| // Copyright 2007, Google Inc. | 
 | // All rights reserved. | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | // notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | // copyright notice, this list of conditions and the following disclaimer | 
 | // in the documentation and/or other materials provided with the | 
 | // distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | // contributors may be used to endorse or promote products derived from | 
 | // this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 | // Google Mock - a framework for writing C++ mock classes. | 
 | // | 
 | // This file tests the built-in actions. | 
 |  | 
 | // Silence C4100 (unreferenced formal parameter) and C4503 (decorated name | 
 | // length exceeded) for MSVC. | 
 | #ifdef _MSC_VER | 
 | #pragma warning(push) | 
 | #pragma warning(disable : 4100) | 
 | #pragma warning(disable : 4503) | 
 | #if _MSC_VER == 1900 | 
 | // and silence C4800 (C4800: 'int *const ': forcing value | 
 | // to bool 'true' or 'false') for MSVC 15 | 
 | #pragma warning(disable : 4800) | 
 | #endif | 
 | #endif | 
 |  | 
 | #include "gmock/gmock-actions.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <functional> | 
 | #include <iterator> | 
 | #include <memory> | 
 | #include <string> | 
 | #include <type_traits> | 
 | #include <vector> | 
 |  | 
 | #include "gmock/gmock.h" | 
 | #include "gmock/internal/gmock-port.h" | 
 | #include "gtest/gtest-spi.h" | 
 | #include "gtest/gtest.h" | 
 |  | 
 | namespace testing { | 
 | namespace { | 
 |  | 
 | using ::testing::internal::BuiltInDefaultValue; | 
 |  | 
 | TEST(TypeTraits, Negation) { | 
 |   // Direct use with std types. | 
 |   static_assert(std::is_base_of<std::false_type, | 
 |                                 internal::negation<std::true_type>>::value, | 
 |                 ""); | 
 |  | 
 |   static_assert(std::is_base_of<std::true_type, | 
 |                                 internal::negation<std::false_type>>::value, | 
 |                 ""); | 
 |  | 
 |   // With other types that fit the requirement of a value member that is | 
 |   // convertible to bool. | 
 |   static_assert(std::is_base_of< | 
 |                     std::true_type, | 
 |                     internal::negation<std::integral_constant<int, 0>>>::value, | 
 |                 ""); | 
 |  | 
 |   static_assert(std::is_base_of< | 
 |                     std::false_type, | 
 |                     internal::negation<std::integral_constant<int, 1>>>::value, | 
 |                 ""); | 
 |  | 
 |   static_assert(std::is_base_of< | 
 |                     std::false_type, | 
 |                     internal::negation<std::integral_constant<int, -1>>>::value, | 
 |                 ""); | 
 | } | 
 |  | 
 | // Weird false/true types that aren't actually bool constants (but should still | 
 | // be legal according to [meta.logical] because `bool(T::value)` is valid), are | 
 | // distinct from std::false_type and std::true_type, and are distinct from other | 
 | // instantiations of the same template. | 
 | // | 
 | // These let us check finicky details mandated by the standard like | 
 | // "std::conjunction should evaluate to a type that inherits from the first | 
 | // false-y input". | 
 | template <int> | 
 | struct MyFalse : std::integral_constant<int, 0> {}; | 
 |  | 
 | template <int> | 
 | struct MyTrue : std::integral_constant<int, -1> {}; | 
 |  | 
 | TEST(TypeTraits, Conjunction) { | 
 |   // Base case: always true. | 
 |   static_assert(std::is_base_of<std::true_type, internal::conjunction<>>::value, | 
 |                 ""); | 
 |  | 
 |   // One predicate: inherits from that predicate, regardless of value. | 
 |   static_assert( | 
 |       std::is_base_of<MyFalse<0>, internal::conjunction<MyFalse<0>>>::value, | 
 |       ""); | 
 |  | 
 |   static_assert( | 
 |       std::is_base_of<MyTrue<0>, internal::conjunction<MyTrue<0>>>::value, ""); | 
 |  | 
 |   // Multiple predicates, with at least one false: inherits from that one. | 
 |   static_assert( | 
 |       std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>, | 
 |                                                         MyTrue<2>>>::value, | 
 |       ""); | 
 |  | 
 |   static_assert( | 
 |       std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>, | 
 |                                                         MyFalse<2>>>::value, | 
 |       ""); | 
 |  | 
 |   // Short circuiting: in the case above, additional predicates need not even | 
 |   // define a value member. | 
 |   struct Empty {}; | 
 |   static_assert( | 
 |       std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>, | 
 |                                                         Empty>>::value, | 
 |       ""); | 
 |  | 
 |   // All predicates true: inherits from the last. | 
 |   static_assert( | 
 |       std::is_base_of<MyTrue<2>, internal::conjunction<MyTrue<0>, MyTrue<1>, | 
 |                                                        MyTrue<2>>>::value, | 
 |       ""); | 
 | } | 
 |  | 
 | TEST(TypeTraits, Disjunction) { | 
 |   // Base case: always false. | 
 |   static_assert( | 
 |       std::is_base_of<std::false_type, internal::disjunction<>>::value, ""); | 
 |  | 
 |   // One predicate: inherits from that predicate, regardless of value. | 
 |   static_assert( | 
 |       std::is_base_of<MyFalse<0>, internal::disjunction<MyFalse<0>>>::value, | 
 |       ""); | 
 |  | 
 |   static_assert( | 
 |       std::is_base_of<MyTrue<0>, internal::disjunction<MyTrue<0>>>::value, ""); | 
 |  | 
 |   // Multiple predicates, with at least one true: inherits from that one. | 
 |   static_assert( | 
 |       std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>, | 
 |                                                        MyFalse<2>>>::value, | 
 |       ""); | 
 |  | 
 |   static_assert( | 
 |       std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>, | 
 |                                                        MyTrue<2>>>::value, | 
 |       ""); | 
 |  | 
 |   // Short circuiting: in the case above, additional predicates need not even | 
 |   // define a value member. | 
 |   struct Empty {}; | 
 |   static_assert( | 
 |       std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>, | 
 |                                                        Empty>>::value, | 
 |       ""); | 
 |  | 
 |   // All predicates false: inherits from the last. | 
 |   static_assert( | 
 |       std::is_base_of<MyFalse<2>, internal::disjunction<MyFalse<0>, MyFalse<1>, | 
 |                                                         MyFalse<2>>>::value, | 
 |       ""); | 
 | } | 
 |  | 
 | TEST(TypeTraits, IsInvocableRV) { | 
 |   struct C { | 
 |     int operator()() const { return 0; } | 
 |     void operator()(int) & {} | 
 |     std::string operator()(int) && { return ""; }; | 
 |   }; | 
 |  | 
 |   // The first overload is callable for const and non-const rvalues and lvalues. | 
 |   // It can be used to obtain an int, cv void, or anything int is convertible | 
 |   // to. | 
 |   static_assert(internal::is_callable_r<int, C>::value, ""); | 
 |   static_assert(internal::is_callable_r<int, C&>::value, ""); | 
 |   static_assert(internal::is_callable_r<int, const C>::value, ""); | 
 |   static_assert(internal::is_callable_r<int, const C&>::value, ""); | 
 |  | 
 |   static_assert(internal::is_callable_r<void, C>::value, ""); | 
 |   static_assert(internal::is_callable_r<const volatile void, C>::value, ""); | 
 |   static_assert(internal::is_callable_r<char, C>::value, ""); | 
 |  | 
 |   // It's possible to provide an int. If it's given to an lvalue, the result is | 
 |   // void. Otherwise it is std::string (which is also treated as allowed for a | 
 |   // void result type). | 
 |   static_assert(internal::is_callable_r<void, C&, int>::value, ""); | 
 |   static_assert(!internal::is_callable_r<int, C&, int>::value, ""); | 
 |   static_assert(!internal::is_callable_r<std::string, C&, int>::value, ""); | 
 |   static_assert(!internal::is_callable_r<void, const C&, int>::value, ""); | 
 |  | 
 |   static_assert(internal::is_callable_r<std::string, C, int>::value, ""); | 
 |   static_assert(internal::is_callable_r<void, C, int>::value, ""); | 
 |   static_assert(!internal::is_callable_r<int, C, int>::value, ""); | 
 |  | 
 |   // It's not possible to provide other arguments. | 
 |   static_assert(!internal::is_callable_r<void, C, std::string>::value, ""); | 
 |   static_assert(!internal::is_callable_r<void, C, int, int>::value, ""); | 
 |  | 
 |   // In C++17 and above, where it's guaranteed that functions can return | 
 |   // non-moveable objects, everything should work fine for non-moveable rsult | 
 |   // types too. | 
 | #if defined(__cplusplus) && __cplusplus >= 201703L | 
 |   { | 
 |     struct NonMoveable { | 
 |       NonMoveable() = default; | 
 |       NonMoveable(NonMoveable&&) = delete; | 
 |     }; | 
 |  | 
 |     static_assert(!std::is_move_constructible_v<NonMoveable>); | 
 |  | 
 |     struct Callable { | 
 |       NonMoveable operator()() { return NonMoveable(); } | 
 |     }; | 
 |  | 
 |     static_assert(internal::is_callable_r<NonMoveable, Callable>::value); | 
 |     static_assert(internal::is_callable_r<void, Callable>::value); | 
 |     static_assert( | 
 |         internal::is_callable_r<const volatile void, Callable>::value); | 
 |  | 
 |     static_assert(!internal::is_callable_r<int, Callable>::value); | 
 |     static_assert(!internal::is_callable_r<NonMoveable, Callable, int>::value); | 
 |   } | 
 | #endif  // C++17 and above | 
 |  | 
 |   // Nothing should choke when we try to call other arguments besides directly | 
 |   // callable objects, but they should not show up as callable. | 
 |   static_assert(!internal::is_callable_r<void, int>::value, ""); | 
 |   static_assert(!internal::is_callable_r<void, void (C::*)()>::value, ""); | 
 |   static_assert(!internal::is_callable_r<void, void (C::*)(), C*>::value, ""); | 
 | } | 
 |  | 
 | // Tests that BuiltInDefaultValue<T*>::Get() returns NULL. | 
 | TEST(BuiltInDefaultValueTest, IsNullForPointerTypes) { | 
 |   EXPECT_TRUE(BuiltInDefaultValue<int*>::Get() == nullptr); | 
 |   EXPECT_TRUE(BuiltInDefaultValue<const char*>::Get() == nullptr); | 
 |   EXPECT_TRUE(BuiltInDefaultValue<void*>::Get() == nullptr); | 
 | } | 
 |  | 
 | // Tests that BuiltInDefaultValue<T*>::Exists() return true. | 
 | TEST(BuiltInDefaultValueTest, ExistsForPointerTypes) { | 
 |   EXPECT_TRUE(BuiltInDefaultValue<int*>::Exists()); | 
 |   EXPECT_TRUE(BuiltInDefaultValue<const char*>::Exists()); | 
 |   EXPECT_TRUE(BuiltInDefaultValue<void*>::Exists()); | 
 | } | 
 |  | 
 | // Tests that BuiltInDefaultValue<T>::Get() returns 0 when T is a | 
 | // built-in numeric type. | 
 | TEST(BuiltInDefaultValueTest, IsZeroForNumericTypes) { | 
 |   EXPECT_EQ(0U, BuiltInDefaultValue<unsigned char>::Get()); | 
 |   EXPECT_EQ(0, BuiltInDefaultValue<signed char>::Get()); | 
 |   EXPECT_EQ(0, BuiltInDefaultValue<char>::Get()); | 
 | #if GMOCK_WCHAR_T_IS_NATIVE_ | 
 | #if !defined(__WCHAR_UNSIGNED__) | 
 |   EXPECT_EQ(0, BuiltInDefaultValue<wchar_t>::Get()); | 
 | #else | 
 |   EXPECT_EQ(0U, BuiltInDefaultValue<wchar_t>::Get()); | 
 | #endif | 
 | #endif | 
 |   EXPECT_EQ(0U, BuiltInDefaultValue<unsigned short>::Get());  // NOLINT | 
 |   EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get());     // NOLINT | 
 |   EXPECT_EQ(0, BuiltInDefaultValue<short>::Get());            // NOLINT | 
 |   EXPECT_EQ(0U, BuiltInDefaultValue<unsigned int>::Get()); | 
 |   EXPECT_EQ(0, BuiltInDefaultValue<signed int>::Get()); | 
 |   EXPECT_EQ(0, BuiltInDefaultValue<int>::Get()); | 
 |   EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long>::Get());       // NOLINT | 
 |   EXPECT_EQ(0, BuiltInDefaultValue<signed long>::Get());          // NOLINT | 
 |   EXPECT_EQ(0, BuiltInDefaultValue<long>::Get());                 // NOLINT | 
 |   EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long long>::Get());  // NOLINT | 
 |   EXPECT_EQ(0, BuiltInDefaultValue<signed long long>::Get());     // NOLINT | 
 |   EXPECT_EQ(0, BuiltInDefaultValue<long long>::Get());            // NOLINT | 
 |   EXPECT_EQ(0, BuiltInDefaultValue<float>::Get()); | 
 |   EXPECT_EQ(0, BuiltInDefaultValue<double>::Get()); | 
 | } | 
 |  | 
 | // Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a | 
 | // built-in numeric type. | 
 | TEST(BuiltInDefaultValueTest, ExistsForNumericTypes) { | 
 |   EXPECT_TRUE(BuiltInDefaultValue<unsigned char>::Exists()); | 
 |   EXPECT_TRUE(BuiltInDefaultValue<signed char>::Exists()); | 
 |   EXPECT_TRUE(BuiltInDefaultValue<char>::Exists()); | 
 | #if GMOCK_WCHAR_T_IS_NATIVE_ | 
 |   EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists()); | 
 | #endif | 
 |   EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists());  // NOLINT | 
 |   EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists());    // NOLINT | 
 |   EXPECT_TRUE(BuiltInDefaultValue<short>::Exists());           // NOLINT | 
 |   EXPECT_TRUE(BuiltInDefaultValue<unsigned int>::Exists()); | 
 |   EXPECT_TRUE(BuiltInDefaultValue<signed int>::Exists()); | 
 |   EXPECT_TRUE(BuiltInDefaultValue<int>::Exists()); | 
 |   EXPECT_TRUE(BuiltInDefaultValue<unsigned long>::Exists());       // NOLINT | 
 |   EXPECT_TRUE(BuiltInDefaultValue<signed long>::Exists());         // NOLINT | 
 |   EXPECT_TRUE(BuiltInDefaultValue<long>::Exists());                // NOLINT | 
 |   EXPECT_TRUE(BuiltInDefaultValue<unsigned long long>::Exists());  // NOLINT | 
 |   EXPECT_TRUE(BuiltInDefaultValue<signed long long>::Exists());    // NOLINT | 
 |   EXPECT_TRUE(BuiltInDefaultValue<long long>::Exists());           // NOLINT | 
 |   EXPECT_TRUE(BuiltInDefaultValue<float>::Exists()); | 
 |   EXPECT_TRUE(BuiltInDefaultValue<double>::Exists()); | 
 | } | 
 |  | 
 | // Tests that BuiltInDefaultValue<bool>::Get() returns false. | 
 | TEST(BuiltInDefaultValueTest, IsFalseForBool) { | 
 |   EXPECT_FALSE(BuiltInDefaultValue<bool>::Get()); | 
 | } | 
 |  | 
 | // Tests that BuiltInDefaultValue<bool>::Exists() returns true. | 
 | TEST(BuiltInDefaultValueTest, BoolExists) { | 
 |   EXPECT_TRUE(BuiltInDefaultValue<bool>::Exists()); | 
 | } | 
 |  | 
 | // Tests that BuiltInDefaultValue<T>::Get() returns "" when T is a | 
 | // string type. | 
 | TEST(BuiltInDefaultValueTest, IsEmptyStringForString) { | 
 |   EXPECT_EQ("", BuiltInDefaultValue<::std::string>::Get()); | 
 | } | 
 |  | 
 | // Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a | 
 | // string type. | 
 | TEST(BuiltInDefaultValueTest, ExistsForString) { | 
 |   EXPECT_TRUE(BuiltInDefaultValue<::std::string>::Exists()); | 
 | } | 
 |  | 
 | // Tests that BuiltInDefaultValue<const T>::Get() returns the same | 
 | // value as BuiltInDefaultValue<T>::Get() does. | 
 | TEST(BuiltInDefaultValueTest, WorksForConstTypes) { | 
 |   EXPECT_EQ("", BuiltInDefaultValue<const std::string>::Get()); | 
 |   EXPECT_EQ(0, BuiltInDefaultValue<const int>::Get()); | 
 |   EXPECT_TRUE(BuiltInDefaultValue<char* const>::Get() == nullptr); | 
 |   EXPECT_FALSE(BuiltInDefaultValue<const bool>::Get()); | 
 | } | 
 |  | 
 | // A type that's default constructible. | 
 | class MyDefaultConstructible { | 
 |  public: | 
 |   MyDefaultConstructible() : value_(42) {} | 
 |  | 
 |   int value() const { return value_; } | 
 |  | 
 |  private: | 
 |   int value_; | 
 | }; | 
 |  | 
 | // A type that's not default constructible. | 
 | class MyNonDefaultConstructible { | 
 |  public: | 
 |   // Does not have a default ctor. | 
 |   explicit MyNonDefaultConstructible(int a_value) : value_(a_value) {} | 
 |  | 
 |   int value() const { return value_; } | 
 |  | 
 |  private: | 
 |   int value_; | 
 | }; | 
 |  | 
 | TEST(BuiltInDefaultValueTest, ExistsForDefaultConstructibleType) { | 
 |   EXPECT_TRUE(BuiltInDefaultValue<MyDefaultConstructible>::Exists()); | 
 | } | 
 |  | 
 | TEST(BuiltInDefaultValueTest, IsDefaultConstructedForDefaultConstructibleType) { | 
 |   EXPECT_EQ(42, BuiltInDefaultValue<MyDefaultConstructible>::Get().value()); | 
 | } | 
 |  | 
 | TEST(BuiltInDefaultValueTest, DoesNotExistForNonDefaultConstructibleType) { | 
 |   EXPECT_FALSE(BuiltInDefaultValue<MyNonDefaultConstructible>::Exists()); | 
 | } | 
 |  | 
 | // Tests that BuiltInDefaultValue<T&>::Get() aborts the program. | 
 | TEST(BuiltInDefaultValueDeathTest, IsUndefinedForReferences) { | 
 |   EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<int&>::Get(); }, ""); | 
 |   EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<const char&>::Get(); }, ""); | 
 | } | 
 |  | 
 | TEST(BuiltInDefaultValueDeathTest, IsUndefinedForNonDefaultConstructibleType) { | 
 |   EXPECT_DEATH_IF_SUPPORTED( | 
 |       { BuiltInDefaultValue<MyNonDefaultConstructible>::Get(); }, ""); | 
 | } | 
 |  | 
 | // Tests that DefaultValue<T>::IsSet() is false initially. | 
 | TEST(DefaultValueTest, IsInitiallyUnset) { | 
 |   EXPECT_FALSE(DefaultValue<int>::IsSet()); | 
 |   EXPECT_FALSE(DefaultValue<MyDefaultConstructible>::IsSet()); | 
 |   EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet()); | 
 | } | 
 |  | 
 | // Tests that DefaultValue<T> can be set and then unset. | 
 | TEST(DefaultValueTest, CanBeSetAndUnset) { | 
 |   EXPECT_TRUE(DefaultValue<int>::Exists()); | 
 |   EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists()); | 
 |  | 
 |   DefaultValue<int>::Set(1); | 
 |   DefaultValue<const MyNonDefaultConstructible>::Set( | 
 |       MyNonDefaultConstructible(42)); | 
 |  | 
 |   EXPECT_EQ(1, DefaultValue<int>::Get()); | 
 |   EXPECT_EQ(42, DefaultValue<const MyNonDefaultConstructible>::Get().value()); | 
 |  | 
 |   EXPECT_TRUE(DefaultValue<int>::Exists()); | 
 |   EXPECT_TRUE(DefaultValue<const MyNonDefaultConstructible>::Exists()); | 
 |  | 
 |   DefaultValue<int>::Clear(); | 
 |   DefaultValue<const MyNonDefaultConstructible>::Clear(); | 
 |  | 
 |   EXPECT_FALSE(DefaultValue<int>::IsSet()); | 
 |   EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet()); | 
 |  | 
 |   EXPECT_TRUE(DefaultValue<int>::Exists()); | 
 |   EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists()); | 
 | } | 
 |  | 
 | // Tests that DefaultValue<T>::Get() returns the | 
 | // BuiltInDefaultValue<T>::Get() when DefaultValue<T>::IsSet() is | 
 | // false. | 
 | TEST(DefaultValueDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) { | 
 |   EXPECT_FALSE(DefaultValue<int>::IsSet()); | 
 |   EXPECT_TRUE(DefaultValue<int>::Exists()); | 
 |   EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::IsSet()); | 
 |   EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::Exists()); | 
 |  | 
 |   EXPECT_EQ(0, DefaultValue<int>::Get()); | 
 |  | 
 |   EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<MyNonDefaultConstructible>::Get(); }, | 
 |                             ""); | 
 | } | 
 |  | 
 | TEST(DefaultValueTest, GetWorksForMoveOnlyIfSet) { | 
 |   EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists()); | 
 |   EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Get() == nullptr); | 
 |   DefaultValue<std::unique_ptr<int>>::SetFactory( | 
 |       [] { return std::unique_ptr<int>(new int(42)); }); | 
 |   EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists()); | 
 |   std::unique_ptr<int> i = DefaultValue<std::unique_ptr<int>>::Get(); | 
 |   EXPECT_EQ(42, *i); | 
 | } | 
 |  | 
 | // Tests that DefaultValue<void>::Get() returns void. | 
 | TEST(DefaultValueTest, GetWorksForVoid) { return DefaultValue<void>::Get(); } | 
 |  | 
 | // Tests using DefaultValue with a reference type. | 
 |  | 
 | // Tests that DefaultValue<T&>::IsSet() is false initially. | 
 | TEST(DefaultValueOfReferenceTest, IsInitiallyUnset) { | 
 |   EXPECT_FALSE(DefaultValue<int&>::IsSet()); | 
 |   EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::IsSet()); | 
 |   EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet()); | 
 | } | 
 |  | 
 | // Tests that DefaultValue<T&>::Exists is false initially. | 
 | TEST(DefaultValueOfReferenceTest, IsInitiallyNotExisting) { | 
 |   EXPECT_FALSE(DefaultValue<int&>::Exists()); | 
 |   EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::Exists()); | 
 |   EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists()); | 
 | } | 
 |  | 
 | // Tests that DefaultValue<T&> can be set and then unset. | 
 | TEST(DefaultValueOfReferenceTest, CanBeSetAndUnset) { | 
 |   int n = 1; | 
 |   DefaultValue<const int&>::Set(n); | 
 |   MyNonDefaultConstructible x(42); | 
 |   DefaultValue<MyNonDefaultConstructible&>::Set(x); | 
 |  | 
 |   EXPECT_TRUE(DefaultValue<const int&>::Exists()); | 
 |   EXPECT_TRUE(DefaultValue<MyNonDefaultConstructible&>::Exists()); | 
 |  | 
 |   EXPECT_EQ(&n, &(DefaultValue<const int&>::Get())); | 
 |   EXPECT_EQ(&x, &(DefaultValue<MyNonDefaultConstructible&>::Get())); | 
 |  | 
 |   DefaultValue<const int&>::Clear(); | 
 |   DefaultValue<MyNonDefaultConstructible&>::Clear(); | 
 |  | 
 |   EXPECT_FALSE(DefaultValue<const int&>::Exists()); | 
 |   EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists()); | 
 |  | 
 |   EXPECT_FALSE(DefaultValue<const int&>::IsSet()); | 
 |   EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet()); | 
 | } | 
 |  | 
 | // Tests that DefaultValue<T&>::Get() returns the | 
 | // BuiltInDefaultValue<T&>::Get() when DefaultValue<T&>::IsSet() is | 
 | // false. | 
 | TEST(DefaultValueOfReferenceDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) { | 
 |   EXPECT_FALSE(DefaultValue<int&>::IsSet()); | 
 |   EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet()); | 
 |  | 
 |   EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<int&>::Get(); }, ""); | 
 |   EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<MyNonDefaultConstructible>::Get(); }, | 
 |                             ""); | 
 | } | 
 |  | 
 | // Tests that ActionInterface can be implemented by defining the | 
 | // Perform method. | 
 |  | 
 | typedef int MyGlobalFunction(bool, int); | 
 |  | 
 | class MyActionImpl : public ActionInterface<MyGlobalFunction> { | 
 |  public: | 
 |   int Perform(const std::tuple<bool, int>& args) override { | 
 |     return std::get<0>(args) ? std::get<1>(args) : 0; | 
 |   } | 
 | }; | 
 |  | 
 | TEST(ActionInterfaceTest, CanBeImplementedByDefiningPerform) { | 
 |   MyActionImpl my_action_impl; | 
 |   (void)my_action_impl; | 
 | } | 
 |  | 
 | TEST(ActionInterfaceTest, MakeAction) { | 
 |   Action<MyGlobalFunction> action = MakeAction(new MyActionImpl); | 
 |  | 
 |   // When exercising the Perform() method of Action<F>, we must pass | 
 |   // it a tuple whose size and type are compatible with F's argument | 
 |   // types.  For example, if F is int(), then Perform() takes a | 
 |   // 0-tuple; if F is void(bool, int), then Perform() takes a | 
 |   // std::tuple<bool, int>, and so on. | 
 |   EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5))); | 
 | } | 
 |  | 
 | // Tests that Action<F> can be constructed from a pointer to | 
 | // ActionInterface<F>. | 
 | TEST(ActionTest, CanBeConstructedFromActionInterface) { | 
 |   Action<MyGlobalFunction> action(new MyActionImpl); | 
 | } | 
 |  | 
 | // Tests that Action<F> delegates actual work to ActionInterface<F>. | 
 | TEST(ActionTest, DelegatesWorkToActionInterface) { | 
 |   const Action<MyGlobalFunction> action(new MyActionImpl); | 
 |  | 
 |   EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5))); | 
 |   EXPECT_EQ(0, action.Perform(std::make_tuple(false, 1))); | 
 | } | 
 |  | 
 | // Tests that Action<F> can be copied. | 
 | TEST(ActionTest, IsCopyable) { | 
 |   Action<MyGlobalFunction> a1(new MyActionImpl); | 
 |   Action<MyGlobalFunction> a2(a1);  // Tests the copy constructor. | 
 |  | 
 |   // a1 should continue to work after being copied from. | 
 |   EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5))); | 
 |   EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1))); | 
 |  | 
 |   // a2 should work like the action it was copied from. | 
 |   EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5))); | 
 |   EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1))); | 
 |  | 
 |   a2 = a1;  // Tests the assignment operator. | 
 |  | 
 |   // a1 should continue to work after being copied from. | 
 |   EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5))); | 
 |   EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1))); | 
 |  | 
 |   // a2 should work like the action it was copied from. | 
 |   EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5))); | 
 |   EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1))); | 
 | } | 
 |  | 
 | // Tests that an Action<From> object can be converted to a | 
 | // compatible Action<To> object. | 
 |  | 
 | class IsNotZero : public ActionInterface<bool(int)> {  // NOLINT | 
 |  public: | 
 |   bool Perform(const std::tuple<int>& arg) override { | 
 |     return std::get<0>(arg) != 0; | 
 |   } | 
 | }; | 
 |  | 
 | TEST(ActionTest, CanBeConvertedToOtherActionType) { | 
 |   const Action<bool(int)> a1(new IsNotZero);           // NOLINT | 
 |   const Action<int(char)> a2 = Action<int(char)>(a1);  // NOLINT | 
 |   EXPECT_EQ(1, a2.Perform(std::make_tuple('a'))); | 
 |   EXPECT_EQ(0, a2.Perform(std::make_tuple('\0'))); | 
 | } | 
 |  | 
 | // The following two classes are for testing MakePolymorphicAction(). | 
 |  | 
 | // Implements a polymorphic action that returns the second of the | 
 | // arguments it receives. | 
 | class ReturnSecondArgumentAction { | 
 |  public: | 
 |   // We want to verify that MakePolymorphicAction() can work with a | 
 |   // polymorphic action whose Perform() method template is either | 
 |   // const or not.  This lets us verify the non-const case. | 
 |   template <typename Result, typename ArgumentTuple> | 
 |   Result Perform(const ArgumentTuple& args) { | 
 |     return std::get<1>(args); | 
 |   } | 
 | }; | 
 |  | 
 | // Implements a polymorphic action that can be used in a nullary | 
 | // function to return 0. | 
 | class ReturnZeroFromNullaryFunctionAction { | 
 |  public: | 
 |   // For testing that MakePolymorphicAction() works when the | 
 |   // implementation class' Perform() method template takes only one | 
 |   // template parameter. | 
 |   // | 
 |   // We want to verify that MakePolymorphicAction() can work with a | 
 |   // polymorphic action whose Perform() method template is either | 
 |   // const or not.  This lets us verify the const case. | 
 |   template <typename Result> | 
 |   Result Perform(const std::tuple<>&) const { | 
 |     return 0; | 
 |   } | 
 | }; | 
 |  | 
 | // These functions verify that MakePolymorphicAction() returns a | 
 | // PolymorphicAction<T> where T is the argument's type. | 
 |  | 
 | PolymorphicAction<ReturnSecondArgumentAction> ReturnSecondArgument() { | 
 |   return MakePolymorphicAction(ReturnSecondArgumentAction()); | 
 | } | 
 |  | 
 | PolymorphicAction<ReturnZeroFromNullaryFunctionAction> | 
 | ReturnZeroFromNullaryFunction() { | 
 |   return MakePolymorphicAction(ReturnZeroFromNullaryFunctionAction()); | 
 | } | 
 |  | 
 | // Tests that MakePolymorphicAction() turns a polymorphic action | 
 | // implementation class into a polymorphic action. | 
 | TEST(MakePolymorphicActionTest, ConstructsActionFromImpl) { | 
 |   Action<int(bool, int, double)> a1 = ReturnSecondArgument();  // NOLINT | 
 |   EXPECT_EQ(5, a1.Perform(std::make_tuple(false, 5, 2.0))); | 
 | } | 
 |  | 
 | // Tests that MakePolymorphicAction() works when the implementation | 
 | // class' Perform() method template has only one template parameter. | 
 | TEST(MakePolymorphicActionTest, WorksWhenPerformHasOneTemplateParameter) { | 
 |   Action<int()> a1 = ReturnZeroFromNullaryFunction(); | 
 |   EXPECT_EQ(0, a1.Perform(std::make_tuple())); | 
 |  | 
 |   Action<void*()> a2 = ReturnZeroFromNullaryFunction(); | 
 |   EXPECT_TRUE(a2.Perform(std::make_tuple()) == nullptr); | 
 | } | 
 |  | 
 | // Tests that Return() works as an action for void-returning | 
 | // functions. | 
 | TEST(ReturnTest, WorksForVoid) { | 
 |   const Action<void(int)> ret = Return();  // NOLINT | 
 |   return ret.Perform(std::make_tuple(1)); | 
 | } | 
 |  | 
 | // Tests that Return(v) returns v. | 
 | TEST(ReturnTest, ReturnsGivenValue) { | 
 |   Action<int()> ret = Return(1);  // NOLINT | 
 |   EXPECT_EQ(1, ret.Perform(std::make_tuple())); | 
 |  | 
 |   ret = Return(-5); | 
 |   EXPECT_EQ(-5, ret.Perform(std::make_tuple())); | 
 | } | 
 |  | 
 | // Tests that Return("string literal") works. | 
 | TEST(ReturnTest, AcceptsStringLiteral) { | 
 |   Action<const char*()> a1 = Return("Hello"); | 
 |   EXPECT_STREQ("Hello", a1.Perform(std::make_tuple())); | 
 |  | 
 |   Action<std::string()> a2 = Return("world"); | 
 |   EXPECT_EQ("world", a2.Perform(std::make_tuple())); | 
 | } | 
 |  | 
 | // Return(x) should work fine when the mock function's return type is a | 
 | // reference-like wrapper for decltype(x), as when x is a std::string and the | 
 | // mock function returns std::string_view. | 
 | TEST(ReturnTest, SupportsReferenceLikeReturnType) { | 
 |   // A reference wrapper for std::vector<int>, implicitly convertible from it. | 
 |   struct Result { | 
 |     const std::vector<int>* v; | 
 |     Result(const std::vector<int>& v) : v(&v) {}  // NOLINT | 
 |   }; | 
 |  | 
 |   // Set up an action for a mock function that returns the reference wrapper | 
 |   // type, initializing it with an actual vector. | 
 |   // | 
 |   // The returned wrapper should be initialized with a copy of that vector | 
 |   // that's embedded within the action itself (which should stay alive as long | 
 |   // as the mock object is alive), rather than e.g. a reference to the temporary | 
 |   // we feed to Return. This should work fine both for WillOnce and | 
 |   // WillRepeatedly. | 
 |   MockFunction<Result()> mock; | 
 |   EXPECT_CALL(mock, Call) | 
 |       .WillOnce(Return(std::vector<int>{17, 19, 23})) | 
 |       .WillRepeatedly(Return(std::vector<int>{29, 31, 37})); | 
 |  | 
 |   EXPECT_THAT(mock.AsStdFunction()(), | 
 |               Field(&Result::v, Pointee(ElementsAre(17, 19, 23)))); | 
 |  | 
 |   EXPECT_THAT(mock.AsStdFunction()(), | 
 |               Field(&Result::v, Pointee(ElementsAre(29, 31, 37)))); | 
 | } | 
 |  | 
 | TEST(ReturnTest, PrefersConversionOperator) { | 
 |   // Define types In and Out such that: | 
 |   // | 
 |   //  *  In is implicitly convertible to Out. | 
 |   //  *  Out also has an explicit constructor from In. | 
 |   // | 
 |   struct In; | 
 |   struct Out { | 
 |     int x; | 
 |  | 
 |     explicit Out(const int x) : x(x) {} | 
 |     explicit Out(const In&) : x(0) {} | 
 |   }; | 
 |  | 
 |   struct In { | 
 |     operator Out() const { return Out{19}; }  // NOLINT | 
 |   }; | 
 |  | 
 |   // Assumption check: the C++ language rules are such that a function that | 
 |   // returns Out which uses In a return statement will use the implicit | 
 |   // conversion path rather than the explicit constructor. | 
 |   EXPECT_THAT([]() -> Out { return In(); }(), Field(&Out::x, 19)); | 
 |  | 
 |   // Return should work the same way: if the mock function's return type is Out | 
 |   // and we feed Return an In value, then the Out should be created through the | 
 |   // implicit conversion path rather than the explicit constructor. | 
 |   MockFunction<Out()> mock; | 
 |   EXPECT_CALL(mock, Call).WillOnce(Return(In())); | 
 |   EXPECT_THAT(mock.AsStdFunction()(), Field(&Out::x, 19)); | 
 | } | 
 |  | 
 | // It should be possible to use Return(R) with a mock function result type U | 
 | // that is convertible from const R& but *not* R (such as | 
 | // std::reference_wrapper). This should work for both WillOnce and | 
 | // WillRepeatedly. | 
 | TEST(ReturnTest, ConversionRequiresConstLvalueReference) { | 
 |   using R = int; | 
 |   using U = std::reference_wrapper<const int>; | 
 |  | 
 |   static_assert(std::is_convertible<const R&, U>::value, ""); | 
 |   static_assert(!std::is_convertible<R, U>::value, ""); | 
 |  | 
 |   MockFunction<U()> mock; | 
 |   EXPECT_CALL(mock, Call).WillOnce(Return(17)).WillRepeatedly(Return(19)); | 
 |  | 
 |   EXPECT_EQ(17, mock.AsStdFunction()()); | 
 |   EXPECT_EQ(19, mock.AsStdFunction()()); | 
 | } | 
 |  | 
 | // Return(x) should not be usable with a mock function result type that's | 
 | // implicitly convertible from decltype(x) but requires a non-const lvalue | 
 | // reference to the input. It doesn't make sense for the conversion operator to | 
 | // modify the input. | 
 | TEST(ReturnTest, ConversionRequiresMutableLvalueReference) { | 
 |   // Set up a type that is implicitly convertible from std::string&, but not | 
 |   // std::string&& or `const std::string&`. | 
 |   // | 
 |   // Avoid asserting about conversion from std::string on MSVC, which seems to | 
 |   // implement std::is_convertible incorrectly in this case. | 
 |   struct S { | 
 |     S(std::string&) {}  // NOLINT | 
 |   }; | 
 |  | 
 |   static_assert(std::is_convertible<std::string&, S>::value, ""); | 
 | #ifndef _MSC_VER | 
 |   static_assert(!std::is_convertible<std::string&&, S>::value, ""); | 
 | #endif | 
 |   static_assert(!std::is_convertible<const std::string&, S>::value, ""); | 
 |  | 
 |   // It shouldn't be possible to use the result of Return(std::string) in a | 
 |   // context where an S is needed. | 
 |   // | 
 |   // Here too we disable the assertion for MSVC, since its incorrect | 
 |   // implementation of is_convertible causes our SFINAE to be wrong. | 
 |   using RA = decltype(Return(std::string())); | 
 |  | 
 |   static_assert(!std::is_convertible<RA, Action<S()>>::value, ""); | 
 | #ifndef _MSC_VER | 
 |   static_assert(!std::is_convertible<RA, OnceAction<S()>>::value, ""); | 
 | #endif | 
 | } | 
 |  | 
 | TEST(ReturnTest, MoveOnlyResultType) { | 
 |   // Return should support move-only result types when used with WillOnce. | 
 |   { | 
 |     MockFunction<std::unique_ptr<int>()> mock; | 
 |     EXPECT_CALL(mock, Call) | 
 |         // NOLINTNEXTLINE | 
 |         .WillOnce(Return(std::unique_ptr<int>(new int(17)))); | 
 |  | 
 |     EXPECT_THAT(mock.AsStdFunction()(), Pointee(17)); | 
 |   } | 
 |  | 
 |   // The result of Return should not be convertible to Action (so it can't be | 
 |   // used with WillRepeatedly). | 
 |   static_assert(!std::is_convertible<decltype(Return(std::unique_ptr<int>())), | 
 |                                      Action<std::unique_ptr<int>()>>::value, | 
 |                 ""); | 
 | } | 
 |  | 
 | // Tests that Return(v) is covariant. | 
 |  | 
 | struct Base { | 
 |   bool operator==(const Base&) { return true; } | 
 | }; | 
 |  | 
 | struct Derived : public Base { | 
 |   bool operator==(const Derived&) { return true; } | 
 | }; | 
 |  | 
 | TEST(ReturnTest, IsCovariant) { | 
 |   Base base; | 
 |   Derived derived; | 
 |   Action<Base*()> ret = Return(&base); | 
 |   EXPECT_EQ(&base, ret.Perform(std::make_tuple())); | 
 |  | 
 |   ret = Return(&derived); | 
 |   EXPECT_EQ(&derived, ret.Perform(std::make_tuple())); | 
 | } | 
 |  | 
 | // Tests that the type of the value passed into Return is converted into T | 
 | // when the action is cast to Action<T(...)> rather than when the action is | 
 | // performed. See comments on testing::internal::ReturnAction in | 
 | // gmock-actions.h for more information. | 
 | class FromType { | 
 |  public: | 
 |   explicit FromType(bool* is_converted) : converted_(is_converted) {} | 
 |   bool* converted() const { return converted_; } | 
 |  | 
 |  private: | 
 |   bool* const converted_; | 
 | }; | 
 |  | 
 | class ToType { | 
 |  public: | 
 |   // Must allow implicit conversion due to use in ImplicitCast_<T>. | 
 |   ToType(const FromType& x) { *x.converted() = true; }  // NOLINT | 
 | }; | 
 |  | 
 | TEST(ReturnTest, ConvertsArgumentWhenConverted) { | 
 |   bool converted = false; | 
 |   FromType x(&converted); | 
 |   Action<ToType()> action(Return(x)); | 
 |   EXPECT_TRUE(converted) << "Return must convert its argument in its own " | 
 |                          << "conversion operator."; | 
 |   converted = false; | 
 |   action.Perform(std::tuple<>()); | 
 |   EXPECT_FALSE(converted) << "Action must NOT convert its argument " | 
 |                           << "when performed."; | 
 | } | 
 |  | 
 | // Tests that ReturnNull() returns NULL in a pointer-returning function. | 
 | TEST(ReturnNullTest, WorksInPointerReturningFunction) { | 
 |   const Action<int*()> a1 = ReturnNull(); | 
 |   EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr); | 
 |  | 
 |   const Action<const char*(bool)> a2 = ReturnNull();  // NOLINT | 
 |   EXPECT_TRUE(a2.Perform(std::make_tuple(true)) == nullptr); | 
 | } | 
 |  | 
 | // Tests that ReturnNull() returns NULL for shared_ptr and unique_ptr returning | 
 | // functions. | 
 | TEST(ReturnNullTest, WorksInSmartPointerReturningFunction) { | 
 |   const Action<std::unique_ptr<const int>()> a1 = ReturnNull(); | 
 |   EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr); | 
 |  | 
 |   const Action<std::shared_ptr<int>(std::string)> a2 = ReturnNull(); | 
 |   EXPECT_TRUE(a2.Perform(std::make_tuple("foo")) == nullptr); | 
 | } | 
 |  | 
 | // Tests that ReturnRef(v) works for reference types. | 
 | TEST(ReturnRefTest, WorksForReference) { | 
 |   const int n = 0; | 
 |   const Action<const int&(bool)> ret = ReturnRef(n);  // NOLINT | 
 |  | 
 |   EXPECT_EQ(&n, &ret.Perform(std::make_tuple(true))); | 
 | } | 
 |  | 
 | // Tests that ReturnRef(v) is covariant. | 
 | TEST(ReturnRefTest, IsCovariant) { | 
 |   Base base; | 
 |   Derived derived; | 
 |   Action<Base&()> a = ReturnRef(base); | 
 |   EXPECT_EQ(&base, &a.Perform(std::make_tuple())); | 
 |  | 
 |   a = ReturnRef(derived); | 
 |   EXPECT_EQ(&derived, &a.Perform(std::make_tuple())); | 
 | } | 
 |  | 
 | template <typename T, typename = decltype(ReturnRef(std::declval<T&&>()))> | 
 | bool CanCallReturnRef(T&&) { | 
 |   return true; | 
 | } | 
 | bool CanCallReturnRef(Unused) { return false; } | 
 |  | 
 | // Tests that ReturnRef(v) is working with non-temporaries (T&) | 
 | TEST(ReturnRefTest, WorksForNonTemporary) { | 
 |   int scalar_value = 123; | 
 |   EXPECT_TRUE(CanCallReturnRef(scalar_value)); | 
 |  | 
 |   std::string non_scalar_value("ABC"); | 
 |   EXPECT_TRUE(CanCallReturnRef(non_scalar_value)); | 
 |  | 
 |   const int const_scalar_value{321}; | 
 |   EXPECT_TRUE(CanCallReturnRef(const_scalar_value)); | 
 |  | 
 |   const std::string const_non_scalar_value("CBA"); | 
 |   EXPECT_TRUE(CanCallReturnRef(const_non_scalar_value)); | 
 | } | 
 |  | 
 | // Tests that ReturnRef(v) is not working with temporaries (T&&) | 
 | TEST(ReturnRefTest, DoesNotWorkForTemporary) { | 
 |   auto scalar_value = []() -> int { return 123; }; | 
 |   EXPECT_FALSE(CanCallReturnRef(scalar_value())); | 
 |  | 
 |   auto non_scalar_value = []() -> std::string { return "ABC"; }; | 
 |   EXPECT_FALSE(CanCallReturnRef(non_scalar_value())); | 
 |  | 
 |   // cannot use here callable returning "const scalar type", | 
 |   // because such const for scalar return type is ignored | 
 |   EXPECT_FALSE(CanCallReturnRef(static_cast<const int>(321))); | 
 |  | 
 |   auto const_non_scalar_value = []() -> const std::string { return "CBA"; }; | 
 |   EXPECT_FALSE(CanCallReturnRef(const_non_scalar_value())); | 
 | } | 
 |  | 
 | // Tests that ReturnRefOfCopy(v) works for reference types. | 
 | TEST(ReturnRefOfCopyTest, WorksForReference) { | 
 |   int n = 42; | 
 |   const Action<const int&()> ret = ReturnRefOfCopy(n); | 
 |  | 
 |   EXPECT_NE(&n, &ret.Perform(std::make_tuple())); | 
 |   EXPECT_EQ(42, ret.Perform(std::make_tuple())); | 
 |  | 
 |   n = 43; | 
 |   EXPECT_NE(&n, &ret.Perform(std::make_tuple())); | 
 |   EXPECT_EQ(42, ret.Perform(std::make_tuple())); | 
 | } | 
 |  | 
 | // Tests that ReturnRefOfCopy(v) is covariant. | 
 | TEST(ReturnRefOfCopyTest, IsCovariant) { | 
 |   Base base; | 
 |   Derived derived; | 
 |   Action<Base&()> a = ReturnRefOfCopy(base); | 
 |   EXPECT_NE(&base, &a.Perform(std::make_tuple())); | 
 |  | 
 |   a = ReturnRefOfCopy(derived); | 
 |   EXPECT_NE(&derived, &a.Perform(std::make_tuple())); | 
 | } | 
 |  | 
 | // Tests that ReturnRoundRobin(v) works with initializer lists | 
 | TEST(ReturnRoundRobinTest, WorksForInitList) { | 
 |   Action<int()> ret = ReturnRoundRobin({1, 2, 3}); | 
 |  | 
 |   EXPECT_EQ(1, ret.Perform(std::make_tuple())); | 
 |   EXPECT_EQ(2, ret.Perform(std::make_tuple())); | 
 |   EXPECT_EQ(3, ret.Perform(std::make_tuple())); | 
 |   EXPECT_EQ(1, ret.Perform(std::make_tuple())); | 
 |   EXPECT_EQ(2, ret.Perform(std::make_tuple())); | 
 |   EXPECT_EQ(3, ret.Perform(std::make_tuple())); | 
 | } | 
 |  | 
 | // Tests that ReturnRoundRobin(v) works with vectors | 
 | TEST(ReturnRoundRobinTest, WorksForVector) { | 
 |   std::vector<double> v = {4.4, 5.5, 6.6}; | 
 |   Action<double()> ret = ReturnRoundRobin(v); | 
 |  | 
 |   EXPECT_EQ(4.4, ret.Perform(std::make_tuple())); | 
 |   EXPECT_EQ(5.5, ret.Perform(std::make_tuple())); | 
 |   EXPECT_EQ(6.6, ret.Perform(std::make_tuple())); | 
 |   EXPECT_EQ(4.4, ret.Perform(std::make_tuple())); | 
 |   EXPECT_EQ(5.5, ret.Perform(std::make_tuple())); | 
 |   EXPECT_EQ(6.6, ret.Perform(std::make_tuple())); | 
 | } | 
 |  | 
 | // Tests that DoDefault() does the default action for the mock method. | 
 |  | 
 | class MockClass { | 
 |  public: | 
 |   MockClass() {} | 
 |  | 
 |   MOCK_METHOD1(IntFunc, int(bool flag));  // NOLINT | 
 |   MOCK_METHOD0(Foo, MyNonDefaultConstructible()); | 
 |   MOCK_METHOD0(MakeUnique, std::unique_ptr<int>()); | 
 |   MOCK_METHOD0(MakeUniqueBase, std::unique_ptr<Base>()); | 
 |   MOCK_METHOD0(MakeVectorUnique, std::vector<std::unique_ptr<int>>()); | 
 |   MOCK_METHOD1(TakeUnique, int(std::unique_ptr<int>)); | 
 |   MOCK_METHOD2(TakeUnique, | 
 |                int(const std::unique_ptr<int>&, std::unique_ptr<int>)); | 
 |  | 
 |  private: | 
 |   MockClass(const MockClass&) = delete; | 
 |   MockClass& operator=(const MockClass&) = delete; | 
 | }; | 
 |  | 
 | // Tests that DoDefault() returns the built-in default value for the | 
 | // return type by default. | 
 | TEST(DoDefaultTest, ReturnsBuiltInDefaultValueByDefault) { | 
 |   MockClass mock; | 
 |   EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault()); | 
 |   EXPECT_EQ(0, mock.IntFunc(true)); | 
 | } | 
 |  | 
 | // Tests that DoDefault() throws (when exceptions are enabled) or aborts | 
 | // the process when there is no built-in default value for the return type. | 
 | TEST(DoDefaultDeathTest, DiesForUnknowType) { | 
 |   MockClass mock; | 
 |   EXPECT_CALL(mock, Foo()).WillRepeatedly(DoDefault()); | 
 | #if GTEST_HAS_EXCEPTIONS | 
 |   EXPECT_ANY_THROW(mock.Foo()); | 
 | #else | 
 |   EXPECT_DEATH_IF_SUPPORTED({ mock.Foo(); }, ""); | 
 | #endif | 
 | } | 
 |  | 
 | // Tests that using DoDefault() inside a composite action leads to a | 
 | // run-time error. | 
 |  | 
 | void VoidFunc(bool /* flag */) {} | 
 |  | 
 | TEST(DoDefaultDeathTest, DiesIfUsedInCompositeAction) { | 
 |   MockClass mock; | 
 |   EXPECT_CALL(mock, IntFunc(_)) | 
 |       .WillRepeatedly(DoAll(Invoke(VoidFunc), DoDefault())); | 
 |  | 
 |   // Ideally we should verify the error message as well.  Sadly, | 
 |   // EXPECT_DEATH() can only capture stderr, while Google Mock's | 
 |   // errors are printed on stdout.  Therefore we have to settle for | 
 |   // not verifying the message. | 
 |   EXPECT_DEATH_IF_SUPPORTED({ mock.IntFunc(true); }, ""); | 
 | } | 
 |  | 
 | // Tests that DoDefault() returns the default value set by | 
 | // DefaultValue<T>::Set() when it's not overridden by an ON_CALL(). | 
 | TEST(DoDefaultTest, ReturnsUserSpecifiedPerTypeDefaultValueWhenThereIsOne) { | 
 |   DefaultValue<int>::Set(1); | 
 |   MockClass mock; | 
 |   EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault()); | 
 |   EXPECT_EQ(1, mock.IntFunc(false)); | 
 |   DefaultValue<int>::Clear(); | 
 | } | 
 |  | 
 | // Tests that DoDefault() does the action specified by ON_CALL(). | 
 | TEST(DoDefaultTest, DoesWhatOnCallSpecifies) { | 
 |   MockClass mock; | 
 |   ON_CALL(mock, IntFunc(_)).WillByDefault(Return(2)); | 
 |   EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault()); | 
 |   EXPECT_EQ(2, mock.IntFunc(false)); | 
 | } | 
 |  | 
 | // Tests that using DoDefault() in ON_CALL() leads to a run-time failure. | 
 | TEST(DoDefaultTest, CannotBeUsedInOnCall) { | 
 |   MockClass mock; | 
 |   EXPECT_NONFATAL_FAILURE( | 
 |       {  // NOLINT | 
 |         ON_CALL(mock, IntFunc(_)).WillByDefault(DoDefault()); | 
 |       }, | 
 |       "DoDefault() cannot be used in ON_CALL()"); | 
 | } | 
 |  | 
 | // Tests that SetArgPointee<N>(v) sets the variable pointed to by | 
 | // the N-th (0-based) argument to v. | 
 | TEST(SetArgPointeeTest, SetsTheNthPointee) { | 
 |   typedef void MyFunction(bool, int*, char*); | 
 |   Action<MyFunction> a = SetArgPointee<1>(2); | 
 |  | 
 |   int n = 0; | 
 |   char ch = '\0'; | 
 |   a.Perform(std::make_tuple(true, &n, &ch)); | 
 |   EXPECT_EQ(2, n); | 
 |   EXPECT_EQ('\0', ch); | 
 |  | 
 |   a = SetArgPointee<2>('a'); | 
 |   n = 0; | 
 |   ch = '\0'; | 
 |   a.Perform(std::make_tuple(true, &n, &ch)); | 
 |   EXPECT_EQ(0, n); | 
 |   EXPECT_EQ('a', ch); | 
 | } | 
 |  | 
 | // Tests that SetArgPointee<N>() accepts a string literal. | 
 | TEST(SetArgPointeeTest, AcceptsStringLiteral) { | 
 |   typedef void MyFunction(std::string*, const char**); | 
 |   Action<MyFunction> a = SetArgPointee<0>("hi"); | 
 |   std::string str; | 
 |   const char* ptr = nullptr; | 
 |   a.Perform(std::make_tuple(&str, &ptr)); | 
 |   EXPECT_EQ("hi", str); | 
 |   EXPECT_TRUE(ptr == nullptr); | 
 |  | 
 |   a = SetArgPointee<1>("world"); | 
 |   str = ""; | 
 |   a.Perform(std::make_tuple(&str, &ptr)); | 
 |   EXPECT_EQ("", str); | 
 |   EXPECT_STREQ("world", ptr); | 
 | } | 
 |  | 
 | TEST(SetArgPointeeTest, AcceptsWideStringLiteral) { | 
 |   typedef void MyFunction(const wchar_t**); | 
 |   Action<MyFunction> a = SetArgPointee<0>(L"world"); | 
 |   const wchar_t* ptr = nullptr; | 
 |   a.Perform(std::make_tuple(&ptr)); | 
 |   EXPECT_STREQ(L"world", ptr); | 
 |  | 
 | #if GTEST_HAS_STD_WSTRING | 
 |  | 
 |   typedef void MyStringFunction(std::wstring*); | 
 |   Action<MyStringFunction> a2 = SetArgPointee<0>(L"world"); | 
 |   std::wstring str = L""; | 
 |   a2.Perform(std::make_tuple(&str)); | 
 |   EXPECT_EQ(L"world", str); | 
 |  | 
 | #endif | 
 | } | 
 |  | 
 | // Tests that SetArgPointee<N>() accepts a char pointer. | 
 | TEST(SetArgPointeeTest, AcceptsCharPointer) { | 
 |   typedef void MyFunction(bool, std::string*, const char**); | 
 |   const char* const hi = "hi"; | 
 |   Action<MyFunction> a = SetArgPointee<1>(hi); | 
 |   std::string str; | 
 |   const char* ptr = nullptr; | 
 |   a.Perform(std::make_tuple(true, &str, &ptr)); | 
 |   EXPECT_EQ("hi", str); | 
 |   EXPECT_TRUE(ptr == nullptr); | 
 |  | 
 |   char world_array[] = "world"; | 
 |   char* const world = world_array; | 
 |   a = SetArgPointee<2>(world); | 
 |   str = ""; | 
 |   a.Perform(std::make_tuple(true, &str, &ptr)); | 
 |   EXPECT_EQ("", str); | 
 |   EXPECT_EQ(world, ptr); | 
 | } | 
 |  | 
 | TEST(SetArgPointeeTest, AcceptsWideCharPointer) { | 
 |   typedef void MyFunction(bool, const wchar_t**); | 
 |   const wchar_t* const hi = L"hi"; | 
 |   Action<MyFunction> a = SetArgPointee<1>(hi); | 
 |   const wchar_t* ptr = nullptr; | 
 |   a.Perform(std::make_tuple(true, &ptr)); | 
 |   EXPECT_EQ(hi, ptr); | 
 |  | 
 | #if GTEST_HAS_STD_WSTRING | 
 |  | 
 |   typedef void MyStringFunction(bool, std::wstring*); | 
 |   wchar_t world_array[] = L"world"; | 
 |   wchar_t* const world = world_array; | 
 |   Action<MyStringFunction> a2 = SetArgPointee<1>(world); | 
 |   std::wstring str; | 
 |   a2.Perform(std::make_tuple(true, &str)); | 
 |   EXPECT_EQ(world_array, str); | 
 | #endif | 
 | } | 
 |  | 
 | // Tests that SetArgumentPointee<N>(v) sets the variable pointed to by | 
 | // the N-th (0-based) argument to v. | 
 | TEST(SetArgumentPointeeTest, SetsTheNthPointee) { | 
 |   typedef void MyFunction(bool, int*, char*); | 
 |   Action<MyFunction> a = SetArgumentPointee<1>(2); | 
 |  | 
 |   int n = 0; | 
 |   char ch = '\0'; | 
 |   a.Perform(std::make_tuple(true, &n, &ch)); | 
 |   EXPECT_EQ(2, n); | 
 |   EXPECT_EQ('\0', ch); | 
 |  | 
 |   a = SetArgumentPointee<2>('a'); | 
 |   n = 0; | 
 |   ch = '\0'; | 
 |   a.Perform(std::make_tuple(true, &n, &ch)); | 
 |   EXPECT_EQ(0, n); | 
 |   EXPECT_EQ('a', ch); | 
 | } | 
 |  | 
 | // Sample functions and functors for testing Invoke() and etc. | 
 | int Nullary() { return 1; } | 
 |  | 
 | class NullaryFunctor { | 
 |  public: | 
 |   int operator()() { return 2; } | 
 | }; | 
 |  | 
 | bool g_done = false; | 
 | void VoidNullary() { g_done = true; } | 
 |  | 
 | class VoidNullaryFunctor { | 
 |  public: | 
 |   void operator()() { g_done = true; } | 
 | }; | 
 |  | 
 | short Short(short n) { return n; }  // NOLINT | 
 | char Char(char ch) { return ch; } | 
 |  | 
 | const char* CharPtr(const char* s) { return s; } | 
 |  | 
 | bool Unary(int x) { return x < 0; } | 
 |  | 
 | const char* Binary(const char* input, short n) { return input + n; }  // NOLINT | 
 |  | 
 | void VoidBinary(int, char) { g_done = true; } | 
 |  | 
 | int Ternary(int x, char y, short z) { return x + y + z; }  // NOLINT | 
 |  | 
 | int SumOf4(int a, int b, int c, int d) { return a + b + c + d; } | 
 |  | 
 | class Foo { | 
 |  public: | 
 |   Foo() : value_(123) {} | 
 |  | 
 |   int Nullary() const { return value_; } | 
 |  | 
 |  private: | 
 |   int value_; | 
 | }; | 
 |  | 
 | // Tests InvokeWithoutArgs(function). | 
 | TEST(InvokeWithoutArgsTest, Function) { | 
 |   // As an action that takes one argument. | 
 |   Action<int(int)> a = InvokeWithoutArgs(Nullary);  // NOLINT | 
 |   EXPECT_EQ(1, a.Perform(std::make_tuple(2))); | 
 |  | 
 |   // As an action that takes two arguments. | 
 |   Action<int(int, double)> a2 = InvokeWithoutArgs(Nullary);  // NOLINT | 
 |   EXPECT_EQ(1, a2.Perform(std::make_tuple(2, 3.5))); | 
 |  | 
 |   // As an action that returns void. | 
 |   Action<void(int)> a3 = InvokeWithoutArgs(VoidNullary);  // NOLINT | 
 |   g_done = false; | 
 |   a3.Perform(std::make_tuple(1)); | 
 |   EXPECT_TRUE(g_done); | 
 | } | 
 |  | 
 | // Tests InvokeWithoutArgs(functor). | 
 | TEST(InvokeWithoutArgsTest, Functor) { | 
 |   // As an action that takes no argument. | 
 |   Action<int()> a = InvokeWithoutArgs(NullaryFunctor());  // NOLINT | 
 |   EXPECT_EQ(2, a.Perform(std::make_tuple())); | 
 |  | 
 |   // As an action that takes three arguments. | 
 |   Action<int(int, double, char)> a2 =  // NOLINT | 
 |       InvokeWithoutArgs(NullaryFunctor()); | 
 |   EXPECT_EQ(2, a2.Perform(std::make_tuple(3, 3.5, 'a'))); | 
 |  | 
 |   // As an action that returns void. | 
 |   Action<void()> a3 = InvokeWithoutArgs(VoidNullaryFunctor()); | 
 |   g_done = false; | 
 |   a3.Perform(std::make_tuple()); | 
 |   EXPECT_TRUE(g_done); | 
 | } | 
 |  | 
 | // Tests InvokeWithoutArgs(obj_ptr, method). | 
 | TEST(InvokeWithoutArgsTest, Method) { | 
 |   Foo foo; | 
 |   Action<int(bool, char)> a =  // NOLINT | 
 |       InvokeWithoutArgs(&foo, &Foo::Nullary); | 
 |   EXPECT_EQ(123, a.Perform(std::make_tuple(true, 'a'))); | 
 | } | 
 |  | 
 | // Tests using IgnoreResult() on a polymorphic action. | 
 | TEST(IgnoreResultTest, PolymorphicAction) { | 
 |   Action<void(int)> a = IgnoreResult(Return(5));  // NOLINT | 
 |   a.Perform(std::make_tuple(1)); | 
 | } | 
 |  | 
 | // Tests using IgnoreResult() on a monomorphic action. | 
 |  | 
 | int ReturnOne() { | 
 |   g_done = true; | 
 |   return 1; | 
 | } | 
 |  | 
 | TEST(IgnoreResultTest, MonomorphicAction) { | 
 |   g_done = false; | 
 |   Action<void()> a = IgnoreResult(Invoke(ReturnOne)); | 
 |   a.Perform(std::make_tuple()); | 
 |   EXPECT_TRUE(g_done); | 
 | } | 
 |  | 
 | // Tests using IgnoreResult() on an action that returns a class type. | 
 |  | 
 | MyNonDefaultConstructible ReturnMyNonDefaultConstructible(double /* x */) { | 
 |   g_done = true; | 
 |   return MyNonDefaultConstructible(42); | 
 | } | 
 |  | 
 | TEST(IgnoreResultTest, ActionReturningClass) { | 
 |   g_done = false; | 
 |   Action<void(int)> a = | 
 |       IgnoreResult(Invoke(ReturnMyNonDefaultConstructible));  // NOLINT | 
 |   a.Perform(std::make_tuple(2)); | 
 |   EXPECT_TRUE(g_done); | 
 | } | 
 |  | 
 | TEST(AssignTest, Int) { | 
 |   int x = 0; | 
 |   Action<void(int)> a = Assign(&x, 5); | 
 |   a.Perform(std::make_tuple(0)); | 
 |   EXPECT_EQ(5, x); | 
 | } | 
 |  | 
 | TEST(AssignTest, String) { | 
 |   ::std::string x; | 
 |   Action<void(void)> a = Assign(&x, "Hello, world"); | 
 |   a.Perform(std::make_tuple()); | 
 |   EXPECT_EQ("Hello, world", x); | 
 | } | 
 |  | 
 | TEST(AssignTest, CompatibleTypes) { | 
 |   double x = 0; | 
 |   Action<void(int)> a = Assign(&x, 5); | 
 |   a.Perform(std::make_tuple(0)); | 
 |   EXPECT_DOUBLE_EQ(5, x); | 
 | } | 
 |  | 
 | // DoAll should support &&-qualified actions when used with WillOnce. | 
 | TEST(DoAll, SupportsRefQualifiedActions) { | 
 |   struct InitialAction { | 
 |     void operator()(const int arg) && { EXPECT_EQ(17, arg); } | 
 |   }; | 
 |  | 
 |   struct FinalAction { | 
 |     int operator()() && { return 19; } | 
 |   }; | 
 |  | 
 |   MockFunction<int(int)> mock; | 
 |   EXPECT_CALL(mock, Call).WillOnce(DoAll(InitialAction{}, FinalAction{})); | 
 |   EXPECT_EQ(19, mock.AsStdFunction()(17)); | 
 | } | 
 |  | 
 | // DoAll should never provide rvalue references to the initial actions. If the | 
 | // mock action itself accepts an rvalue reference or a non-scalar object by | 
 | // value then the final action should receive an rvalue reference, but initial | 
 | // actions should receive only lvalue references. | 
 | TEST(DoAll, ProvidesLvalueReferencesToInitialActions) { | 
 |   struct Obj {}; | 
 |  | 
 |   // Mock action accepts by value: the initial action should be fed a const | 
 |   // lvalue reference, and the final action an rvalue reference. | 
 |   { | 
 |     struct InitialAction { | 
 |       void operator()(Obj&) const { FAIL() << "Unexpected call"; } | 
 |       void operator()(const Obj&) const {} | 
 |       void operator()(Obj&&) const { FAIL() << "Unexpected call"; } | 
 |       void operator()(const Obj&&) const { FAIL() << "Unexpected call"; } | 
 |     }; | 
 |  | 
 |     MockFunction<void(Obj)> mock; | 
 |     EXPECT_CALL(mock, Call) | 
 |         .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})) | 
 |         .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})); | 
 |  | 
 |     mock.AsStdFunction()(Obj{}); | 
 |     mock.AsStdFunction()(Obj{}); | 
 |   } | 
 |  | 
 |   // Mock action accepts by const lvalue reference: both actions should receive | 
 |   // a const lvalue reference. | 
 |   { | 
 |     struct InitialAction { | 
 |       void operator()(Obj&) const { FAIL() << "Unexpected call"; } | 
 |       void operator()(const Obj&) const {} | 
 |       void operator()(Obj&&) const { FAIL() << "Unexpected call"; } | 
 |       void operator()(const Obj&&) const { FAIL() << "Unexpected call"; } | 
 |     }; | 
 |  | 
 |     MockFunction<void(const Obj&)> mock; | 
 |     EXPECT_CALL(mock, Call) | 
 |         .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {})) | 
 |         .WillRepeatedly( | 
 |             DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {})); | 
 |  | 
 |     mock.AsStdFunction()(Obj{}); | 
 |     mock.AsStdFunction()(Obj{}); | 
 |   } | 
 |  | 
 |   // Mock action accepts by non-const lvalue reference: both actions should get | 
 |   // a non-const lvalue reference if they want them. | 
 |   { | 
 |     struct InitialAction { | 
 |       void operator()(Obj&) const {} | 
 |       void operator()(Obj&&) const { FAIL() << "Unexpected call"; } | 
 |     }; | 
 |  | 
 |     MockFunction<void(Obj&)> mock; | 
 |     EXPECT_CALL(mock, Call) | 
 |         .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {})) | 
 |         .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {})); | 
 |  | 
 |     Obj obj; | 
 |     mock.AsStdFunction()(obj); | 
 |     mock.AsStdFunction()(obj); | 
 |   } | 
 |  | 
 |   // Mock action accepts by rvalue reference: the initial actions should receive | 
 |   // a non-const lvalue reference if it wants it, and the final action an rvalue | 
 |   // reference. | 
 |   { | 
 |     struct InitialAction { | 
 |       void operator()(Obj&) const {} | 
 |       void operator()(Obj&&) const { FAIL() << "Unexpected call"; } | 
 |     }; | 
 |  | 
 |     MockFunction<void(Obj &&)> mock; | 
 |     EXPECT_CALL(mock, Call) | 
 |         .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})) | 
 |         .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})); | 
 |  | 
 |     mock.AsStdFunction()(Obj{}); | 
 |     mock.AsStdFunction()(Obj{}); | 
 |   } | 
 |  | 
 |   // &&-qualified initial actions should also be allowed with WillOnce. | 
 |   { | 
 |     struct InitialAction { | 
 |       void operator()(Obj&) && {} | 
 |     }; | 
 |  | 
 |     MockFunction<void(Obj&)> mock; | 
 |     EXPECT_CALL(mock, Call) | 
 |         .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {})); | 
 |  | 
 |     Obj obj; | 
 |     mock.AsStdFunction()(obj); | 
 |   } | 
 |  | 
 |   { | 
 |     struct InitialAction { | 
 |       void operator()(Obj&) && {} | 
 |     }; | 
 |  | 
 |     MockFunction<void(Obj &&)> mock; | 
 |     EXPECT_CALL(mock, Call) | 
 |         .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {})); | 
 |  | 
 |     mock.AsStdFunction()(Obj{}); | 
 |   } | 
 | } | 
 |  | 
 | // DoAll should support being used with type-erased Action objects, both through | 
 | // WillOnce and WillRepeatedly. | 
 | TEST(DoAll, SupportsTypeErasedActions) { | 
 |   // With only type-erased actions. | 
 |   const Action<void()> initial_action = [] {}; | 
 |   const Action<int()> final_action = [] { return 17; }; | 
 |  | 
 |   MockFunction<int()> mock; | 
 |   EXPECT_CALL(mock, Call) | 
 |       .WillOnce(DoAll(initial_action, initial_action, final_action)) | 
 |       .WillRepeatedly(DoAll(initial_action, initial_action, final_action)); | 
 |  | 
 |   EXPECT_EQ(17, mock.AsStdFunction()()); | 
 |  | 
 |   // With &&-qualified and move-only final action. | 
 |   { | 
 |     struct FinalAction { | 
 |       FinalAction() = default; | 
 |       FinalAction(FinalAction&&) = default; | 
 |  | 
 |       int operator()() && { return 17; } | 
 |     }; | 
 |  | 
 |     EXPECT_CALL(mock, Call) | 
 |         .WillOnce(DoAll(initial_action, initial_action, FinalAction{})); | 
 |  | 
 |     EXPECT_EQ(17, mock.AsStdFunction()()); | 
 |   } | 
 | } | 
 |  | 
 | // Tests using WithArgs and with an action that takes 1 argument. | 
 | TEST(WithArgsTest, OneArg) { | 
 |   Action<bool(double x, int n)> a = WithArgs<1>(Invoke(Unary));  // NOLINT | 
 |   EXPECT_TRUE(a.Perform(std::make_tuple(1.5, -1))); | 
 |   EXPECT_FALSE(a.Perform(std::make_tuple(1.5, 1))); | 
 | } | 
 |  | 
 | // Tests using WithArgs with an action that takes 2 arguments. | 
 | TEST(WithArgsTest, TwoArgs) { | 
 |   Action<const char*(const char* s, double x, short n)> a =  // NOLINT | 
 |       WithArgs<0, 2>(Invoke(Binary)); | 
 |   const char s[] = "Hello"; | 
 |   EXPECT_EQ(s + 2, a.Perform(std::make_tuple(CharPtr(s), 0.5, Short(2)))); | 
 | } | 
 |  | 
 | struct ConcatAll { | 
 |   std::string operator()() const { return {}; } | 
 |   template <typename... I> | 
 |   std::string operator()(const char* a, I... i) const { | 
 |     return a + ConcatAll()(i...); | 
 |   } | 
 | }; | 
 |  | 
 | // Tests using WithArgs with an action that takes 10 arguments. | 
 | TEST(WithArgsTest, TenArgs) { | 
 |   Action<std::string(const char*, const char*, const char*, const char*)> a = | 
 |       WithArgs<0, 1, 2, 3, 2, 1, 0, 1, 2, 3>(Invoke(ConcatAll{})); | 
 |   EXPECT_EQ("0123210123", | 
 |             a.Perform(std::make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"), | 
 |                                       CharPtr("3")))); | 
 | } | 
 |  | 
 | // Tests using WithArgs with an action that is not Invoke(). | 
 | class SubtractAction : public ActionInterface<int(int, int)> { | 
 |  public: | 
 |   int Perform(const std::tuple<int, int>& args) override { | 
 |     return std::get<0>(args) - std::get<1>(args); | 
 |   } | 
 | }; | 
 |  | 
 | TEST(WithArgsTest, NonInvokeAction) { | 
 |   Action<int(const std::string&, int, int)> a = | 
 |       WithArgs<2, 1>(MakeAction(new SubtractAction)); | 
 |   std::tuple<std::string, int, int> dummy = | 
 |       std::make_tuple(std::string("hi"), 2, 10); | 
 |   EXPECT_EQ(8, a.Perform(dummy)); | 
 | } | 
 |  | 
 | // Tests using WithArgs to pass all original arguments in the original order. | 
 | TEST(WithArgsTest, Identity) { | 
 |   Action<int(int x, char y, short z)> a =  // NOLINT | 
 |       WithArgs<0, 1, 2>(Invoke(Ternary)); | 
 |   EXPECT_EQ(123, a.Perform(std::make_tuple(100, Char(20), Short(3)))); | 
 | } | 
 |  | 
 | // Tests using WithArgs with repeated arguments. | 
 | TEST(WithArgsTest, RepeatedArguments) { | 
 |   Action<int(bool, int m, int n)> a =  // NOLINT | 
 |       WithArgs<1, 1, 1, 1>(Invoke(SumOf4)); | 
 |   EXPECT_EQ(4, a.Perform(std::make_tuple(false, 1, 10))); | 
 | } | 
 |  | 
 | // Tests using WithArgs with reversed argument order. | 
 | TEST(WithArgsTest, ReversedArgumentOrder) { | 
 |   Action<const char*(short n, const char* input)> a =  // NOLINT | 
 |       WithArgs<1, 0>(Invoke(Binary)); | 
 |   const char s[] = "Hello"; | 
 |   EXPECT_EQ(s + 2, a.Perform(std::make_tuple(Short(2), CharPtr(s)))); | 
 | } | 
 |  | 
 | // Tests using WithArgs with compatible, but not identical, argument types. | 
 | TEST(WithArgsTest, ArgsOfCompatibleTypes) { | 
 |   Action<long(short x, char y, double z, char c)> a =  // NOLINT | 
 |       WithArgs<0, 1, 3>(Invoke(Ternary)); | 
 |   EXPECT_EQ(123, | 
 |             a.Perform(std::make_tuple(Short(100), Char(20), 5.6, Char(3)))); | 
 | } | 
 |  | 
 | // Tests using WithArgs with an action that returns void. | 
 | TEST(WithArgsTest, VoidAction) { | 
 |   Action<void(double x, char c, int n)> a = WithArgs<2, 1>(Invoke(VoidBinary)); | 
 |   g_done = false; | 
 |   a.Perform(std::make_tuple(1.5, 'a', 3)); | 
 |   EXPECT_TRUE(g_done); | 
 | } | 
 |  | 
 | TEST(WithArgsTest, ReturnReference) { | 
 |   Action<int&(int&, void*)> aa = WithArgs<0>([](int& a) -> int& { return a; }); | 
 |   int i = 0; | 
 |   const int& res = aa.Perform(std::forward_as_tuple(i, nullptr)); | 
 |   EXPECT_EQ(&i, &res); | 
 | } | 
 |  | 
 | TEST(WithArgsTest, InnerActionWithConversion) { | 
 |   Action<Derived*()> inner = [] { return nullptr; }; | 
 |  | 
 |   MockFunction<Base*(double)> mock; | 
 |   EXPECT_CALL(mock, Call) | 
 |       .WillOnce(WithoutArgs(inner)) | 
 |       .WillRepeatedly(WithoutArgs(inner)); | 
 |  | 
 |   EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1)); | 
 |   EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1)); | 
 | } | 
 |  | 
 | // It should be possible to use an &&-qualified inner action as long as the | 
 | // whole shebang is used as an rvalue with WillOnce. | 
 | TEST(WithArgsTest, RefQualifiedInnerAction) { | 
 |   struct SomeAction { | 
 |     int operator()(const int arg) && { | 
 |       EXPECT_EQ(17, arg); | 
 |       return 19; | 
 |     } | 
 |   }; | 
 |  | 
 |   MockFunction<int(int, int)> mock; | 
 |   EXPECT_CALL(mock, Call).WillOnce(WithArg<1>(SomeAction{})); | 
 |   EXPECT_EQ(19, mock.AsStdFunction()(0, 17)); | 
 | } | 
 |  | 
 | #if !GTEST_OS_WINDOWS_MOBILE | 
 |  | 
 | class SetErrnoAndReturnTest : public testing::Test { | 
 |  protected: | 
 |   void SetUp() override { errno = 0; } | 
 |   void TearDown() override { errno = 0; } | 
 | }; | 
 |  | 
 | TEST_F(SetErrnoAndReturnTest, Int) { | 
 |   Action<int(void)> a = SetErrnoAndReturn(ENOTTY, -5); | 
 |   EXPECT_EQ(-5, a.Perform(std::make_tuple())); | 
 |   EXPECT_EQ(ENOTTY, errno); | 
 | } | 
 |  | 
 | TEST_F(SetErrnoAndReturnTest, Ptr) { | 
 |   int x; | 
 |   Action<int*(void)> a = SetErrnoAndReturn(ENOTTY, &x); | 
 |   EXPECT_EQ(&x, a.Perform(std::make_tuple())); | 
 |   EXPECT_EQ(ENOTTY, errno); | 
 | } | 
 |  | 
 | TEST_F(SetErrnoAndReturnTest, CompatibleTypes) { | 
 |   Action<double()> a = SetErrnoAndReturn(EINVAL, 5); | 
 |   EXPECT_DOUBLE_EQ(5.0, a.Perform(std::make_tuple())); | 
 |   EXPECT_EQ(EINVAL, errno); | 
 | } | 
 |  | 
 | #endif  // !GTEST_OS_WINDOWS_MOBILE | 
 |  | 
 | // Tests ByRef(). | 
 |  | 
 | // Tests that the result of ByRef() is copyable. | 
 | TEST(ByRefTest, IsCopyable) { | 
 |   const std::string s1 = "Hi"; | 
 |   const std::string s2 = "Hello"; | 
 |  | 
 |   auto ref_wrapper = ByRef(s1); | 
 |   const std::string& r1 = ref_wrapper; | 
 |   EXPECT_EQ(&s1, &r1); | 
 |  | 
 |   // Assigns a new value to ref_wrapper. | 
 |   ref_wrapper = ByRef(s2); | 
 |   const std::string& r2 = ref_wrapper; | 
 |   EXPECT_EQ(&s2, &r2); | 
 |  | 
 |   auto ref_wrapper1 = ByRef(s1); | 
 |   // Copies ref_wrapper1 to ref_wrapper. | 
 |   ref_wrapper = ref_wrapper1; | 
 |   const std::string& r3 = ref_wrapper; | 
 |   EXPECT_EQ(&s1, &r3); | 
 | } | 
 |  | 
 | // Tests using ByRef() on a const value. | 
 | TEST(ByRefTest, ConstValue) { | 
 |   const int n = 0; | 
 |   // int& ref = ByRef(n);  // This shouldn't compile - we have a | 
 |   // negative compilation test to catch it. | 
 |   const int& const_ref = ByRef(n); | 
 |   EXPECT_EQ(&n, &const_ref); | 
 | } | 
 |  | 
 | // Tests using ByRef() on a non-const value. | 
 | TEST(ByRefTest, NonConstValue) { | 
 |   int n = 0; | 
 |  | 
 |   // ByRef(n) can be used as either an int&, | 
 |   int& ref = ByRef(n); | 
 |   EXPECT_EQ(&n, &ref); | 
 |  | 
 |   // or a const int&. | 
 |   const int& const_ref = ByRef(n); | 
 |   EXPECT_EQ(&n, &const_ref); | 
 | } | 
 |  | 
 | // Tests explicitly specifying the type when using ByRef(). | 
 | TEST(ByRefTest, ExplicitType) { | 
 |   int n = 0; | 
 |   const int& r1 = ByRef<const int>(n); | 
 |   EXPECT_EQ(&n, &r1); | 
 |  | 
 |   // ByRef<char>(n);  // This shouldn't compile - we have a negative | 
 |   // compilation test to catch it. | 
 |  | 
 |   Derived d; | 
 |   Derived& r2 = ByRef<Derived>(d); | 
 |   EXPECT_EQ(&d, &r2); | 
 |  | 
 |   const Derived& r3 = ByRef<const Derived>(d); | 
 |   EXPECT_EQ(&d, &r3); | 
 |  | 
 |   Base& r4 = ByRef<Base>(d); | 
 |   EXPECT_EQ(&d, &r4); | 
 |  | 
 |   const Base& r5 = ByRef<const Base>(d); | 
 |   EXPECT_EQ(&d, &r5); | 
 |  | 
 |   // The following shouldn't compile - we have a negative compilation | 
 |   // test for it. | 
 |   // | 
 |   // Base b; | 
 |   // ByRef<Derived>(b); | 
 | } | 
 |  | 
 | // Tests that Google Mock prints expression ByRef(x) as a reference to x. | 
 | TEST(ByRefTest, PrintsCorrectly) { | 
 |   int n = 42; | 
 |   ::std::stringstream expected, actual; | 
 |   testing::internal::UniversalPrinter<const int&>::Print(n, &expected); | 
 |   testing::internal::UniversalPrint(ByRef(n), &actual); | 
 |   EXPECT_EQ(expected.str(), actual.str()); | 
 | } | 
 |  | 
 | struct UnaryConstructorClass { | 
 |   explicit UnaryConstructorClass(int v) : value(v) {} | 
 |   int value; | 
 | }; | 
 |  | 
 | // Tests using ReturnNew() with a unary constructor. | 
 | TEST(ReturnNewTest, Unary) { | 
 |   Action<UnaryConstructorClass*()> a = ReturnNew<UnaryConstructorClass>(4000); | 
 |   UnaryConstructorClass* c = a.Perform(std::make_tuple()); | 
 |   EXPECT_EQ(4000, c->value); | 
 |   delete c; | 
 | } | 
 |  | 
 | TEST(ReturnNewTest, UnaryWorksWhenMockMethodHasArgs) { | 
 |   Action<UnaryConstructorClass*(bool, int)> a = | 
 |       ReturnNew<UnaryConstructorClass>(4000); | 
 |   UnaryConstructorClass* c = a.Perform(std::make_tuple(false, 5)); | 
 |   EXPECT_EQ(4000, c->value); | 
 |   delete c; | 
 | } | 
 |  | 
 | TEST(ReturnNewTest, UnaryWorksWhenMockMethodReturnsPointerToConst) { | 
 |   Action<const UnaryConstructorClass*()> a = | 
 |       ReturnNew<UnaryConstructorClass>(4000); | 
 |   const UnaryConstructorClass* c = a.Perform(std::make_tuple()); | 
 |   EXPECT_EQ(4000, c->value); | 
 |   delete c; | 
 | } | 
 |  | 
 | class TenArgConstructorClass { | 
 |  public: | 
 |   TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5, int a6, int a7, | 
 |                          int a8, int a9, int a10) | 
 |       : value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) {} | 
 |   int value_; | 
 | }; | 
 |  | 
 | // Tests using ReturnNew() with a 10-argument constructor. | 
 | TEST(ReturnNewTest, ConstructorThatTakes10Arguments) { | 
 |   Action<TenArgConstructorClass*()> a = ReturnNew<TenArgConstructorClass>( | 
 |       1000000000, 200000000, 30000000, 4000000, 500000, 60000, 7000, 800, 90, | 
 |       0); | 
 |   TenArgConstructorClass* c = a.Perform(std::make_tuple()); | 
 |   EXPECT_EQ(1234567890, c->value_); | 
 |   delete c; | 
 | } | 
 |  | 
 | std::unique_ptr<int> UniquePtrSource() { | 
 |   return std::unique_ptr<int>(new int(19)); | 
 | } | 
 |  | 
 | std::vector<std::unique_ptr<int>> VectorUniquePtrSource() { | 
 |   std::vector<std::unique_ptr<int>> out; | 
 |   out.emplace_back(new int(7)); | 
 |   return out; | 
 | } | 
 |  | 
 | TEST(MockMethodTest, CanReturnMoveOnlyValue_Return) { | 
 |   MockClass mock; | 
 |   std::unique_ptr<int> i(new int(19)); | 
 |   EXPECT_CALL(mock, MakeUnique()).WillOnce(Return(ByMove(std::move(i)))); | 
 |   EXPECT_CALL(mock, MakeVectorUnique()) | 
 |       .WillOnce(Return(ByMove(VectorUniquePtrSource()))); | 
 |   Derived* d = new Derived; | 
 |   EXPECT_CALL(mock, MakeUniqueBase()) | 
 |       .WillOnce(Return(ByMove(std::unique_ptr<Derived>(d)))); | 
 |  | 
 |   std::unique_ptr<int> result1 = mock.MakeUnique(); | 
 |   EXPECT_EQ(19, *result1); | 
 |  | 
 |   std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique(); | 
 |   EXPECT_EQ(1u, vresult.size()); | 
 |   EXPECT_NE(nullptr, vresult[0]); | 
 |   EXPECT_EQ(7, *vresult[0]); | 
 |  | 
 |   std::unique_ptr<Base> result2 = mock.MakeUniqueBase(); | 
 |   EXPECT_EQ(d, result2.get()); | 
 | } | 
 |  | 
 | TEST(MockMethodTest, CanReturnMoveOnlyValue_DoAllReturn) { | 
 |   testing::MockFunction<void()> mock_function; | 
 |   MockClass mock; | 
 |   std::unique_ptr<int> i(new int(19)); | 
 |   EXPECT_CALL(mock_function, Call()); | 
 |   EXPECT_CALL(mock, MakeUnique()) | 
 |       .WillOnce(DoAll(InvokeWithoutArgs(&mock_function, | 
 |                                         &testing::MockFunction<void()>::Call), | 
 |                       Return(ByMove(std::move(i))))); | 
 |  | 
 |   std::unique_ptr<int> result1 = mock.MakeUnique(); | 
 |   EXPECT_EQ(19, *result1); | 
 | } | 
 |  | 
 | TEST(MockMethodTest, CanReturnMoveOnlyValue_Invoke) { | 
 |   MockClass mock; | 
 |  | 
 |   // Check default value | 
 |   DefaultValue<std::unique_ptr<int>>::SetFactory( | 
 |       [] { return std::unique_ptr<int>(new int(42)); }); | 
 |   EXPECT_EQ(42, *mock.MakeUnique()); | 
 |  | 
 |   EXPECT_CALL(mock, MakeUnique()).WillRepeatedly(Invoke(UniquePtrSource)); | 
 |   EXPECT_CALL(mock, MakeVectorUnique()) | 
 |       .WillRepeatedly(Invoke(VectorUniquePtrSource)); | 
 |   std::unique_ptr<int> result1 = mock.MakeUnique(); | 
 |   EXPECT_EQ(19, *result1); | 
 |   std::unique_ptr<int> result2 = mock.MakeUnique(); | 
 |   EXPECT_EQ(19, *result2); | 
 |   EXPECT_NE(result1, result2); | 
 |  | 
 |   std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique(); | 
 |   EXPECT_EQ(1u, vresult.size()); | 
 |   EXPECT_NE(nullptr, vresult[0]); | 
 |   EXPECT_EQ(7, *vresult[0]); | 
 | } | 
 |  | 
 | TEST(MockMethodTest, CanTakeMoveOnlyValue) { | 
 |   MockClass mock; | 
 |   auto make = [](int i) { return std::unique_ptr<int>(new int(i)); }; | 
 |  | 
 |   EXPECT_CALL(mock, TakeUnique(_)).WillRepeatedly([](std::unique_ptr<int> i) { | 
 |     return *i; | 
 |   }); | 
 |   // DoAll() does not compile, since it would move from its arguments twice. | 
 |   // EXPECT_CALL(mock, TakeUnique(_, _)) | 
 |   //     .WillRepeatedly(DoAll(Invoke([](std::unique_ptr<int> j) {}), | 
 |   //     Return(1))); | 
 |   EXPECT_CALL(mock, TakeUnique(testing::Pointee(7))) | 
 |       .WillOnce(Return(-7)) | 
 |       .RetiresOnSaturation(); | 
 |   EXPECT_CALL(mock, TakeUnique(testing::IsNull())) | 
 |       .WillOnce(Return(-1)) | 
 |       .RetiresOnSaturation(); | 
 |  | 
 |   EXPECT_EQ(5, mock.TakeUnique(make(5))); | 
 |   EXPECT_EQ(-7, mock.TakeUnique(make(7))); | 
 |   EXPECT_EQ(7, mock.TakeUnique(make(7))); | 
 |   EXPECT_EQ(7, mock.TakeUnique(make(7))); | 
 |   EXPECT_EQ(-1, mock.TakeUnique({})); | 
 |  | 
 |   // Some arguments are moved, some passed by reference. | 
 |   auto lvalue = make(6); | 
 |   EXPECT_CALL(mock, TakeUnique(_, _)) | 
 |       .WillOnce([](const std::unique_ptr<int>& i, std::unique_ptr<int> j) { | 
 |         return *i * *j; | 
 |       }); | 
 |   EXPECT_EQ(42, mock.TakeUnique(lvalue, make(7))); | 
 |  | 
 |   // The unique_ptr can be saved by the action. | 
 |   std::unique_ptr<int> saved; | 
 |   EXPECT_CALL(mock, TakeUnique(_)).WillOnce([&saved](std::unique_ptr<int> i) { | 
 |     saved = std::move(i); | 
 |     return 0; | 
 |   }); | 
 |   EXPECT_EQ(0, mock.TakeUnique(make(42))); | 
 |   EXPECT_EQ(42, *saved); | 
 | } | 
 |  | 
 | // It should be possible to use callables with an &&-qualified call operator | 
 | // with WillOnce, since they will be called only once. This allows actions to | 
 | // contain and manipulate move-only types. | 
 | TEST(MockMethodTest, ActionHasRvalueRefQualifiedCallOperator) { | 
 |   struct Return17 { | 
 |     int operator()() && { return 17; } | 
 |   }; | 
 |  | 
 |   // Action is directly compatible with mocked function type. | 
 |   { | 
 |     MockFunction<int()> mock; | 
 |     EXPECT_CALL(mock, Call).WillOnce(Return17()); | 
 |  | 
 |     EXPECT_EQ(17, mock.AsStdFunction()()); | 
 |   } | 
 |  | 
 |   // Action doesn't want mocked function arguments. | 
 |   { | 
 |     MockFunction<int(int)> mock; | 
 |     EXPECT_CALL(mock, Call).WillOnce(Return17()); | 
 |  | 
 |     EXPECT_EQ(17, mock.AsStdFunction()(0)); | 
 |   } | 
 | } | 
 |  | 
 | // Edge case: if an action has both a const-qualified and an &&-qualified call | 
 | // operator, there should be no "ambiguous call" errors. The &&-qualified | 
 | // operator should be used by WillOnce (since it doesn't need to retain the | 
 | // action beyond one call), and the const-qualified one by WillRepeatedly. | 
 | TEST(MockMethodTest, ActionHasMultipleCallOperators) { | 
 |   struct ReturnInt { | 
 |     int operator()() && { return 17; } | 
 |     int operator()() const& { return 19; } | 
 |   }; | 
 |  | 
 |   // Directly compatible with mocked function type. | 
 |   { | 
 |     MockFunction<int()> mock; | 
 |     EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt()); | 
 |  | 
 |     EXPECT_EQ(17, mock.AsStdFunction()()); | 
 |     EXPECT_EQ(19, mock.AsStdFunction()()); | 
 |     EXPECT_EQ(19, mock.AsStdFunction()()); | 
 |   } | 
 |  | 
 |   // Ignores function arguments. | 
 |   { | 
 |     MockFunction<int(int)> mock; | 
 |     EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt()); | 
 |  | 
 |     EXPECT_EQ(17, mock.AsStdFunction()(0)); | 
 |     EXPECT_EQ(19, mock.AsStdFunction()(0)); | 
 |     EXPECT_EQ(19, mock.AsStdFunction()(0)); | 
 |   } | 
 | } | 
 |  | 
 | // WillOnce should have no problem coping with a move-only action, whether it is | 
 | // &&-qualified or not. | 
 | TEST(MockMethodTest, MoveOnlyAction) { | 
 |   // &&-qualified | 
 |   { | 
 |     struct Return17 { | 
 |       Return17() = default; | 
 |       Return17(Return17&&) = default; | 
 |  | 
 |       Return17(const Return17&) = delete; | 
 |       Return17 operator=(const Return17&) = delete; | 
 |  | 
 |       int operator()() && { return 17; } | 
 |     }; | 
 |  | 
 |     MockFunction<int()> mock; | 
 |     EXPECT_CALL(mock, Call).WillOnce(Return17()); | 
 |     EXPECT_EQ(17, mock.AsStdFunction()()); | 
 |   } | 
 |  | 
 |   // Not &&-qualified | 
 |   { | 
 |     struct Return17 { | 
 |       Return17() = default; | 
 |       Return17(Return17&&) = default; | 
 |  | 
 |       Return17(const Return17&) = delete; | 
 |       Return17 operator=(const Return17&) = delete; | 
 |  | 
 |       int operator()() const { return 17; } | 
 |     }; | 
 |  | 
 |     MockFunction<int()> mock; | 
 |     EXPECT_CALL(mock, Call).WillOnce(Return17()); | 
 |     EXPECT_EQ(17, mock.AsStdFunction()()); | 
 |   } | 
 | } | 
 |  | 
 | // It should be possible to use an action that returns a value with a mock | 
 | // function that doesn't, both through WillOnce and WillRepeatedly. | 
 | TEST(MockMethodTest, ActionReturnsIgnoredValue) { | 
 |   struct ReturnInt { | 
 |     int operator()() const { return 0; } | 
 |   }; | 
 |  | 
 |   MockFunction<void()> mock; | 
 |   EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt()); | 
 |  | 
 |   mock.AsStdFunction()(); | 
 |   mock.AsStdFunction()(); | 
 | } | 
 |  | 
 | // Despite the fanciness around move-only actions and so on, it should still be | 
 | // possible to hand an lvalue reference to a copyable action to WillOnce. | 
 | TEST(MockMethodTest, WillOnceCanAcceptLvalueReference) { | 
 |   MockFunction<int()> mock; | 
 |  | 
 |   const auto action = [] { return 17; }; | 
 |   EXPECT_CALL(mock, Call).WillOnce(action); | 
 |  | 
 |   EXPECT_EQ(17, mock.AsStdFunction()()); | 
 | } | 
 |  | 
 | // A callable that doesn't use SFINAE to restrict its call operator's overload | 
 | // set, but is still picky about which arguments it will accept. | 
 | struct StaticAssertSingleArgument { | 
 |   template <typename... Args> | 
 |   static constexpr bool CheckArgs() { | 
 |     static_assert(sizeof...(Args) == 1, ""); | 
 |     return true; | 
 |   } | 
 |  | 
 |   template <typename... Args, bool = CheckArgs<Args...>()> | 
 |   int operator()(Args...) const { | 
 |     return 17; | 
 |   } | 
 | }; | 
 |  | 
 | // WillOnce and WillRepeatedly should both work fine with naïve implementations | 
 | // of actions that don't use SFINAE to limit the overload set for their call | 
 | // operator. If they are compatible with the actual mocked signature, we | 
 | // shouldn't probe them with no arguments and trip a static_assert. | 
 | TEST(MockMethodTest, ActionSwallowsAllArguments) { | 
 |   MockFunction<int(int)> mock; | 
 |   EXPECT_CALL(mock, Call) | 
 |       .WillOnce(StaticAssertSingleArgument{}) | 
 |       .WillRepeatedly(StaticAssertSingleArgument{}); | 
 |  | 
 |   EXPECT_EQ(17, mock.AsStdFunction()(0)); | 
 |   EXPECT_EQ(17, mock.AsStdFunction()(0)); | 
 | } | 
 |  | 
 | struct ActionWithTemplatedConversionOperators { | 
 |   template <typename... Args> | 
 |   operator OnceAction<int(Args...)>() && {  // NOLINT | 
 |     return [] { return 17; }; | 
 |   } | 
 |  | 
 |   template <typename... Args> | 
 |   operator Action<int(Args...)>() const {  // NOLINT | 
 |     return [] { return 19; }; | 
 |   } | 
 | }; | 
 |  | 
 | // It should be fine to hand both WillOnce and WillRepeatedly a function that | 
 | // defines templated conversion operators to OnceAction and Action. WillOnce | 
 | // should prefer the OnceAction version. | 
 | TEST(MockMethodTest, ActionHasTemplatedConversionOperators) { | 
 |   MockFunction<int()> mock; | 
 |   EXPECT_CALL(mock, Call) | 
 |       .WillOnce(ActionWithTemplatedConversionOperators{}) | 
 |       .WillRepeatedly(ActionWithTemplatedConversionOperators{}); | 
 |  | 
 |   EXPECT_EQ(17, mock.AsStdFunction()()); | 
 |   EXPECT_EQ(19, mock.AsStdFunction()()); | 
 | } | 
 |  | 
 | // Tests for std::function based action. | 
 |  | 
 | int Add(int val, int& ref, int* ptr) {  // NOLINT | 
 |   int result = val + ref + *ptr; | 
 |   ref = 42; | 
 |   *ptr = 43; | 
 |   return result; | 
 | } | 
 |  | 
 | int Deref(std::unique_ptr<int> ptr) { return *ptr; } | 
 |  | 
 | struct Double { | 
 |   template <typename T> | 
 |   T operator()(T t) { | 
 |     return 2 * t; | 
 |   } | 
 | }; | 
 |  | 
 | std::unique_ptr<int> UniqueInt(int i) { | 
 |   return std::unique_ptr<int>(new int(i)); | 
 | } | 
 |  | 
 | TEST(FunctorActionTest, ActionFromFunction) { | 
 |   Action<int(int, int&, int*)> a = &Add; | 
 |   int x = 1, y = 2, z = 3; | 
 |   EXPECT_EQ(6, a.Perform(std::forward_as_tuple(x, y, &z))); | 
 |   EXPECT_EQ(42, y); | 
 |   EXPECT_EQ(43, z); | 
 |  | 
 |   Action<int(std::unique_ptr<int>)> a1 = &Deref; | 
 |   EXPECT_EQ(7, a1.Perform(std::make_tuple(UniqueInt(7)))); | 
 | } | 
 |  | 
 | TEST(FunctorActionTest, ActionFromLambda) { | 
 |   Action<int(bool, int)> a1 = [](bool b, int i) { return b ? i : 0; }; | 
 |   EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5))); | 
 |   EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 5))); | 
 |  | 
 |   std::unique_ptr<int> saved; | 
 |   Action<void(std::unique_ptr<int>)> a2 = [&saved](std::unique_ptr<int> p) { | 
 |     saved = std::move(p); | 
 |   }; | 
 |   a2.Perform(std::make_tuple(UniqueInt(5))); | 
 |   EXPECT_EQ(5, *saved); | 
 | } | 
 |  | 
 | TEST(FunctorActionTest, PolymorphicFunctor) { | 
 |   Action<int(int)> ai = Double(); | 
 |   EXPECT_EQ(2, ai.Perform(std::make_tuple(1))); | 
 |   Action<double(double)> ad = Double();  // Double? Double double! | 
 |   EXPECT_EQ(3.0, ad.Perform(std::make_tuple(1.5))); | 
 | } | 
 |  | 
 | TEST(FunctorActionTest, TypeConversion) { | 
 |   // Numeric promotions are allowed. | 
 |   const Action<bool(int)> a1 = [](int i) { return i > 1; }; | 
 |   const Action<int(bool)> a2 = Action<int(bool)>(a1); | 
 |   EXPECT_EQ(1, a1.Perform(std::make_tuple(42))); | 
 |   EXPECT_EQ(0, a2.Perform(std::make_tuple(42))); | 
 |  | 
 |   // Implicit constructors are allowed. | 
 |   const Action<bool(std::string)> s1 = [](std::string s) { return !s.empty(); }; | 
 |   const Action<int(const char*)> s2 = Action<int(const char*)>(s1); | 
 |   EXPECT_EQ(0, s2.Perform(std::make_tuple(""))); | 
 |   EXPECT_EQ(1, s2.Perform(std::make_tuple("hello"))); | 
 |  | 
 |   // Also between the lambda and the action itself. | 
 |   const Action<bool(std::string)> x1 = [](Unused) { return 42; }; | 
 |   const Action<bool(std::string)> x2 = [] { return 42; }; | 
 |   EXPECT_TRUE(x1.Perform(std::make_tuple("hello"))); | 
 |   EXPECT_TRUE(x2.Perform(std::make_tuple("hello"))); | 
 |  | 
 |   // Ensure decay occurs where required. | 
 |   std::function<int()> f = [] { return 7; }; | 
 |   Action<int(int)> d = f; | 
 |   f = nullptr; | 
 |   EXPECT_EQ(7, d.Perform(std::make_tuple(1))); | 
 |  | 
 |   // Ensure creation of an empty action succeeds. | 
 |   Action<void(int)>(nullptr); | 
 | } | 
 |  | 
 | TEST(FunctorActionTest, UnusedArguments) { | 
 |   // Verify that users can ignore uninteresting arguments. | 
 |   Action<int(int, double y, double z)> a = [](int i, Unused, Unused) { | 
 |     return 2 * i; | 
 |   }; | 
 |   std::tuple<int, double, double> dummy = std::make_tuple(3, 7.3, 9.44); | 
 |   EXPECT_EQ(6, a.Perform(dummy)); | 
 | } | 
 |  | 
 | // Test that basic built-in actions work with move-only arguments. | 
 | TEST(MoveOnlyArgumentsTest, ReturningActions) { | 
 |   Action<int(std::unique_ptr<int>)> a = Return(1); | 
 |   EXPECT_EQ(1, a.Perform(std::make_tuple(nullptr))); | 
 |  | 
 |   a = testing::WithoutArgs([]() { return 7; }); | 
 |   EXPECT_EQ(7, a.Perform(std::make_tuple(nullptr))); | 
 |  | 
 |   Action<void(std::unique_ptr<int>, int*)> a2 = testing::SetArgPointee<1>(3); | 
 |   int x = 0; | 
 |   a2.Perform(std::make_tuple(nullptr, &x)); | 
 |   EXPECT_EQ(x, 3); | 
 | } | 
 |  | 
 | ACTION(ReturnArity) { return std::tuple_size<args_type>::value; } | 
 |  | 
 | TEST(ActionMacro, LargeArity) { | 
 |   EXPECT_EQ( | 
 |       1, testing::Action<int(int)>(ReturnArity()).Perform(std::make_tuple(0))); | 
 |   EXPECT_EQ( | 
 |       10, | 
 |       testing::Action<int(int, int, int, int, int, int, int, int, int, int)>( | 
 |           ReturnArity()) | 
 |           .Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))); | 
 |   EXPECT_EQ( | 
 |       20, | 
 |       testing::Action<int(int, int, int, int, int, int, int, int, int, int, int, | 
 |                           int, int, int, int, int, int, int, int, int)>( | 
 |           ReturnArity()) | 
 |           .Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, | 
 |                                    14, 15, 16, 17, 18, 19))); | 
 | } | 
 |  | 
 | }  // namespace | 
 | }  // namespace testing |