blob: a1fae32d1017310ae0d949bb76c08d48cf2e41b5 [file] [log] [blame]
// Copyright 2015 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// fixedpoint_SSE.h: optimized SSE specializations of the templates
// in fixedpoint.h.
#ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_SSE_H_
#define GEMMLOWP_INTERNAL_FIXEDPOINT_SSE_H_
#include <smmintrin.h>
#include "fixedpoint.h"
namespace gemmlowp {
// SSE intrinsics are not finely typed: there is a single __m128i vector
// type that does not distinguish between "int32x4" and "int16x8" use
// cases, unlike the NEON equivalents. Because we had initially focused
// on int32x4, we did not pay attention and specialized these fixedpoint
// templates directly for __m128i hardcoding the int32x4 semantics,
// not leaving room for int16x8 semantics. Amending that by adding a separate
// data type, int16x8_m128i, that wraps __m128i while being a separate
// type.
struct int16x8_m128i {
int16x8_m128i() {}
explicit int16x8_m128i(__m128i w) : v(w) {}
~int16x8_m128i() {}
__m128i v;
};
template <>
struct FixedPointRawTypeTraits<__m128i> {
typedef std::int32_t ScalarRawType;
static constexpr int kLanes = 4;
};
template <>
struct FixedPointRawTypeTraits<int16x8_m128i> {
typedef std::int16_t ScalarRawType;
static constexpr int kLanes = 8;
};
template <>
inline __m128i BitAnd(__m128i a, __m128i b) {
return _mm_and_si128(a, b);
}
template <>
inline int16x8_m128i BitAnd(int16x8_m128i a, int16x8_m128i b) {
return int16x8_m128i(_mm_and_si128(a.v, b.v));
}
template <>
inline __m128i BitOr(__m128i a, __m128i b) {
return _mm_or_si128(a, b);
}
template <>
inline int16x8_m128i BitOr(int16x8_m128i a, int16x8_m128i b) {
return int16x8_m128i(_mm_or_si128(a.v, b.v));
}
template <>
inline __m128i BitXor(__m128i a, __m128i b) {
return _mm_xor_si128(a, b);
}
template <>
inline int16x8_m128i BitXor(int16x8_m128i a, int16x8_m128i b) {
return int16x8_m128i(_mm_xor_si128(a.v, b.v));
}
template <>
inline __m128i BitNot(__m128i a) {
return _mm_andnot_si128(a, _mm_set1_epi32(-1));
}
template <>
inline int16x8_m128i BitNot(int16x8_m128i a) {
return int16x8_m128i(_mm_andnot_si128(a.v, _mm_set1_epi16(-1)));
}
template <>
inline __m128i Add(__m128i a, __m128i b) {
return _mm_add_epi32(a, b);
}
template <>
inline int16x8_m128i Add(int16x8_m128i a, int16x8_m128i b) {
return int16x8_m128i(_mm_add_epi16(a.v, b.v));
}
template <>
inline __m128i Mul(__m128i a, __m128i b) {
return _mm_mullo_epi32(a, b);
}
template <>
inline int16x8_m128i Mul(int16x8_m128i a, int16x8_m128i b) {
return int16x8_m128i(_mm_mullo_epi16(a.v, b.v));
}
template <>
inline __m128i Sub(__m128i a, __m128i b) {
return _mm_sub_epi32(a, b);
}
template <>
inline int16x8_m128i Sub(int16x8_m128i a, int16x8_m128i b) {
return int16x8_m128i(_mm_sub_epi16(a.v, b.v));
}
template <>
inline __m128i Neg(__m128i a) {
return _mm_sign_epi32(a, _mm_set1_epi32(-1));
}
template <>
inline int16x8_m128i Neg(int16x8_m128i a) {
return int16x8_m128i(_mm_sign_epi16(a.v, _mm_set1_epi16(-1)));
}
template <>
inline __m128i ShiftLeft(__m128i a, int offset) {
return _mm_slli_epi32(a, offset);
}
template <>
inline int16x8_m128i ShiftLeft(int16x8_m128i a, int offset) {
return int16x8_m128i(_mm_slli_epi16(a.v, offset));
}
template <>
inline __m128i ShiftRight(__m128i a, int offset) {
return _mm_srai_epi32(a, offset);
}
template <>
inline int16x8_m128i ShiftRight(int16x8_m128i a, int offset) {
return int16x8_m128i(_mm_srai_epi16(a.v, offset));
}
template <>
inline __m128i SelectUsingMask(__m128i if_mask, __m128i then_val,
__m128i else_val) {
// borrowed from Intel's arm_neon_sse.h header.
return _mm_or_si128(_mm_and_si128(if_mask, then_val),
_mm_andnot_si128(if_mask, else_val));
}
template <>
inline int16x8_m128i SelectUsingMask(int16x8_m128i if_mask,
int16x8_m128i then_val,
int16x8_m128i else_val) {
// borrowed from Intel's arm_neon_sse.h header.
return int16x8_m128i(SelectUsingMask(if_mask.v, then_val.v, else_val.v));
}
template <>
inline __m128i MaskIfEqual(__m128i a, __m128i b) {
return _mm_cmpeq_epi32(a, b);
}
template <>
inline int16x8_m128i MaskIfEqual(int16x8_m128i a, int16x8_m128i b) {
return int16x8_m128i(_mm_cmpeq_epi16(a.v, b.v));
}
template <>
inline __m128i MaskIfNotEqual(__m128i a, __m128i b) {
return BitNot(MaskIfEqual(a, b));
}
template <>
inline int16x8_m128i MaskIfNotEqual(int16x8_m128i a, int16x8_m128i b) {
return BitNot(MaskIfEqual(a, b));
}
template <>
inline __m128i MaskIfZero(__m128i a) {
return MaskIfEqual(a, _mm_set1_epi32(0));
}
template <>
inline int16x8_m128i MaskIfZero(int16x8_m128i a) {
return MaskIfEqual(a, int16x8_m128i(_mm_set1_epi16(0)));
}
template <>
inline __m128i MaskIfNonZero(__m128i a) {
return MaskIfNotEqual(a, _mm_set1_epi32(0));
}
template <>
inline int16x8_m128i MaskIfNonZero(int16x8_m128i a) {
return MaskIfNotEqual(a, int16x8_m128i(_mm_set1_epi16(0)));
}
template <>
inline __m128i MaskIfGreaterThan(__m128i a, __m128i b) {
return _mm_cmpgt_epi32(a, b);
}
template <>
inline int16x8_m128i MaskIfGreaterThan(int16x8_m128i a, int16x8_m128i b) {
return int16x8_m128i(_mm_cmpgt_epi16(a.v, b.v));
}
template <>
inline __m128i MaskIfLessThan(__m128i a, __m128i b) {
return _mm_cmplt_epi32(a, b);
}
template <>
inline int16x8_m128i MaskIfLessThan(int16x8_m128i a, int16x8_m128i b) {
return int16x8_m128i(_mm_cmplt_epi16(a.v, b.v));
}
template <>
inline __m128i MaskIfGreaterThanOrEqual(__m128i a, __m128i b) {
return BitNot(MaskIfLessThan(a, b));
}
template <>
inline int16x8_m128i MaskIfGreaterThanOrEqual(int16x8_m128i a,
int16x8_m128i b) {
return BitNot(MaskIfLessThan(a, b));
}
template <>
inline __m128i MaskIfLessThanOrEqual(__m128i a, __m128i b) {
return BitNot(MaskIfGreaterThan(a, b));
}
template <>
inline int16x8_m128i MaskIfLessThanOrEqual(int16x8_m128i a, int16x8_m128i b) {
return BitNot(MaskIfGreaterThan(a, b));
}
/* Assumptions:
- All and Any are used on masks.
- masks are all_ones for true lanes, all_zeroes otherwise.
Hence, All means all 128bits set, and Any means any bit set.
*/
template <>
inline bool All(__m128i a) {
return _mm_testc_si128(a, a);
}
template <>
inline bool All(int16x8_m128i a) {
return _mm_testc_si128(a.v, a.v);
}
template <>
inline bool Any(__m128i a) {
return !_mm_testz_si128(a, a);
}
template <>
inline bool Any(int16x8_m128i a) {
return !_mm_testz_si128(a.v, a.v);
}
template <>
inline __m128i RoundingHalfSum(__m128i a, __m128i b) {
/* __m128i round_bit_mask, a_over_2, b_over_2, round_bit, sum; */
/* We divide the inputs before the add to avoid the overflow and costly test
*/
/* of checking if an overflow occured on signed add */
/* round_bit_mask = _mm_set1_epi32(1); */
/* a_over_2 = _mm_srai_epi32(a, 1); */
/* b_over_2 = _mm_srai_epi32(b, 1); */
/* sum = Add(a_over_2, b_over_2); */
/* round_bit = _mm_sign_epi32(BitAnd(BitOr(a,b), round_bit_mask), sum); */
/* return Add(sum, round_bit); */
/* Other possibility detecting overflow and xor the sign if an overflow
* happened*/
__m128i one, sign_bit_mask, sum, rounded_half_sum, overflow, result;
one = _mm_set1_epi32(1);
sign_bit_mask = _mm_set1_epi32(0x80000000);
sum = Add(a, b);
rounded_half_sum = _mm_srai_epi32(Add(sum, one), 1);
overflow =
BitAnd(BitAnd(BitXor(a, rounded_half_sum), BitXor(b, rounded_half_sum)),
sign_bit_mask);
result = BitXor(rounded_half_sum, overflow);
return result;
}
template <>
inline int16x8_m128i RoundingHalfSum(int16x8_m128i a, int16x8_m128i b) {
// Idea: go to unsigned to use _mm_avg_epu16,
// borrowed from Intel's arm_neon_sse.h header.
__m128i constant_neg_32768 = _mm_set1_epi16(-32768);
__m128i a_unsigned = _mm_sub_epi16(a.v, constant_neg_32768);
__m128i b_unsigned = _mm_sub_epi16(b.v, constant_neg_32768);
__m128i avg_unsigned = _mm_avg_epu16(a_unsigned, b_unsigned);
__m128i avg = _mm_add_epi16(avg_unsigned, constant_neg_32768);
return int16x8_m128i(avg);
}
template <>
inline __m128i SaturatingRoundingDoublingHighMul(__m128i a, __m128i b) {
__m128i min, saturation_mask, a0_a2, a1_a3, b0_b2, b1_b3;
__m128i a0b0_a2b2, a1b1_a3b3, a0b0_a2b2_rounded, a1b1_a3b3_rounded;
__m128i a0b0_a2b2_rounded_2x, a1b1_a3b3_rounded_2x, result;
__m128i nudge;
// saturation only happen if a == b == INT_MIN
min = _mm_set1_epi32(std::numeric_limits<std::int32_t>::min());
saturation_mask = BitAnd(MaskIfEqual(a, b), MaskIfEqual(a, min));
// a = a0 | a1 | a2 | a3
// b = b0 | b1 | b2 | b3
a0_a2 = a;
a1_a3 = _mm_srli_si128(a, 4);
b0_b2 = b;
b1_b3 = _mm_srli_si128(b, 4);
a0b0_a2b2 = _mm_mul_epi32(a0_a2, b0_b2);
a1b1_a3b3 = _mm_mul_epi32(a1_a3, b1_b3);
// do the rounding and take into account that it will be doubled
nudge = _mm_set1_epi64x(1 << 30);
a0b0_a2b2_rounded = _mm_add_epi64(a0b0_a2b2, nudge);
a1b1_a3b3_rounded = _mm_add_epi64(a1b1_a3b3, nudge);
// do the doubling
a0b0_a2b2_rounded_2x = _mm_slli_epi64(a0b0_a2b2_rounded, 1);
a1b1_a3b3_rounded_2x = _mm_slli_epi64(a1b1_a3b3_rounded, 1);
// get the high part of the products
result = _mm_blend_epi16(_mm_srli_si128(a0b0_a2b2_rounded_2x, 4),
a1b1_a3b3_rounded_2x, 0xcc);
// saturate those which overflowed
return SelectUsingMask(saturation_mask, min, result);
}
template <>
inline int16x8_m128i SaturatingRoundingDoublingHighMul(int16x8_m128i a,
int16x8_m128i b) {
// Idea: use _mm_mulhrs_epi16 then saturate with a bit-operation,
// borrowed from Intel's arm_neon_sse.h header.
__m128i result_unsaturated = _mm_mulhrs_epi16(a.v, b.v);
__m128i saturation_mask =
_mm_cmpeq_epi16(result_unsaturated, _mm_set1_epi16(0x8000));
__m128i result = _mm_xor_si128(result_unsaturated, saturation_mask);
return int16x8_m128i(result);
}
template <>
inline __m128i Dup<__m128i>(std::int32_t x) {
return _mm_set1_epi32(x);
}
template <>
inline int16x8_m128i Dup<int16x8_m128i>(std::int16_t x) {
return int16x8_m128i(_mm_set1_epi16(x));
}
// So far this is only needed for int16.
template <>
inline int16x8_m128i SaturatingAdd(int16x8_m128i a, int16x8_m128i b) {
return int16x8_m128i(_mm_adds_epi16(a.v, b.v));
}
} // end namespace gemmlowp
#endif // GEMMLOWP_INTERNAL_FIXEDPOINT_SSE_H_