 0xEE) && (protectiveMBR.GetType(i) != 0x00)) { |
| j = 0; |
| found = 0; |
| mbrFirst = (uint64_t) protectiveMBR.GetFirstSector(i); |
| mbrLast = mbrFirst + (uint64_t) protectiveMBR.GetLength(i) - UINT64_C(1); |
| do { |
| if ((j < numParts) && (partitions[j].GetFirstLBA() == mbrFirst) && |
| (partitions[j].GetLastLBA() == mbrLast) && (partitions[j].IsUsed())) |
| found = 1; |
| j++; |
| } while ((!found) && (j < numParts)); |
| if (!found) { |
| numFound++; |
| cout << "\nWarning! Mismatched GPT and MBR partition! MBR partition " |
| << i + 1 << ", of type 0x"; |
| cout.fill('0'); |
| cout.setf(ios::uppercase); |
| cout.width(2); |
| cout << hex << (int) protectiveMBR.GetType(i) << ",\n" |
| << "has no corresponding GPT partition! You may continue, but this condition\n" |
| << "might cause data loss in the future!\a\n" << dec; |
| cout.fill(' '); |
| } // if |
| } // if |
| } // for |
| return numFound; |
| } // GPTData::FindHybridMismatches |
| |
| // Find overlapping partitions and warn user about them. Returns number of |
| // overlapping partitions. |
| // Returns number of overlapping segments found. |
| int GPTData::FindOverlaps(void) { |
| int problems = 0; |
| uint32_t i, j; |
| |
| for (i = 1; i < numParts; i++) { |
| for (j = 0; j < i; j++) { |
| if ((partitions[i].IsUsed()) && (partitions[j].IsUsed()) && |
| (partitions[i].DoTheyOverlap(partitions[j]))) { |
| problems++; |
| cout << "\nProblem: partitions " << i + 1 << " and " << j + 1 << " overlap:\n"; |
| cout << " Partition " << i + 1 << ": " << partitions[i].GetFirstLBA() |
| << " to " << partitions[i].GetLastLBA() << "\n"; |
| cout << " Partition " << j + 1 << ": " << partitions[j].GetFirstLBA() |
| << " to " << partitions[j].GetLastLBA() << "\n"; |
| } // if |
| } // for j... |
| } // for i... |
| return problems; |
| } // GPTData::FindOverlaps() |
| |
| // Find partitions that are insane -- they start after they end or are too |
| // big for the disk. (The latter should duplicate detection of overlaps |
| // with GPT backup data structures, but better to err on the side of |
| // redundant tests than to miss something....) |
| // Returns number of problems found. |
| int GPTData::FindInsanePartitions(void) { |
| uint32_t i; |
| int problems = 0; |
| |
| for (i = 0; i < numParts; i++) { |
| if (partitions[i].IsUsed()) { |
| if (partitions[i].GetFirstLBA() > partitions[i].GetLastLBA()) { |
| problems++; |
| cout << "\nProblem: partition " << i + 1 << " ends before it begins.\n"; |
| } // if |
| if (partitions[i].GetLastLBA() >= diskSize) { |
| problems++; |
| cout << "\nProblem: partition " << i + 1 << " is too big for the disk.\n"; |
| } // if |
| } // if |
| } // for |
| return problems; |
| } // GPTData::FindInsanePartitions(void) |
| |
| |
| /****************************************************************** |
| * * |
| * Begin functions that load data from disk or save data to disk. * |
| * * |
| ******************************************************************/ |
| |
| // Change the filename associated with the GPT. Used for duplicating |
| // the partition table to a new disk and saving backups. |
| // Returns 1 on success, 0 on failure. |
| int GPTData::SetDisk(const string & deviceFilename) { |
| int err, allOK = 1; |
| |
| device = deviceFilename; |
| if (allOK && myDisk.OpenForRead(deviceFilename)) { |
| // store disk information.... |
| diskSize = myDisk.DiskSize(&err); |
| blockSize = (uint32_t) myDisk.GetBlockSize(); |
| } // if |
| protectiveMBR.SetDisk(&myDisk); |
| protectiveMBR.SetDiskSize(diskSize); |
| protectiveMBR.SetBlockSize(blockSize); |
| return allOK; |
| } // GPTData::SetDisk() |
| |
| // Scan for partition data. This function loads the MBR data (regular MBR or |
| // protective MBR) and loads BSD disklabel data (which is probably invalid). |
| // It also looks for APM data, forces a load of GPT data, and summarizes |
| // the results. |
| void GPTData::PartitionScan(void) { |
| BSDData bsdDisklabel; |
| |
| // Read the MBR & check for BSD disklabel |
| protectiveMBR.ReadMBRData(&myDisk); |
| bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1); |
| |
| // Load the GPT data, whether or not it's valid |
| ForceLoadGPTData(); |
| |
| // Some tools create a 0xEE partition that's too big. If this is detected, |
| // normalize it.... |
| if ((state == gpt_valid) && !protectiveMBR.DoTheyFit() && (protectiveMBR.GetValidity() == gpt)) { |
| if (!beQuiet) { |
| cerr << "\aThe protective MBR's 0xEE partition is oversized! Auto-repairing.\n\n"; |
| } // if |
| protectiveMBR.MakeProtectiveMBR(); |
| } // if |
| |
| if (!beQuiet) { |
| cout << "Partition table scan:\n"; |
| protectiveMBR.ShowState(); |
| bsdDisklabel.ShowState(); |
| ShowAPMState(); // Show whether there's an Apple Partition Map present |
| ShowGPTState(); // Show GPT status |
| cout << "\n"; |
| } // if |
| |
| if (apmFound) { |
| cout << "\n*******************************************************************\n" |
| << "This disk appears to contain an Apple-format (APM) partition table!\n"; |
| if (!justLooking) { |
| cout << "It will be destroyed if you continue!\n"; |
| } // if |
| cout << "*******************************************************************\n\n\a"; |
| } // if |
| } // GPTData::PartitionScan() |
| |
| // Read GPT data from a disk. |
| int GPTData::LoadPartitions(const string & deviceFilename) { |
| BSDData bsdDisklabel; |
| int err, allOK = 1; |
| MBRValidity mbrState; |
| |
| if (myDisk.OpenForRead(deviceFilename)) { |
| err = myDisk.OpenForWrite(deviceFilename); |
| if ((err == 0) && (!justLooking)) { |
| cout << "\aNOTE: Write test failed with error number " << errno |
| << ". It will be impossible to save\nchanges to this disk's partition table!\n"; |
| #if defined (__FreeBSD__) || defined (__FreeBSD_kernel__) |
| cout << "You may be able to enable writes by exiting this program, typing\n" |
| << "'sysctl kern.geom.debugflags=16' at a shell prompt, and re-running this\n" |
| << "program.\n"; |
| #endif |
| cout << "\n"; |
| } // if |
| myDisk.Close(); // Close and re-open read-only in case of bugs |
| } else allOK = 0; // if |
| |
| if (allOK && myDisk.OpenForRead(deviceFilename)) { |
| // store disk information.... |
| diskSize = myDisk.DiskSize(&err); |
| blockSize = (uint32_t) myDisk.GetBlockSize(); |
| device = deviceFilename; |
| PartitionScan(); // Check for partition types, load GPT, & print summary |
| |
| whichWasUsed = UseWhichPartitions(); |
| switch (whichWasUsed) { |
| case use_mbr: |
| XFormPartitions(); |
| break; |
| case use_bsd: |
| bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1); |
| // bsdDisklabel.DisplayBSDData(); |
| ClearGPTData(); |
| protectiveMBR.MakeProtectiveMBR(1); // clear boot area (option 1) |
| XFormDisklabel(&bsdDisklabel); |
| break; |
| case use_gpt: |
| mbrState = protectiveMBR.GetValidity(); |
| if ((mbrState == invalid) || (mbrState == mbr)) |
| protectiveMBR.MakeProtectiveMBR(); |
| break; |
| case use_new: |
| ClearGPTData(); |
| protectiveMBR.MakeProtectiveMBR(); |
| break; |
| case use_abort: |
| allOK = 0; |
| cerr << "Invalid partition data!\n"; |
| break; |
| } // switch |
| |
| if (allOK) |
| CheckGPTSize(); |
| myDisk.Close(); |
| ComputeAlignment(); |
| } else { |
| allOK = 0; |
| } // if/else |
| return (allOK); |
| } // GPTData::LoadPartitions() |
| |
| // Loads the GPT, as much as possible. Returns 1 if this seems to have |
| // succeeded, 0 if there are obvious problems.... |
| int GPTData::ForceLoadGPTData(void) { |
| int allOK, validHeaders, loadedTable = 1; |
| |
| allOK = LoadHeader(&mainHeader, myDisk, 1, &mainCrcOk); |
| |
| if (mainCrcOk && (mainHeader.backupLBA < diskSize)) { |
| allOK = LoadHeader(&secondHeader, myDisk, mainHeader.backupLBA, &secondCrcOk) && allOK; |
| } else { |
| allOK = LoadHeader(&secondHeader, myDisk, diskSize - UINT64_C(1), &secondCrcOk) && allOK; |
| if (mainCrcOk && (mainHeader.backupLBA >= diskSize)) |
| cout << "Warning! Disk size is smaller than the main header indicates! Loading\n" |
| << "secondary header from the last sector of the disk! You should use 'v' to\n" |
| << "verify disk integrity, and perhaps options on the experts' menu to repair\n" |
| << "the disk.\n"; |
| } // if/else |
| if (!allOK) |
| state = gpt_invalid; |
| |
| // Return valid headers code: 0 = both headers bad; 1 = main header |
| // good, backup bad; 2 = backup header good, main header bad; |
| // 3 = both headers good. Note these codes refer to valid GPT |
| // signatures, version numbers, and CRCs. |
| validHeaders = CheckHeaderValidity(); |
| |
| // Read partitions (from primary array) |
| if (validHeaders > 0) { // if at least one header is OK.... |
| // GPT appears to be valid.... |
| state = gpt_valid; |
| |
| // We're calling the GPT valid, but there's a possibility that one |
| // of the two headers is corrupt. If so, use the one that seems to |
| // be in better shape to regenerate the bad one |
| if (validHeaders == 1) { // valid main header, invalid backup header |
| cerr << "\aCaution: invalid backup GPT header, but valid main header; regenerating\n" |
| << "backup header from main header.\n\n"; |
| RebuildSecondHeader(); |
| state = gpt_corrupt; |
| secondCrcOk = mainCrcOk; // Since regenerated, use CRC validity of main |
| } else if (validHeaders == 2) { // valid backup header, invalid main header |
| cerr << "\aCaution: invalid main GPT header, but valid backup; regenerating main header\n" |
| << "from backup!\n\n"; |
| RebuildMainHeader(); |
| state = gpt_corrupt; |
| mainCrcOk = secondCrcOk; // Since copied, use CRC validity of backup |
| } // if/else/if |
| |
| // Figure out which partition table to load.... |
| // Load the main partition table, since either its header's CRC is OK or the |
| // backup header's CRC is not OK.... |
| if (mainCrcOk || !secondCrcOk) { |
| if (LoadMainTable() == 0) |
| allOK = 0; |
| } else { // bad main header CRC and backup header CRC is OK |
| state = gpt_corrupt; |
| if (LoadSecondTableAsMain()) { |
| loadedTable = 2; |
| cerr << "\aWarning: Invalid CRC on main header data; loaded backup partition table.\n"; |
| } else { // backup table bad, bad main header CRC, but try main table in desperation.... |
| if (LoadMainTable() == 0) { |
| allOK = 0; |
| loadedTable = 0; |
| cerr << "\a\aWarning! Unable to load either main or backup partition table!\n"; |
| } // if |
| } // if/else (LoadSecondTableAsMain()) |
| } // if/else (load partition table) |
| |
| if (loadedTable == 1) |
| secondPartsCrcOk = CheckTable(&secondHeader); |
| else if (loadedTable == 2) |
| mainPartsCrcOk = CheckTable(&mainHeader); |
| else |
| mainPartsCrcOk = secondPartsCrcOk = 0; |
| |
| // Problem with main partition table; if backup is OK, use it instead.... |
| if (secondPartsCrcOk && secondCrcOk && !mainPartsCrcOk) { |
| state = gpt_corrupt; |
| allOK = allOK && LoadSecondTableAsMain(); |
| mainPartsCrcOk = 0; // LoadSecondTableAsMain() resets this, so re-flag as bad |
| cerr << "\aWarning! Main partition table CRC mismatch! Loaded backup " |
| << "partition table\ninstead of main partition table!\n\n"; |
| } // if */ |
| |
| // Check for valid CRCs and warn if there are problems |
| if ((mainCrcOk == 0) || (secondCrcOk == 0) || (mainPartsCrcOk == 0) || |
| (secondPartsCrcOk == 0)) { |
| cerr << "Warning! One or more CRCs don't match. You should repair the disk!\n\n"; |
| state = gpt_corrupt; |
| } // if |
| } else { |
| state = gpt_invalid; |
| } // if/else |
| return allOK; |
| } // GPTData::ForceLoadGPTData() |
| |
| // Loads the partition table pointed to by the main GPT header. The |
| // main GPT header in memory MUST be valid for this call to do anything |
| // sensible! |
| // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure. |
| int GPTData::LoadMainTable(void) { |
| return LoadPartitionTable(mainHeader, myDisk); |
| } // GPTData::LoadMainTable() |
| |
| // Load the second (backup) partition table as the primary partition |
| // table. Used in repair functions, and when starting up if the main |
| // partition table is damaged. |
| // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure. |
| int GPTData::LoadSecondTableAsMain(void) { |
| return LoadPartitionTable(secondHeader, myDisk); |
| } // GPTData::LoadSecondTableAsMain() |
| |
| // Load a single GPT header (main or backup) from the specified disk device and |
| // sector. Applies byte-order corrections on big-endian platforms. Sets crcOk |
| // value appropriately. |
| // Returns 1 on success, 0 on failure. Note that CRC errors do NOT qualify as |
| // failure. |
| int GPTData::LoadHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector, int *crcOk) { |
| int allOK = 1; |
| GPTHeader tempHeader; |
| |
| disk.Seek(sector); |
| if (disk.Read(&tempHeader, 512) != 512) { |
| cerr << "Warning! Read error " << errno << "; strange behavior now likely!\n"; |
| allOK = 0; |
| } // if |
| |
| // Reverse byte order, if necessary |
| if (IsLittleEndian() == 0) { |
| ReverseHeaderBytes(&tempHeader); |
| } // if |
| *crcOk = CheckHeaderCRC(&tempHeader); |
| |
| if (allOK && (numParts != tempHeader.numParts) && *crcOk) { |
| allOK = SetGPTSize(tempHeader.numParts, 0); |
| } |
| |
| *header = tempHeader; |
| return allOK; |
| } // GPTData::LoadHeader |
| |
| // Load a partition table (either main or secondary) from the specified disk, |
| // using header as a reference for what to load. If sector != 0 (the default |
| // is 0), loads from the specified sector; otherwise loads from the sector |
| // indicated in header. |
| // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure. |
| int GPTData::LoadPartitionTable(const struct GPTHeader & header, DiskIO & disk, uint64_t sector) { |
| uint32_t sizeOfParts, newCRC; |
| int retval; |
| |
| if (disk.OpenForRead()) { |
| if (sector == 0) { |
| retval = disk.Seek(header.partitionEntriesLBA); |
| } else { |
| retval = disk.Seek(sector); |
| } // if/else |
| if (retval == 1) |
| retval = SetGPTSize(header.numParts, 0); |
| if (retval == 1) { |
| sizeOfParts = header.numParts * header.sizeOfPartitionEntries; |
| if (disk.Read(partitions, sizeOfParts) != (int) sizeOfParts) { |
| cerr << "Warning! Read error " << errno << "! Misbehavior now likely!\n"; |
| retval = 0; |
| } // if |
| newCRC = chksum_crc32((unsigned char*) partitions, sizeOfParts); |
| mainPartsCrcOk = secondPartsCrcOk = (newCRC == header.partitionEntriesCRC); |
| if (IsLittleEndian() == 0) |
| ReversePartitionBytes(); |
| if (!mainPartsCrcOk) { |
| cout << "Caution! After loading partitions, the CRC doesn't check out!\n"; |
| } // if |
| } else { |
| cerr << "Error! Couldn't seek to partition table!\n"; |
| } // if/else |
| } else { |
| cerr << "Error! Couldn't open device " << device |
| << " when reading partition table!\n"; |
| retval = 0; |
| } // if/else |
| return retval; |
| } // GPTData::LoadPartitionsTable() |
| |
| // Check the partition table pointed to by header, but don't keep it |
| // around. |
| // Returns 1 if the CRC is OK & this table matches the one already in memory, |
| // 0 if not or if there was a read error. |
| int GPTData::CheckTable(struct GPTHeader *header) { |
| uint32_t sizeOfParts, newCRC; |
| GPTPart *partsToCheck; |
| GPTHeader *otherHeader; |
| int allOK = 0; |
| |
| // Load partition table into temporary storage to check |
| // its CRC and store the results, then discard this temporary |
| // storage, since we don't use it in any but recovery operations |
| if (myDisk.Seek(header->partitionEntriesLBA)) { |
| partsToCheck = new GPTPart[header->numParts]; |
| sizeOfParts = header->numParts * header->sizeOfPartitionEntries; |
| if (partsToCheck == NULL) { |
| cerr << "Could not allocate memory in GPTData::CheckTable()! Terminating!\n"; |
| exit(1); |
| } // if |
| if (myDisk.Read(partsToCheck, sizeOfParts) != (int) sizeOfParts) { |
| cerr << "Warning! Error " << errno << " reading partition table for CRC check!\n"; |
| } else { |
| newCRC = chksum_crc32((unsigned char*) partsToCheck, sizeOfParts); |
| allOK = (newCRC == header->partitionEntriesCRC); |
| if (header == &mainHeader) |
| otherHeader = &secondHeader; |
| else |
| otherHeader = &mainHeader; |
| if (newCRC != otherHeader->partitionEntriesCRC) { |
| cerr << "Warning! Main and backup partition tables differ! Use the 'c' and 'e' options\n" |
| << "on the recovery & transformation menu to examine the two tables.\n\n"; |
| allOK = 0; |
| } // if |
| } // if/else |
| delete[] partsToCheck; |
| } // if |
| return allOK; |
| } // GPTData::CheckTable() |
| |
| // Writes GPT (and protective MBR) to disk. If quiet==1, moves the second |
| // header later on the disk without asking for permission, if necessary, and |
| // doesn't confirm the operation before writing. If quiet==0, asks permission |
| // before moving the second header and asks for final confirmation of any |
| // write. |
| // Returns 1 on successful write, 0 if there was a problem. |
| int GPTData::SaveGPTData(int quiet) { |
| int allOK = 1, syncIt = 1; |
| char answer; |
| |
| // First do some final sanity checks.... |
| |
| // This test should only fail on read-only disks.... |
| if (justLooking) { |
| cout << "The justLooking flag is set. This probably means you can't write to the disk.\n"; |
| allOK = 0; |
| } // if |
| |
| // Check that disk is really big enough to handle the second header... |
| if (mainHeader.backupLBA >= diskSize) { |
| cerr << "Caution! Secondary header was placed beyond the disk's limits! Moving the\n" |
| << "header, but other problems may occur!\n"; |
| MoveSecondHeaderToEnd(); |
| } // if |
| |
| // Is there enough space to hold the GPT headers and partition tables, |
| // given the partition sizes? |
| if (CheckGPTSize() > 0) { |
| allOK = 0; |
| } // if |
| |
| // Check that second header is properly placed. Warn and ask if this should |
| // be corrected if the test fails.... |
| if (mainHeader.backupLBA < (diskSize - UINT64_C(1))) { |
| if (quiet == 0) { |
| cout << "Warning! Secondary header is placed too early on the disk! Do you want to\n" |
| << "correct this problem? "; |
| if (GetYN() == 'Y') { |
| MoveSecondHeaderToEnd(); |
| cout << "Have moved second header and partition table to correct location.\n"; |
| } else { |
| cout << "Have not corrected the problem. Strange problems may occur in the future!\n"; |
| } // if correction requested |
| } else { // Go ahead and do correction automatically |
| MoveSecondHeaderToEnd(); |
| } // if/else quiet |
| } // if |
| |
| if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) { |
| if (quiet == 0) { |
| cout << "Warning! The claimed last usable sector is incorrect! Do you want to correct\n" |
| << "this problem? "; |
| if (GetYN() == 'Y') { |
| MoveSecondHeaderToEnd(); |
| cout << "Have adjusted the second header and last usable sector value.\n"; |
| } else { |
| cout << "Have not corrected the problem. Strange problems may occur in the future!\n"; |
| } // if correction requested |
| } else { // go ahead and do correction automatically |
| MoveSecondHeaderToEnd(); |
| } // if/else quiet |
| } // if |
| |
| // Check for overlapping or insane partitions.... |
| if ((FindOverlaps() > 0) || (FindInsanePartitions() > 0)) { |
| allOK = 0; |
| cerr << "Aborting write operation!\n"; |
| } // if |
| |
| // Check that protective MBR fits, and warn if it doesn't.... |
| if (!protectiveMBR.DoTheyFit()) { |
| cerr << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n" |
| << "fresh protective or hybrid MBR is recommended.\n"; |
| } |
| |
| // Check for mismatched MBR and GPT data, but let it pass if found |
| // (function displays warning message) |
| FindHybridMismatches(); |
| |
| RecomputeCRCs(); |
| |
| if ((allOK) && (!quiet)) { |
| cout << "\nFinal checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING\n" |
| << "PARTITIONS!!\n\nDo you want to proceed? "; |
| answer = GetYN(); |
| if (answer == 'Y') { |
| cout << "OK; writing new GUID partition table (GPT) to " << myDisk.GetName() << ".\n"; |
| } else { |
| allOK = 0; |
| } // if/else |
| } // if |
| |
| // Do it! |
| if (allOK) { |
| if (myDisk.OpenForWrite()) { |
| // As per UEFI specs, write the secondary table and GPT first.... |
| allOK = SavePartitionTable(myDisk, secondHeader.partitionEntriesLBA); |
| if (!allOK) { |
| cerr << "Unable to save backup partition table! Perhaps the 'e' option on the experts'\n" |
| << "menu will resolve this problem.\n"; |
| syncIt = 0; |
| } // if |
| |
| // Now write the secondary GPT header... |
| allOK = allOK && SaveHeader(&secondHeader, myDisk, mainHeader.backupLBA); |
| |
| // Now write the main partition tables... |
| allOK = allOK && SavePartitionTable(myDisk, mainHeader.partitionEntriesLBA); |
| |
| // Now write the main GPT header... |
| allOK = allOK && SaveHeader(&mainHeader, myDisk, 1); |
| |
| // To top it off, write the protective MBR... |
| allOK = allOK && protectiveMBR.WriteMBRData(&myDisk); |
| |
| // re-read the partition table |
| // Note: Done even if some write operations failed, but not if all of them failed. |
| // Done this way because I've received one problem report from a user one whose |
| // system the MBR write failed but everything else was OK (on a GPT disk under |
| // Windows), and the failure to sync therefore caused Windows to restore the |
| // original partition table from its cache. OTOH, such restoration might be |
| // desirable if the error occurs later; but that seems unlikely unless the initial |
| // write fails.... |
| if (syncIt && syncing) |
| myDisk.DiskSync(); |
| |
| if (allOK) { // writes completed OK |
| cout << "The operation has completed successfully.\n"; |
| } else { |
| cerr << "Warning! An error was reported when writing the partition table! This error\n" |
| << "MIGHT be harmless, or the disk might be damaged! Checking it is advisable.\n"; |
| } // if/else |
| |
| myDisk.Close(); |
| } else { |
| cerr << "Unable to open device '" << myDisk.GetName() << "' for writing! Errno is " |
| << errno << "! Aborting write!\n"; |
| allOK = 0; |
| } // if/else |
| } else { |
| cout << "Aborting write of new partition table.\n"; |
| } // if |
| |
| return (allOK); |
| } // GPTData::SaveGPTData() |
| |
| // Save GPT data to a backup file. This function does much less error |
| // checking than SaveGPTData(). It can therefore preserve many types of |
| // corruption for later analysis; however, it preserves only the MBR, |
| // the main GPT header, the backup GPT header, and the main partition |
| // table; it discards the backup partition table, since it should be |
| // identical to the main partition table on healthy disks. |
| int GPTData::SaveGPTBackup(const string & filename) { |
| int allOK = 1; |
| DiskIO backupFile; |
| |
| if (backupFile.OpenForWrite(filename)) { |
| // Recomputing the CRCs is likely to alter them, which could be bad |
| // if the intent is to save a potentially bad GPT for later analysis; |
| // but if we don't do this, we get bogus errors when we load the |
| // backup. I'm favoring misses over false alarms.... |
| RecomputeCRCs(); |
| |
| protectiveMBR.WriteMBRData(&backupFile); |
| protectiveMBR.SetDisk(&myDisk); |
| |
| if (allOK) { |
| // MBR write closed disk, so re-open and seek to end.... |
| backupFile.OpenForWrite(); |
| allOK = SaveHeader(&mainHeader, backupFile, 1); |
| } // if (allOK) |
| |
| if (allOK) |
| allOK = SaveHeader(&secondHeader, backupFile, 2); |
| |
| if (allOK) |
| allOK = SavePartitionTable(backupFile, 3); |
| |
| if (allOK) { // writes completed OK |
| cout << "The operation has completed successfully.\n"; |
| } else { |
| cerr << "Warning! An error was reported when writing the backup file.\n" |
| << "It may not be usable!\n"; |
| } // if/else |
| backupFile.Close(); |
| } else { |
| cerr << "Unable to open file '" << filename << "' for writing! Aborting!\n"; |
| allOK = 0; |
| } // if/else |
| return allOK; |
| } // GPTData::SaveGPTBackup() |
| |
| // Write a GPT header (main or backup) to the specified sector. Used by both |
| // the SaveGPTData() and SaveGPTBackup() functions. |
| // Should be passed an architecture-appropriate header (DO NOT call |
| // ReverseHeaderBytes() on the header before calling this function) |
| // Returns 1 on success, 0 on failure |
| int GPTData::SaveHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector) { |
| int littleEndian, allOK = 1; |
| |
| littleEndian = IsLittleEndian(); |
| if (!littleEndian) |
| ReverseHeaderBytes(header); |
| if (disk.Seek(sector)) { |
| if (disk.Write(header, 512) == -1) |
| allOK = 0; |
| } else allOK = 0; // if (disk.Seek()...) |
| if (!littleEndian) |
| ReverseHeaderBytes(header); |
| return allOK; |
| } // GPTData::SaveHeader() |
| |
| // Save the partitions to the specified sector. Used by both the SaveGPTData() |
| // and SaveGPTBackup() functions. |
| // Should be passed an architecture-appropriate header (DO NOT call |
| // ReverseHeaderBytes() on the header before calling this function) |
| // Returns 1 on success, 0 on failure |
| int GPTData::SavePartitionTable(DiskIO & disk, uint64_t sector) { |
| int littleEndian, allOK = 1; |
| |
| littleEndian = IsLittleEndian(); |
| if (disk.Seek(sector)) { |
| if (!littleEndian) |
| ReversePartitionBytes(); |
| if (disk.Write(partitions, mainHeader.sizeOfPartitionEntries * numParts) == -1) |
| allOK = 0; |
| if (!littleEndian) |
| ReversePartitionBytes(); |
| } else allOK = 0; // if (myDisk.Seek()...) |
| return allOK; |
| } // GPTData::SavePartitionTable() |
| |
| // Load GPT data from a backup file created by SaveGPTBackup(). This function |
| // does minimal error checking. It returns 1 if it completed successfully, |
| // 0 if there was a problem. In the latter case, it creates a new empty |
| // set of partitions. |
| int GPTData::LoadGPTBackup(const string & filename) { |
| int allOK = 1, val, err; |
| int shortBackup = 0; |
| DiskIO backupFile; |
| |
| if (backupFile.OpenForRead(filename)) { |
| // Let the MBRData class load the saved MBR... |
| protectiveMBR.ReadMBRData(&backupFile, 0); // 0 = don't check block size |
| protectiveMBR.SetDisk(&myDisk); |
| |
| LoadHeader(&mainHeader, backupFile, 1, &mainCrcOk); |
| |
| // Check backup file size and rebuild second header if file is right |
| // size to be direct dd copy of MBR, main header, and main partition |
| // table; if other size, treat it like a GPT fdisk-generated backup |
| // file |
| shortBackup = ((backupFile.DiskSize(&err) * backupFile.GetBlockSize()) == |
| (mainHeader.numParts * mainHeader.sizeOfPartitionEntries) + 1024); |
| if (shortBackup) { |
| RebuildSecondHeader(); |
| secondCrcOk = mainCrcOk; |
| } else { |
| LoadHeader(&secondHeader, backupFile, 2, &secondCrcOk); |
| } // if/else |
| |
| // Return valid headers code: 0 = both headers bad; 1 = main header |
| // good, backup bad; 2 = backup header good, main header bad; |
| // 3 = both headers good. Note these codes refer to valid GPT |
| // signatures and version numbers; more subtle problems will elude |
| // this check! |
| if ((val = CheckHeaderValidity()) > 0) { |
| if (val == 2) { // only backup header seems to be good |
| SetGPTSize(secondHeader.numParts, 0); |
| } else { // main header is OK |
| SetGPTSize(mainHeader.numParts, 0); |
| } // if/else |
| |
| if (secondHeader.currentLBA != diskSize - UINT64_C(1)) { |
| cout << "Warning! Current disk size doesn't match that of the backup!\n" |
| << "Adjusting sizes to match, but subsequent problems are possible!\n"; |
| MoveSecondHeaderToEnd(); |
| } // if |
| |
| if (!LoadPartitionTable(mainHeader, backupFile, (uint64_t) (3 - shortBackup))) |
| cerr << "Warning! Read error " << errno |
| << " loading partition table; strange behavior now likely!\n"; |
| } else { |
| allOK = 0; |
| } // if/else |
| // Something went badly wrong, so blank out partitions |
| if (allOK == 0) { |
| cerr << "Improper backup file! Clearing all partition data!\n"; |
| ClearGPTData(); |
| protectiveMBR.MakeProtectiveMBR(); |
| } // if |
| } else { |
| allOK = 0; |
| cerr << "Unable to open file '" << filename << "' for reading! Aborting!\n"; |
| } // if/else |
| |
| return allOK; |
| } // GPTData::LoadGPTBackup() |
| |
| int GPTData::SaveMBR(void) { |
| return protectiveMBR.WriteMBRData(&myDisk); |
| } // GPTData::SaveMBR() |
| |
| // This function destroys the on-disk GPT structures, but NOT the on-disk |
| // MBR. |
| // Returns 1 if the operation succeeds, 0 if not. |
| int GPTData::DestroyGPT(void) { |
| int sum, tableSize, allOK = 1; |
| uint8_t blankSector[512]; |
| uint8_t* emptyTable; |
| |
| memset(blankSector, 0, sizeof(blankSector)); |
| ClearGPTData(); |
| |
| if (myDisk.OpenForWrite()) { |
| if (!myDisk.Seek(mainHeader.currentLBA)) |
| allOK = 0; |
| if (myDisk.Write(blankSector, 512) != 512) { // blank it out |
| cerr << "Warning! GPT main header not overwritten! Error is " << errno << "\n"; |
| allOK = 0; |
| } // if |
| if (!myDisk.Seek(mainHeader.partitionEntriesLBA)) |
| allOK = 0; |
| tableSize = numParts * mainHeader.sizeOfPartitionEntries; |
| emptyTable = new uint8_t[tableSize]; |
| if (emptyTable == NULL) { |
| cerr << "Could not allocate memory in GPTData::DestroyGPT()! Terminating!\n"; |
| exit(1); |
| } // if |
| memset(emptyTable, 0, tableSize); |
| if (allOK) { |
| sum = myDisk.Write(emptyTable, tableSize); |
| if (sum != tableSize) { |
| cerr << "Warning! GPT main partition table not overwritten! Error is " << errno << "\n"; |
| allOK = 0; |
| } // if write failed |
| } // if |
| if (!myDisk.Seek(secondHeader.partitionEntriesLBA)) |
| allOK = 0; |
| if (allOK) { |
| sum = myDisk.Write(emptyTable, tableSize); |
| if (sum != tableSize) { |
| cerr << "Warning! GPT backup partition table not overwritten! Error is " |
| << errno << "\n"; |
| allOK = 0; |
| } // if wrong size written |
| } // if |
| if (!myDisk.Seek(secondHeader.currentLBA)) |
| allOK = 0; |
| if (allOK) { |
| if (myDisk.Write(blankSector, 512) != 512) { // blank it out |
| cerr << "Warning! GPT backup header not overwritten! Error is " << errno << "\n"; |
| allOK = 0; |
| } // if |
| } // if |
| if (syncing) { |
| myDisk.DiskSync(); |
| } |
| myDisk.Close(); |
| cout << "GPT data structures destroyed! You may now partition the disk using fdisk or\n" |
| << "other utilities.\n"; |
| delete[] emptyTable; |
| } else { |
| cerr << "Problem opening '" << device << "' for writing! Program will now terminate.\n"; |
| } // if/else (fd != -1) |
| return (allOK); |
| } // GPTDataTextUI::DestroyGPT() |
| |
| // Wipe MBR data from the disk (zero it out completely) |
| // Returns 1 on success, 0 on failure. |
| int GPTData::DestroyMBR(void) { |
| int allOK; |
| uint8_t blankSector[512]; |
| |
| memset(blankSector, 0, sizeof(blankSector)); |
| |
| allOK = myDisk.OpenForWrite() && myDisk.Seek(0) && (myDisk.Write(blankSector, 512) == 512); |
| |
| if (!allOK) |
| cerr << "Warning! MBR not overwritten! Error is " << errno << "!\n"; |
| return allOK; |
| } // GPTData::DestroyMBR(void) |
| |
| // Tell user whether Apple Partition Map (APM) was discovered.... |
| void GPTData::ShowAPMState(void) { |
| if (apmFound) |
| cout << " APM: present\n"; |
| else |
| cout << " APM: not present\n"; |
| } // GPTData::ShowAPMState() |
| |
| // Tell user about the state of the GPT data.... |
| void GPTData::ShowGPTState(void) { |
| switch (state) { |
| case gpt_invalid: |
| cout << " GPT: not present\n"; |
| break; |
| case gpt_valid: |
| cout << " GPT: present\n"; |
| break; |
| case gpt_corrupt: |
| cout << " GPT: damaged\n"; |
| break; |
| default: |
| cout << "\a GPT: unknown -- bug!\n"; |
| break; |
| } // switch |
| } // GPTData::ShowGPTState() |
| |
| // Display the basic GPT data |
| void GPTData::DisplayGPTData(void) { |
| uint32_t i; |
| uint64_t temp, totalFree; |
| |
| cout << "Disk " << device << ": " << diskSize << " sectors, " |
| << BytesToIeee(diskSize, blockSize) << "\n"; |
| cout << "Logical sector size: " << blockSize << " bytes\n"; |
| cout << "Disk identifier (GUID): " << mainHeader.diskGUID << "\n"; |
| cout << "Partition table holds up to " << numParts << " entries\n"; |
| cout << "First usable sector is " << mainHeader.firstUsableLBA |
| << ", last usable sector is " << mainHeader.lastUsableLBA << "\n"; |
| totalFree = FindFreeBlocks(&i, &temp); |
| cout << "Partitions will be aligned on " << sectorAlignment << "-sector boundaries\n"; |
| cout << "Total free space is " << totalFree << " sectors (" |
| << BytesToIeee(totalFree, blockSize) << ")\n"; |
| cout << "\nNumber Start (sector) End (sector) Size Code Name\n"; |
| for (i = 0; i < numParts; i++) { |
| partitions[i].ShowSummary(i, blockSize); |
| } // for |
| } // GPTData::DisplayGPTData() |
| |
| // Show detailed information on the specified partition |
| void GPTData::ShowPartDetails(uint32_t partNum) { |
| if ((partNum < numParts) && !IsFreePartNum(partNum)) { |
| partitions[partNum].ShowDetails(blockSize); |
| } else { |
| cout << "Partition #" << partNum + 1 << " does not exist.\n"; |
| } // if |
| } // GPTData::ShowPartDetails() |
| |
| /************************************************************************** |
| * * |
| * Partition table transformation functions (MBR or BSD disklabel to GPT) * |
| * (some of these functions may require user interaction) * |
| * * |
| **************************************************************************/ |
| |
| // Examines the MBR & GPT data to determine which set of data to use: the |
| // MBR (use_mbr), the GPT (use_gpt), the BSD disklabel (use_bsd), or create |
| // a new set of partitions (use_new). A return value of use_abort indicates |
| // that this function couldn't determine what to do. Overriding functions |
| // in derived classes may ask users questions in such cases. |
| WhichToUse GPTData::UseWhichPartitions(void) { |
| WhichToUse which = use_new; |
| MBRValidity mbrState; |
| |
| mbrState = protectiveMBR.GetValidity(); |
| |
| if ((state == gpt_invalid) && ((mbrState == mbr) || (mbrState == hybrid))) { |
| cout << "\n***************************************************************\n" |
| << "Found invalid GPT and valid MBR; converting MBR to GPT format\n" |
| << "in memory. "; |
| if (!justLooking) { |
| cout << "\aTHIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit by\n" |
| << "typing 'q' if you don't want to convert your MBR partitions\n" |
| << "to GPT format!"; |
| } // if |
| cout << "\n***************************************************************\n\n"; |
| which = use_mbr; |
| } // if |
| |
| if ((state == gpt_invalid) && bsdFound) { |
| cout << "\n**********************************************************************\n" |
| << "Found invalid GPT and valid BSD disklabel; converting BSD disklabel\n" |
| << "to GPT format."; |
| if ((!justLooking) && (!beQuiet)) { |
| cout << "\a THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Your first\n" |
| << "BSD partition will likely be unusable. Exit by typing 'q' if you don't\n" |
| << "want to convert your BSD partitions to GPT format!"; |
| } // if |
| cout << "\n**********************************************************************\n\n"; |
| which = use_bsd; |
| } // if |
| |
| if ((state == gpt_valid) && (mbrState == gpt)) { |
| which = use_gpt; |
| if (!beQuiet) |
| cout << "Found valid GPT with protective MBR; using GPT.\n"; |
| } // if |
| if ((state == gpt_valid) && (mbrState == hybrid)) { |
| which = use_gpt; |
| if (!beQuiet) |
| cout << "Found valid GPT with hybrid MBR; using GPT.\n"; |
| } // if |
| if ((state == gpt_valid) && (mbrState == invalid)) { |
| cout << "\aFound valid GPT with corrupt MBR; using GPT and will write new\n" |
| << "protective MBR on save.\n"; |
| which = use_gpt; |
| } // if |
| if ((state == gpt_valid) && (mbrState == mbr)) { |
| which = use_abort; |
| } // if |
| |
| if (state == gpt_corrupt) { |
| if (mbrState == gpt) { |
| cout << "\a\a****************************************************************************\n" |
| << "Caution: Found protective or hybrid MBR and corrupt GPT. Using GPT, but disk\n" |
| << "verification and recovery are STRONGLY recommended.\n" |
| << "****************************************************************************\n"; |
| which = use_gpt; |
| } else { |
| which = use_abort; |
| } // if/else MBR says disk is GPT |
| } // if GPT corrupt |
| |
| if (which == use_new) |
| cout << "Creating new GPT entries.\n"; |
| |
| return which; |
| } // UseWhichPartitions() |
| |
| // Convert MBR partition table into GPT form. |
| void GPTData::XFormPartitions(void) { |
| int i, numToConvert; |
| uint8_t origType; |
| |
| // Clear out old data & prepare basics.... |
| ClearGPTData(); |
| |
| // Convert the smaller of the # of GPT or MBR partitions |
| if (numParts > MAX_MBR_PARTS) |
| numToConvert = MAX_MBR_PARTS; |
| else |
| numToConvert = numParts; |
| |
| for (i = 0; i < numToConvert; i++) { |
| origType = protectiveMBR.GetType(i); |
| // don't waste CPU time trying to convert extended, hybrid protective, or |
| // null (non-existent) partitions |
| if ((origType != 0x05) && (origType != 0x0f) && (origType != 0x85) && |
| (origType != 0x00) && (origType != 0xEE)) |
| partitions[i] = protectiveMBR.AsGPT(i); |
| } // for |
| |
| // Convert MBR into protective MBR |
| protectiveMBR.MakeProtectiveMBR(); |
| |
| // Record that all original CRCs were OK so as not to raise flags |
| // when doing a disk verification |
| mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1; |
| } // GPTData::XFormPartitions() |
| |
| // Transforms BSD disklabel on the specified partition (numbered from 0). |
| // If an invalid partition number is given, the program does nothing. |
| // Returns the number of new partitions created. |
| int GPTData::XFormDisklabel(uint32_t partNum) { |
| uint32_t low, high; |
| int goOn = 1, numDone = 0; |
| BSDData disklabel; |
| |
| if (GetPartRange(&low, &high) == 0) { |
| goOn = 0; |
| cout << "No partitions!\n"; |
| } // if |
| if (partNum > high) { |
| goOn = 0; |
| cout << "Specified partition is invalid!\n"; |
| } // if |
| |
| // If all is OK, read the disklabel and convert it. |
| if (goOn) { |
| goOn = disklabel.ReadBSDData(&myDisk, partitions[partNum].GetFirstLBA(), |
| partitions[partNum].GetLastLBA()); |
| if ((goOn) && (disklabel.IsDisklabel())) { |
| numDone = XFormDisklabel(&disklabel); |
| if (numDone == 1) |
| cout << "Converted 1 BSD partition.\n"; |
| else |
| cout << "Converted " << numDone << " BSD partitions.\n"; |
| } else { |
| cout << "Unable to convert partitions! Unrecognized BSD disklabel.\n"; |
| } // if/else |
| } // if |
| if (numDone > 0) { // converted partitions; delete carrier |
| partitions[partNum].BlankPartition(); |
| } // if |
| return numDone; |
| } // GPTData::XFormDisklabel(uint32_t i) |
| |
| // Transform the partitions on an already-loaded BSD disklabel... |
| int GPTData::XFormDisklabel(BSDData* disklabel) { |
| int i, partNum = 0, numDone = 0; |
| |
| if (disklabel->IsDisklabel()) { |
| for (i = 0; i < disklabel->GetNumParts(); i++) { |
| partNum = FindFirstFreePart(); |
| if (partNum >= 0) { |
| partitions[partNum] = disklabel->AsGPT(i); |
| if (partitions[partNum].IsUsed()) |
| numDone++; |
| } // if |
| } // for |
| if (partNum == -1) |
| cerr << "Warning! Too many partitions to convert!\n"; |
| } // if |
| |
| // Record that all original CRCs were OK so as not to raise flags |
| // when doing a disk verification |
| mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1; |
| |
| return numDone; |
| } // GPTData::XFormDisklabel(BSDData* disklabel) |
| |
| // Add one GPT partition to MBR. Used by PartsToMBR() functions. Created |
| // partition has the active/bootable flag UNset and uses the GPT fdisk |
| // type code divided by 0x0100 as the MBR type code. |
| // Returns 1 if operation was 100% successful, 0 if there were ANY |
| // problems. |
| int GPTData::OnePartToMBR(uint32_t gptPart, int mbrPart) { |
| int allOK = 1; |
| |
| if ((mbrPart < 0) || (mbrPart > 3)) { |
| cout << "MBR partition " << mbrPart + 1 << " is out of range; omitting it.\n"; |
| allOK = 0; |
| } // if |
| if (gptPart >= numParts) { |
| cout << "GPT partition " << gptPart + 1 << " is out of range; omitting it.\n"; |
| allOK = 0; |
| } // if |
| if (allOK && (partitions[gptPart].GetLastLBA() == UINT64_C(0))) { |
| cout << "GPT partition " << gptPart + 1 << " is undefined; omitting it.\n"; |
| allOK = 0; |
| } // if |
| if (allOK && (partitions[gptPart].GetFirstLBA() <= UINT32_MAX) && |
| (partitions[gptPart].GetLengthLBA() <= UINT32_MAX)) { |
| if (partitions[gptPart].GetLastLBA() > UINT32_MAX) { |
| cout << "Caution: Partition end point past 32-bit pointer boundary;" |
| << " some OSes may\nreact strangely.\n"; |
| } // if |
| protectiveMBR.MakePart(mbrPart, (uint32_t) partitions[gptPart].GetFirstLBA(), |
| (uint32_t) partitions[gptPart].GetLengthLBA(), |
| partitions[gptPart].GetHexType() / 256, 0); |
| } else { // partition out of range |
| if (allOK) // Display only if "else" triggered by out-of-bounds condition |
| cout << "Partition " << gptPart + 1 << " begins beyond the 32-bit pointer limit of MBR " |
| << "partitions, or is\n too big; omitting it.\n"; |
| allOK = 0; |
| } // if/else |
| return allOK; |
| } // GPTData::OnePartToMBR() |
| |
| |
| /********************************************************************** |
| * * |
| * Functions that adjust GPT data structures WITHOUT user interaction * |
| * (they may display information for the user's benefit, though) * |
| * * |
| **********************************************************************/ |
| |
| // Resizes GPT to specified number of entries. Creates a new table if |
| // necessary, copies data if it already exists. If fillGPTSectors is 1 |
| // (the default), rounds numEntries to fill all the sectors necessary to |
| // hold the GPT. |
| // Returns 1 if all goes well, 0 if an error is encountered. |
| int GPTData::SetGPTSize(uint32_t numEntries, int fillGPTSectors) { |
| GPTPart* newParts; |
| uint32_t i, high, copyNum, entriesPerSector; |
| int allOK = 1; |
| |
| // First, adjust numEntries upward, if necessary, to get a number |
| // that fills the allocated sectors |
| entriesPerSector = blockSize / GPT_SIZE; |
| if (fillGPTSectors && ((numEntries % entriesPerSector) != 0)) { |
| cout << "Adjusting GPT size from " << numEntries << " to "; |
| numEntries = ((numEntries / entriesPerSector) + 1) * entriesPerSector; |
| cout << numEntries << " to fill the sector\n"; |
| } // if |
| |
| // Do the work only if the # of partitions is changing. Along with being |
| // efficient, this prevents mucking with the location of the secondary |
| // partition table, which causes problems when loading data from a RAID |
| // array that's been expanded because this function is called when loading |
| // data. |
| if (((numEntries != numParts) || (partitions == NULL)) && (numEntries > 0)) { |
| newParts = new GPTPart [numEntries]; |
| if (newParts != NULL) { |
| if (partitions != NULL) { // existing partitions; copy them over |
| GetPartRange(&i, &high); |
| if (numEntries < (high + 1)) { // Highest entry too high for new # |
| cout << "The highest-numbered partition is " << high + 1 |
| << ", which is greater than the requested\n" |
| << "partition table size of " << numEntries |
| << "; cannot resize. Perhaps sorting will help.\n"; |
| allOK = 0; |
| delete[] newParts; |
| } else { // go ahead with copy |
| if (numEntries < numParts) |
| copyNum = numEntries; |
| else |
| copyNum = numParts; |
| for (i = 0; i < copyNum; i++) { |
| newParts[i] = partitions[i]; |
| } // for |
| delete[] partitions; |
| partitions = newParts; |
| } // if |
| } else { // No existing partition table; just create it |
| partitions = newParts; |
| } // if/else existing partitions |
| numParts = numEntries; |
| mainHeader.firstUsableLBA = ((numEntries * GPT_SIZE) / blockSize) + (((numEntries * GPT_SIZE) % blockSize) != 0) + 2 ; |
| secondHeader.firstUsableLBA = mainHeader.firstUsableLBA; |
| MoveSecondHeaderToEnd(); |
| if (diskSize > 0) |
| CheckGPTSize(); |
| } else { // Bad memory allocation |
| cerr << "Error allocating memory for partition table! Size is unchanged!\n"; |
| allOK = 0; |
| } // if/else |
| } // if/else |
| mainHeader.numParts = numParts; |
| secondHeader.numParts = numParts; |
| return (allOK); |
| } // GPTData::SetGPTSize() |
| |
| // Blank the partition array |
| void GPTData::BlankPartitions(void) { |
| uint32_t i; |
| |
| for (i = 0; i < numParts; i++) { |
| partitions[i].BlankPartition(); |
| } // for |
| } // GPTData::BlankPartitions() |
| |
| // Delete a partition by number. Returns 1 if successful, |
| // 0 if there was a problem. Returns 1 if partition was in |
| // range, 0 if it was out of range. |
| int GPTData::DeletePartition(uint32_t partNum) { |
| uint64_t startSector, length; |
| uint32_t low, high, numUsedParts, retval = 1;; |
| |
| numUsedParts = GetPartRange(&low, &high); |
| if ((numUsedParts > 0) && (partNum >= low) && (partNum <= high)) { |
| // In case there's a protective MBR, look for & delete matching |
| // MBR partition.... |
| startSector = partitions[partNum].GetFirstLBA(); |
| length = partitions[partNum].GetLengthLBA(); |
| protectiveMBR.DeleteByLocation(startSector, length); |
| |
| // Now delete the GPT partition |
| partitions[partNum].BlankPartition(); |
| } else { |
| cerr << "Partition number " << partNum + 1 << " out of range!\n"; |
| retval = 0; |
| } // if/else |
| return retval; |
| } // GPTData::DeletePartition(uint32_t partNum) |
| |
| // Non-interactively create a partition. |
| // Returns 1 if the operation was successful, 0 if a problem was discovered. |
| uint32_t GPTData::CreatePartition(uint32_t partNum, uint64_t startSector, uint64_t endSector) { |
| int retval = 1; // assume there'll be no problems |
| uint64_t origSector = startSector; |
| |
| if (IsFreePartNum(partNum)) { |
| if (Align(&startSector)) { |
| cout << "Information: Moved requested sector from " << origSector << " to " |
| << startSector << " in\norder to align on " << sectorAlignment |
| << "-sector boundaries.\n"; |
| } // if |
| if (IsFree(startSector) && (startSector <= endSector)) { |
| if (FindLastInFree(startSector) >= endSector) { |
| partitions[partNum].SetFirstLBA(startSector); |
| partitions[partNum].SetLastLBA(endSector); |
| partitions[partNum].SetType(DEFAULT_GPT_TYPE); |
| partitions[partNum].RandomizeUniqueGUID(); |
| } else retval = 0; // if free space until endSector |
| } else retval = 0; // if startSector is free |
| } else retval = 0; // if legal partition number |
| return retval; |
| } // GPTData::CreatePartition(partNum, startSector, endSector) |
| |
| // Sort the GPT entries, eliminating gaps and making for a logical |
| // ordering. |
| void GPTData::SortGPT(void) { |
| if (numParts > 0) |
| sort(partitions, partitions + numParts); |
| } // GPTData::SortGPT() |
| |
| // Swap the contents of two partitions. |
| // Returns 1 if successful, 0 if either partition is out of range |
| // (that is, not a legal number; either or both can be empty). |
| // Note that if partNum1 = partNum2 and this number is in range, |
| // it will be considered successful. |
| int GPTData::SwapPartitions(uint32_t partNum1, uint32_t partNum2) { |
| GPTPart temp; |
| int allOK = 1; |
| |
| if ((partNum1 < numParts) && (partNum2 < numParts)) { |
| if (partNum1 != partNum2) { |
| temp = partitions[partNum1]; |
| partitions[partNum1] = partitions[partNum2]; |
| partitions[partNum2] = temp; |
| } // if |
| } else allOK = 0; // partition numbers are valid |
| return allOK; |
| } // GPTData::SwapPartitions() |
| |
| // Set up data structures for entirely new set of partitions on the |
| // specified device. Returns 1 if OK, 0 if there were problems. |
| // Note that this function does NOT clear the protectiveMBR data |
| // structure, since it may hold the original MBR partitions if the |
| // program was launched on an MBR disk, and those may need to be |
| // converted to GPT format. |
| int GPTData::ClearGPTData(void) { |
| int goOn = 1, i; |
| |
| // Set up the partition table.... |
| delete[] partitions; |
| partitions = NULL; |
| SetGPTSize(NUM_GPT_ENTRIES); |
| |
| // Now initialize a bunch of stuff that's static.... |
| mainHeader.signature = GPT_SIGNATURE; |
| mainHeader.revision = 0x00010000; |
| mainHeader.headerSize = HEADER_SIZE; |
| mainHeader.reserved = 0; |
| mainHeader.currentLBA = UINT64_C(1); |
| mainHeader.partitionEntriesLBA = (uint64_t) 2; |
| mainHeader.sizeOfPartitionEntries = GPT_SIZE; |
| for (i = 0; i < GPT_RESERVED; i++) { |
| mainHeader.reserved2[i] = '\0'; |
| } // for |
| if (blockSize > 0) |
| sectorAlignment = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize; |
| else |
| sectorAlignment = DEFAULT_ALIGNMENT; |
| |
| // Now some semi-static items (computed based on end of disk) |
| mainHeader.backupLBA = diskSize - UINT64_C(1); |
| mainHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA; |
| |
| // Set a unique GUID for the disk, based on random numbers |
| mainHeader.diskGUID.Randomize(); |
| |
| // Copy main header to backup header |
| RebuildSecondHeader(); |
| |
| // Blank out the partitions array.... |
| BlankPartitions(); |
| |
| // Flag all CRCs as being OK.... |
| mainCrcOk = 1; |
| secondCrcOk = 1; |
| mainPartsCrcOk = 1; |
| secondPartsCrcOk = 1; |
| |
| return (goOn); |
| } // GPTData::ClearGPTData() |
| |
| // Set the location of the second GPT header data to the end of the disk. |
| // If the disk size has actually changed, this also adjusts the protective |
| // entry in the MBR, since it's probably no longer correct. |
| // Used internally and called by the 'e' option on the recovery & |
| // transformation menu, to help users of RAID arrays who add disk space |
| // to their arrays or to adjust data structures in restore operations |
| // involving unequal-sized disks. |
| void GPTData::MoveSecondHeaderToEnd() { |
| mainHeader.backupLBA = secondHeader.currentLBA = diskSize - UINT64_C(1); |
| if (mainHeader.lastUsableLBA != diskSize - mainHeader.firstUsableLBA) { |
| if (protectiveMBR.GetValidity() == hybrid) { |
| protectiveMBR.OptimizeEESize(); |
| RecomputeCHS(); |
| } // if |
| if (protectiveMBR.GetValidity() == gpt) |
| MakeProtectiveMBR(); |
| } // if |
| mainHeader.lastUsableLBA = secondHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA; |
| secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1); |
| } // GPTData::FixSecondHeaderLocation() |
| |
| // Sets the partition's name to the specified UnicodeString without |
| // user interaction. |
| // Returns 1 on success, 0 on failure (invalid partition number). |
| int GPTData::SetName(uint32_t partNum, const UnicodeString & theName) { |
| int retval = 1; |
| |
| if (IsUsedPartNum(partNum)) |
| partitions[partNum].SetName(theName); |
| else |
| retval = 0; |
| |
| return retval; |
| } // GPTData::SetName |
| |
| // Set the disk GUID to the specified value. Note that the header CRCs must |
| // be recomputed after calling this function. |
| void GPTData::SetDiskGUID(GUIDData newGUID) { |
| mainHeader.diskGUID = newGUID; |
| secondHeader.diskGUID = newGUID; |
| } // SetDiskGUID() |
| |
| // Set the unique GUID of the specified partition. Returns 1 on |
| // successful completion, 0 if there were problems (invalid |
| // partition number). |
| int GPTData::SetPartitionGUID(uint32_t pn, GUIDData theGUID) { |
| int retval = 0; |
| |
| if (pn < numParts) { |
| if (partitions[pn].IsUsed()) { |
| partitions[pn].SetUniqueGUID(theGUID); |
| retval = 1; |
| } // if |
| } // if |
| return retval; |
| } // GPTData::SetPartitionGUID() |
| |
| // Set new random GUIDs for the disk and all partitions. Intended to be used |
| // after disk cloning or similar operations that don't randomize the GUIDs. |
| void GPTData::RandomizeGUIDs(void) { |
| uint32_t i; |
| |
| mainHeader.diskGUID.Randomize(); |
| secondHeader.diskGUID = mainHeader.diskGUID; |
| for (i = 0; i < numParts; i++) |
| if (partitions[i].IsUsed()) |
| partitions[i].RandomizeUniqueGUID(); |
| } // GPTData::RandomizeGUIDs() |
| |
| // Change partition type code non-interactively. Returns 1 if |
| // successful, 0 if not.... |
| int GPTData::ChangePartType(uint32_t partNum, PartType theGUID) { |
| int retval = 1; |
| |
| if (!IsFreePartNum(partNum)) { |
| partitions[partNum].SetType(theGUID); |
| } else retval = 0; |
| return retval; |
| } // GPTData::ChangePartType() |
| |
| // Recompute the CHS values of all the MBR partitions. Used to reset |
| // CHS values that some BIOSes require, despite the fact that the |
| // resulting CHS values violate the GPT standard. |
| void GPTData::RecomputeCHS(void) { |
| int i; |
| |
| for (i = 0; i < 4; i++) |
| protectiveMBR.RecomputeCHS(i); |
| } // GPTData::RecomputeCHS() |
| |
| // Adjust sector number so that it falls on a sector boundary that's a |
| // multiple of sectorAlignment. This is done to improve the performance |
| // of Western Digital Advanced Format disks and disks with similar |
| // technology from other companies, which use 4096-byte sectors |
| // internally although they translate to 512-byte sectors for the |
| // benefit of the OS. If partitions aren't properly aligned on these |
| // disks, some filesystem data structures can span multiple physical |
| // sectors, degrading performance. This function should be called |
| // only on the FIRST sector of the partition, not the last! |
| // This function returns 1 if the alignment was altered, 0 if it |
| // was unchanged. |
| int GPTData::Align(uint64_t* sector) { |
| int retval = 0, sectorOK = 0; |
| uint64_t earlier, later, testSector; |
| |
| if ((*sector % sectorAlignment) != 0) { |
| earlier = (*sector / sectorAlignment) * sectorAlignment; |
| later = earlier + (uint64_t) sectorAlignment; |
| |
| // Check to see that every sector between the earlier one and the |
| // requested one is clear, and that it's not too early.... |
| if (earlier >= mainHeader.firstUsableLBA) { |
| sectorOK = 1; |
| testSector = earlier; |
| do { |
| sectorOK = IsFree(testSector++); |
| } while ((sectorOK == 1) && (testSector < *sector)); |
| if (sectorOK == 1) { |
| *sector = earlier; |
| retval = 1; |
| } // if |
| } // if firstUsableLBA check |
| |
| // If couldn't move the sector earlier, try to move it later instead.... |
| if ((sectorOK != 1) && (later <= mainHeader.lastUsableLBA)) { |
| sectorOK = 1; |
| testSector = later; |
| do { |
| sectorOK = IsFree(testSector--); |
| } while ((sectorOK == 1) && (testSector > *sector)); |
| if (sectorOK == 1) { |
| *sector = later; |
| retval = 1; |
| } // if |
| } // if |
| } // if |
| return retval; |
| } // GPTData::Align() |
| |
| /******************************************************** |
| * * |
| * Functions that return data about GPT data structures * |
| * (most of these are inline in gpt.h) * |
| * * |
| ********************************************************/ |
| |
| // Find the low and high used partition numbers (numbered from 0). |
| // Return value is the number of partitions found. Note that the |
| // *low and *high values are both set to 0 when no partitions |
| // are found, as well as when a single partition in the first |
| // position exists. Thus, the return value is the only way to |
| // tell when no partitions exist. |
| int GPTData::GetPartRange(uint32_t *low, uint32_t *high) { |
| uint32_t i; |
| int numFound = 0; |
| |
| *low = numParts + 1; // code for "not found" |
| *high = 0; |
| for (i = 0; i < numParts; i++) { |
| if (partitions[i].IsUsed()) { // it exists |
| *high = i; // since we're counting up, set the high value |
| // Set the low value only if it's not yet found... |
| if (*low == (numParts + 1)) *low = i; |
| numFound++; |
| } // if |
| } // for |
| |
| // Above will leave *low pointing to its "not found" value if no partitions |
| // are defined, so reset to 0 if this is the case.... |
| if (*low == (numParts + 1)) |
| *low = 0; |
| return numFound; |
| } // GPTData::GetPartRange() |
| |
| // Returns the value of the first free partition, or -1 if none is |
| // unused. |
| int GPTData::FindFirstFreePart(void) { |
| int i = 0; |
| |
| if (partitions != NULL) { |
| while ((i < (int) numParts) && (partitions[i].IsUsed())) |
| i++; |
| if (i >= (int) numParts) |
| i = -1; |
| } else i = -1; |
| return i; |
| } // GPTData::FindFirstFreePart() |
| |
| // Returns the number of defined partitions. |
| uint32_t GPTData::CountParts(void) { |
| uint32_t i, counted = 0; |
| |
| for (i = 0; i < numParts; i++) { |
| if (partitions[i].IsUsed()) |
| counted++; |
| } // for |
| return counted; |
| } // GPTData::CountParts() |
| |
| /**************************************************** |
| * * |
| * Functions that return data about disk free space * |
| * * |
| ****************************************************/ |
| |
| // Find the first available block after the starting point; returns 0 if |
| // there are no available blocks left |
| uint64_t GPTData::FindFirstAvailable(uint64_t start) { |
| uint64_t first; |
| uint32_t i; |
| int firstMoved = 0; |
| |
| // Begin from the specified starting point or from the first usable |
| // LBA, whichever is greater... |
| if (start < mainHeader.firstUsableLBA) |
| first = mainHeader.firstUsableLBA; |
| else |
| first = start; |
| |
| // ...now search through all partitions; if first is within an |
| // existing partition, move it to the next sector after that |
| // partition and repeat. If first was moved, set firstMoved |
| // flag; repeat until firstMoved is not set, so as to catch |
| // cases where partitions are out of sequential order.... |
| do { |
| firstMoved = 0; |
| for (i = 0; i < numParts; i++) { |
| if ((partitions[i].IsUsed()) && (first >= partitions[i].GetFirstLBA()) && |
| (first <= partitions[i].GetLastLBA())) { // in existing part. |
| first = partitions[i].GetLastLBA() + 1; |
| firstMoved = 1; |
| } // if |
| } // for |
| } while (firstMoved == 1); |
| if (first > mainHeader.lastUsableLBA) |
| first = 0; |
| return (first); |
| } // GPTData::FindFirstAvailable() |
| |
| // Finds the first available sector in the largest block of unallocated |
| // space on the disk. Returns 0 if there are no available blocks left |
| uint64_t GPTData::FindFirstInLargest(void) { |
| uint64_t start, firstBlock, lastBlock, segmentSize, selectedSize = 0, selectedSegment = 0; |
| |
| start = 0; |
| do { |
| firstBlock = FindFirstAvailable(start); |
| if (firstBlock != UINT32_C(0)) { // something's free... |
| lastBlock = FindLastInFree(firstBlock); |
| segmentSize = lastBlock - firstBlock + UINT32_C(1); |
| if (segmentSize > selectedSize) { |
| selectedSize = segmentSize; |
| selectedSegment = firstBlock; |
| } // if |
| start = lastBlock + 1; |
| } // if |
| } while (firstBlock != 0); |
| return selectedSegment; |
| } // GPTData::FindFirstInLargest() |
| |
| // Find the last available block on the disk. |
| // Returns 0 if there are no available sectors |
| uint64_t GPTData::FindLastAvailable(void) { |
| uint64_t last; |
| uint32_t i; |
| int lastMoved = 0; |
| |
| // Start by assuming the last usable LBA is available.... |
| last = mainHeader.lastUsableLBA; |
| |
| // ...now, similar to algorithm in FindFirstAvailable(), search |
| // through all partitions, moving last when it's in an existing |
| // partition. Set the lastMoved flag so we repeat to catch cases |
| // where partitions are out of logical order. |
| do { |
| lastMoved = 0; |
| for (i = 0; i < numParts; i++) { |
| if ((last >= partitions[i].GetFirstLBA()) && |
| (last <= partitions[i].GetLastLBA())) { // in existing part. |
| last = partitions[i].GetFirstLBA() - 1; |
| lastMoved = 1; |
| } // if |
| } // for |
| } while (lastMoved == 1); |
| if (last < mainHeader.firstUsableLBA) |
| last = 0; |
| return (last); |
| } // GPTData::FindLastAvailable() |
| |
| // Find the last available block in the free space pointed to by start. |
| uint64_t GPTData::FindLastInFree(uint64_t start) { |
| uint64_t nearestStart; |
| uint32_t i; |
| |
| nearestStart = mainHeader.lastUsableLBA; |
| for (i = 0; i < numParts; i++) { |
| if ((nearestStart > partitions[i].GetFirstLBA()) && |
| (partitions[i].GetFirstLBA() > start)) { |
| nearestStart = partitions[i].GetFirstLBA() - 1; |
| } // if |
| } // for |
| return (nearestStart); |
| } // GPTData::FindLastInFree() |
| |
| // Finds the total number of free blocks, the number of segments in which |
| // they reside, and the size of the largest of those segments |
| uint64_t GPTData::FindFreeBlocks(uint32_t *numSegments, uint64_t *largestSegment) { |
| uint64_t start = UINT64_C(0); // starting point for each search |
| uint64_t totalFound = UINT64_C(0); // running total |
| uint64_t firstBlock; // first block in a segment |
| uint64_t lastBlock; // last block in a segment |
| uint64_t segmentSize; // size of segment in blocks |
| uint32_t num = 0; |
| |
| *largestSegment = UINT64_C(0); |
| if (diskSize > 0) { |
| do { |
| firstBlock = FindFirstAvailable(start); |
| if (firstBlock != UINT64_C(0)) { // something's free... |
| lastBlock = FindLastInFree(firstBlock); |
| segmentSize = lastBlock - firstBlock + UINT64_C(1); |
| if (segmentSize > *largestSegment) { |
| *largestSegment = segmentSize; |
| } // if |
| totalFound += segmentSize; |
| num++; |
| start = lastBlock + 1; |
| } // if |
| } while (firstBlock != 0); |
| } // if |
| *numSegments = num; |
| return totalFound; |
| } // GPTData::FindFreeBlocks() |
| |
| // Returns 1 if sector is unallocated, 0 if it's allocated to a partition. |
| // If it's allocated, return the partition number to which it's allocated |
| // in partNum, if that variable is non-NULL. (A value of UINT32_MAX is |
| // returned in partNum if the sector is in use by basic GPT data structures.) |
| int GPTData::IsFree(uint64_t sector, uint32_t *partNum) { |
| int isFree = 1; |
| uint32_t i; |
| |
| for (i = 0; i < numParts; i++) { |
| if ((sector >= partitions[i].GetFirstLBA()) && |
| (sector <= partitions[i].GetLastLBA())) { |
| isFree = 0; |
| if (partNum != NULL) |
| *partNum = i; |
| } // if |
| } // for |
| if ((sector < mainHeader.firstUsableLBA) || |
| (sector > mainHeader.lastUsableLBA)) { |
| isFree = 0; |
| if (partNum != NULL) |
| *partNum = UINT32_MAX; |
| } // if |
| return (isFree); |
| } // GPTData::IsFree() |
| |
| // Returns 1 if partNum is unused AND if it's a legal value. |
| int GPTData::IsFreePartNum(uint32_t partNum) { |
| return ((partNum < numParts) && (partitions != NULL) && |
| (!partitions[partNum].IsUsed())); |
| } // GPTData::IsFreePartNum() |
| |
| // Returns 1 if partNum is in use. |
| int GPTData::IsUsedPartNum(uint32_t partNum) { |
| return ((partNum < numParts) && (partitions != NULL) && |
| (partitions[partNum].IsUsed())); |
| } // GPTData::IsUsedPartNum() |
| |
| /*********************************************************** |
| * * |
| * Change how functions work or return information on them * |
| * * |
| ***********************************************************/ |
| |
| // Set partition alignment value; partitions will begin on multiples of |
| // the specified value |
| void GPTData::SetAlignment(uint32_t n) { |
| if (n > 0) |
| sectorAlignment = n; |
| else |
| cerr << "Attempt to set partition alignment to 0!\n"; |
| } // GPTData::SetAlignment() |
| |
| // Compute sector alignment based on the current partitions (if any). Each |
| // partition's starting LBA is examined, and if it's divisible by a power-of-2 |
| // value less than or equal to the DEFAULT_ALIGNMENT value (adjusted for the |
| // sector size), but not by the previously-located alignment value, then the |
| // alignment value is adjusted down. If the computed alignment is less than 8 |
| // and the disk is bigger than SMALLEST_ADVANCED_FORMAT, resets it to 8. This |
| // is a safety measure for Advanced Format drives. If no partitions are |
| // defined, the alignment value is set to DEFAULT_ALIGNMENT (2048) (or an |
| // adjustment of that based on the current sector size). The result is that new |
| // drives are aligned to 2048-sector multiples but the program won't complain |
| // about other alignments on existing disks unless a smaller-than-8 alignment |
| // is used on big disks (as safety for Advanced Format drives). |
| // Returns the computed alignment value. |
| uint32_t GPTData::ComputeAlignment(void) { |
| uint32_t i = 0, found, exponent = 31; |
| uint32_t align = DEFAULT_ALIGNMENT; |
| |
| if (blockSize > 0) |
| align = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize; |
| exponent = (uint32_t) log2(align); |
| for (i = 0; i < numParts; i++) { |
| if (partitions[i].IsUsed()) { |
| found = 0; |
| while (!found) { |
| align = UINT64_C(1) << exponent; |
| if ((partitions[i].GetFirstLBA() % align) == 0) { |
| found = 1; |
| } else { |
| exponent--; |
| } // if/else |
| } // while |
| } // if |
| } // for |
| if ((align < MIN_AF_ALIGNMENT) && (diskSize >= SMALLEST_ADVANCED_FORMAT)) |
| align = MIN_AF_ALIGNMENT; |
| sectorAlignment = align; |
| return align; |
| } // GPTData::ComputeAlignment() |
| |
| /******************************** |
| * * |
| * Endianness support functions * |
| * * |
| ********************************/ |
| |
| void GPTData::ReverseHeaderBytes(struct GPTHeader* header) { |
| ReverseBytes(&header->signature, 8); |
| ReverseBytes(&header->revision, 4); |
| ReverseBytes(&header->headerSize, 4); |
| ReverseBytes(&header->headerCRC, 4); |
| ReverseBytes(&header->reserved, 4); |
| ReverseBytes(&header->currentLBA, 8); |
| ReverseBytes(&header->backupLBA, 8); |
| ReverseBytes(&header->firstUsableLBA, 8); |
| ReverseBytes(&header->lastUsableLBA, 8); |
| ReverseBytes(&header->partitionEntriesLBA, 8); |
| ReverseBytes(&header->numParts, 4); |
| ReverseBytes(&header->sizeOfPartitionEntries, 4); |
| ReverseBytes(&header->partitionEntriesCRC, 4); |
| ReverseBytes(header->reserved2, GPT_RESERVED); |
| } // GPTData::ReverseHeaderBytes() |
| |
| // Reverse byte order for all partitions. |
| void GPTData::ReversePartitionBytes() { |
| uint32_t i; |
| |
| for (i = 0; i < numParts; i++) { |
| partitions[i].ReversePartBytes(); |
| } // for |
| } // GPTData::ReversePartitionBytes() |
| |
| // Validate partition number |
| bool GPTData::ValidPartNum (const uint32_t partNum) { |
| if (partNum >= numParts) { |
| cerr << "Partition number out of range: " << partNum << "\n"; |
| return false; |
| } // if |
| return true; |
| } // GPTData::ValidPartNum |
| |
| // Return a single partition for inspection (not modification!) by other |
| // functions. |
| const GPTPart & GPTData::operator[](uint32_t partNum) const { |
| if (partNum >= numParts) { |
| cerr << "Partition number out of range (" << partNum << " requested, but only " |
| << numParts << " available)\n"; |
| exit(1); |
| } // if |
| if (partitions == NULL) { |
| cerr << "No partitions defined in GPTData::operator[]; fatal error!\n"; |
| exit(1); |
| } // if |
| return partitions[partNum]; |
| } // operator[] |
| |
| // Return (not for modification!) the disk's GUID value |
| const GUIDData & GPTData::GetDiskGUID(void) const { |
| return mainHeader.diskGUID; |
| } // GPTData::GetDiskGUID() |
| |
| // Manage attributes for a partition, based on commands passed to this function. |
| // (Function is non-interactive.) |
| // Returns 1 if a modification command succeeded, 0 if the command should not have |
| // modified data, and -1 if a modification command failed. |
| int GPTData::ManageAttributes(int partNum, const string & command, const string & bits) { |
| int retval = 0; |
| Attributes theAttr; |
| |
| if (partNum >= (int) numParts) { |
| cerr << "Invalid partition number (" << partNum + 1 << ")\n"; |
| retval = -1; |
| } else { |
| if (command == "show") { |
| ShowAttributes(partNum); |
| } else if (command == "get") { |
| GetAttribute(partNum, bits); |
| } else { |
| theAttr = partitions[partNum].GetAttributes(); |
| if (theAttr.OperateOnAttributes(partNum, command, bits)) { |
| partitions[partNum].SetAttributes(theAttr.GetAttributes()); |
| retval = 1; |
| } else { |
| retval = -1; |
| } // if/else |
| } // if/elseif/else |
| } // if/else invalid partition # |
| |
| return retval; |
| } // GPTData::ManageAttributes() |
| |
| // Show all attributes for a specified partition.... |
| void GPTData::ShowAttributes(const uint32_t partNum) { |
| if ((partNum < numParts) && partitions[partNum].IsUsed()) |
| partitions[partNum].ShowAttributes(partNum); |
| } // GPTData::ShowAttributes |
| |
| // Show whether a single attribute bit is set (terse output)... |
| void GPTData::GetAttribute(const uint32_t partNum, const string& attributeBits) { |
| if (partNum < numParts) |
| partitions[partNum].GetAttributes().OperateOnAttributes(partNum, "get", attributeBits); |
| } // GPTData::GetAttribute |
| |
| |
| /****************************************** |
| * * |
| * Additional non-class support functions * |
| * * |
| ******************************************/ |
| |
| // Check to be sure that data type sizes are correct. The basic types (uint*_t) should |
| // never fail these tests, but the struct types may fail depending on compile options. |
| // Specifically, the -fpack-struct option to gcc may be required to ensure proper structure |
| // sizes. |
| int SizesOK(void) { |
| int allOK = 1; |
| |
| if (sizeof(uint8_t) != 1) { |
| cerr << "uint8_t is " << sizeof(uint8_t) << " bytes, should be 1 byte; aborting!\n"; |
| allOK = 0; |
| } // if |
| if (sizeof(uint16_t) != 2) { |
| cerr << "uint16_t is " << sizeof(uint16_t) << " bytes, should be 2 bytes; aborting!\n"; |
| allOK = 0; |
| } // if |
| if (sizeof(uint32_t) != 4) { |
| cerr << "uint32_t is " << sizeof(uint32_t) << " bytes, should be 4 bytes; aborting!\n"; |
| allOK = 0; |
| } // if |
| if (sizeof(uint64_t) != 8) { |
| cerr << "uint64_t is " << sizeof(uint64_t) << " bytes, should be 8 bytes; aborting!\n"; |
| allOK = 0; |
| } // if |
| if (sizeof(struct MBRRecord) != 16) { |
| cerr << "MBRRecord is " << sizeof(MBRRecord) << " bytes, should be 16 bytes; aborting!\n"; |
| allOK = 0; |
| } // if |
| if (sizeof(struct TempMBR) != 512) { |
| cerr << "TempMBR is " << sizeof(TempMBR) << " bytes, should be 512 bytes; aborting!\n"; |
| allOK = 0; |
| } // if |
| if (sizeof(struct GPTHeader) != 512) { |
| cerr << "GPTHeader is " << sizeof(GPTHeader) << " bytes, should be 512 bytes; aborting!\n"; |
| allOK = 0; |
| } // if |
| if (sizeof(GPTPart) != 128) { |
| cerr << "GPTPart is " << sizeof(GPTPart) << " bytes, should be 128 bytes; aborting!\n"; |
| allOK = 0; |
| } // if |
| if (sizeof(GUIDData) != 16) { |
| cerr << "GUIDData is " << sizeof(GUIDData) << " bytes, should be 16 bytes; aborting!\n"; |
| allOK = 0; |
| } // if |
| if (sizeof(PartType) != 16) { |
| cerr << "PartType is " << sizeof(PartType) << " bytes, should be 16 bytes; aborting!\n"; |
| allOK = 0; |
| } // if |
| return (allOK); |
| } // SizesOK() |
| |