blob: 726766e6a6db99524148741cd5d8216b7ae5cfb3 [file] [log] [blame]
# Copyright 2016 The Gemmlowp Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""32bit ARM/NEON assembly emitter.
Used by code generators to produce ARM assembly with NEON simd code.
Provides tools for easier register management: named register variable
allocation/deallocation, and offers a more procedural/structured approach
to generating assembly.
TODO: right now neon emitter prints out assembly instructions immediately,
it might be beneficial to keep the whole structure and emit the assembly after
applying some optimizations like: instruction reordering or register reuse.
TODO: NeonRegister object assigns explicit registers at allocation time.
Similarily to emiting code, register mapping and reuse can be performed and
optimized lazily.
"""
class Error(Exception):
"""Module level error."""
class RegisterAllocationError(Error):
"""Cannot alocate registers."""
class LaneError(Error):
"""Wrong lane number."""
class ArgumentError(Error):
"""Wrong argument."""
def _Low(register):
assert register[0] == 'q'
num = int(register[1:])
return 'd%d' % (num * 2)
def _High(register):
assert register[0] == 'q'
num = int(register[1:])
return 'd%d' % (num * 2 + 1)
def _ExpandQuads(registers):
doubles = []
for register in registers:
if register[0] == 'q':
doubles.append(_Low(register))
doubles.append(_High(register))
else:
doubles.append(register)
return doubles
def _MakeCompatible(op1, op2, op3):
if op1[0] == 'd' or op2[0] == 'd' or op3[0] == 'd':
if op1[0] == 'q':
op1 = _Low(op1)
if op2[0] == 'q':
op2 = _Low(op2)
if op3[0] == 'q':
op3 = _Low(op3)
return (op1, op2, op3)
class _NeonRegisters32Bit(object):
"""Utility that keeps track of used 32bit ARM/NEON registers."""
def __init__(self):
self.double = set()
self.double_ever = set()
self.general = set()
self.general_ever = set()
self.parameters = dict()
self.output_parameters = dict()
def MapParameter(self, parameter, parameter_value=None):
if not parameter_value:
parameter_value = parameter
self.parameters[parameter] = (parameter_value, 'r')
return '%%[%s]' % parameter
def MapMemoryParameter(self, parameter, parameter_value=None):
if not parameter_value:
parameter_value = parameter
self.parameters[parameter] = (parameter_value, 'm')
return '%%[%s]' % parameter
def MapOutputParameter(self, parameter, parameter_value=None):
if not parameter_value:
parameter_value = parameter
self.output_parameters[parameter] = (parameter_value, '+r')
return '%%[%s]' % parameter
def DoubleRegister(self, min_val=0):
for i in range(min_val, 32):
if i not in self.double:
self.double.add(i)
self.double_ever.add(i)
return 'd%d' % i
raise RegisterAllocationError('Not enough double registers.')
def QuadRegister(self, min_val=0):
for i in range(min_val, 16):
if ((i * 2) not in self.double) and ((i * 2 + 1) not in self.double):
self.double.add(i * 2)
self.double.add(i * 2 + 1)
self.double_ever.add(i * 2)
self.double_ever.add(i * 2 + 1)
return 'q%d' % i
raise RegisterAllocationError('Not enough quad registers.')
def GeneralRegister(self):
for i in range(0, 16):
if i not in self.general:
self.general.add(i)
self.general_ever.add(i)
return 'r%d' % i
raise RegisterAllocationError('Not enough general registers.')
def MappedParameters(self):
return [(k, v) for (k, v) in self.parameters.items()]
def MappedOutputParameters(self):
return [(k, v) for (k, v) in self.output_parameters.items()]
def Clobbers(self):
return (['r%d' % i for i in self.general_ever] +
['d%d' % i for i in self.DoubleClobbers()])
def DoubleClobbers(self):
return sorted(self.double_ever)
def FreeRegister(self, register):
assert len(register) > 1
if register[0] not in ['r', 'd', 'q']:
return
num = int(register[1:])
if register[0] == 'r':
assert num in self.general
self.general.remove(num)
elif register[0] == 'd':
assert num in self.double
self.double.remove(num)
elif register[0] == 'q':
assert num * 2 in self.double
assert num * 2 + 1 in self.double
self.double.remove(num * 2)
self.double.remove(num * 2 + 1)
else:
raise RegisterDeallocationError('Register not allocated: %s' % register)
def FreeRegisters(self, registers):
for register in registers:
self.FreeRegister(register)
class NeonEmitter(object):
"""Emits ARM/NEON assembly opcodes."""
def __init__(self, debug=False):
self.ops = {}
self.indent = ''
self.debug = debug
def PushIndent(self, delta=' '):
self.indent += delta
def PopIndent(self, delta=2):
self.indent = self.indent[:-delta]
def EmitIndented(self, what):
print self.indent + what
def PushOp(self, op):
if op in self.ops.keys():
self.ops[op] += 1
else:
self.ops[op] = 1
def ClearCounters(self):
self.ops.clear()
def EmitNewline(self):
print ''
def EmitPreprocessor1(self, op, param):
print '#%s %s' % (op, param)
def EmitPreprocessor(self, op):
print '#%s' % op
def EmitInclude(self, include):
self.EmitPreprocessor1('include', include)
def EmitCall1(self, function, param):
self.EmitIndented('%s(%s);' % (function, param))
def EmitAssert(self, assert_expression):
if self.debug:
self.EmitCall1('assert', assert_expression)
def EmitHeaderBegin(self, header_name, includes):
self.EmitPreprocessor1('ifndef', (header_name + '_H_').upper())
self.EmitPreprocessor1('define', (header_name + '_H_').upper())
self.EmitNewline()
if includes:
for include in includes:
self.EmitInclude(include)
self.EmitNewline()
def EmitHeaderEnd(self):
self.EmitPreprocessor('endif')
def EmitCode(self, code):
self.EmitIndented('%s;' % code)
def EmitFunctionBeginA(self, function_name, params, return_type):
self.EmitIndented('%s %s(%s) {' %
(return_type, function_name,
', '.join(['%s %s' % (t, n) for (t, n) in params])))
self.PushIndent()
def EmitFunctionEnd(self):
self.PopIndent()
self.EmitIndented('}')
def EmitAsmBegin(self):
self.EmitIndented('asm volatile(')
self.PushIndent()
def EmitAsmMapping(self, elements):
if elements:
self.EmitIndented(': ' + ', '.join(
['[%s] "%s"(%s)' % (d, v[1], v[0]) for (d, v) in elements]))
else:
self.EmitIndented(':')
def EmitClobbers(self, elements):
if elements:
self.EmitIndented(': ' + ', '.join(['"%s"' % c for c in elements]))
else:
self.EmitIndented(':')
def EmitAsmEnd(self, registers):
self.EmitAsmMapping(registers.MappedOutputParameters())
self.EmitAsmMapping(registers.MappedParameters())
self.EmitClobbers(registers.Clobbers() + ['cc', 'memory'])
self.PopIndent()
self.EmitIndented(');')
def EmitComment(self, comment):
self.EmitIndented('// ' + comment)
def EmitNumericalLabel(self, label):
self.EmitIndented('"%d:"' % label)
def EmitOp1(self, op, param1):
self.PushOp(op)
self.EmitIndented('"%s %s\\n"' % (op, param1))
def EmitOp2(self, op, param1, param2):
self.PushOp(op)
self.EmitIndented('"%s %s, %s\\n"' % (op, param1, param2))
def EmitOp3(self, op, param1, param2, param3):
self.PushOp(op)
self.EmitIndented('"%s %s, %s, %s\\n"' % (op, param1, param2, param3))
def EmitAdd(self, destination, source, param):
self.EmitOp3('add', destination, source, param)
def EmitSubs(self, destination, source, param):
self.EmitOp3('subs', destination, source, param)
def EmitSub(self, destination, source, param):
self.EmitOp3('sub', destination, source, param)
def EmitMul(self, destination, source, param):
self.EmitOp3('mul', destination, source, param)
def EmitMov(self, param1, param2):
self.EmitOp2('mov', param1, param2)
def EmitBeqBack(self, label):
self.EmitOp1('beq', '%db' % label)
def EmitBeqFront(self, label):
self.EmitOp1('beq', '%df' % label)
def EmitBgtBack(self, label):
self.EmitOp1('bgt', '%db' % label)
def EmitBgtFront(self, label):
self.EmitOp1('bgt', '%df' % label)
def EmitBleBack(self, label):
self.EmitOp1('ble', '%db' % label)
def EmitBleFront(self, label):
self.EmitOp1('ble', '%df' % label)
def EmitBneBack(self, label):
self.EmitOp1('bne', '%db' % label)
def EmitBneFront(self, label):
self.EmitOp1('bne', '%df' % label)
def EmitVAdd(self, add_type, destination, source_1, source_2):
destination, source_1, source_2 = _MakeCompatible(destination, source_1,
source_2)
self.EmitOp3('vadd.%s' % add_type, destination, source_1, source_2)
def EmitVAddw(self, add_type, destination, source_1, source_2):
self.EmitOp3('vaddw.%s' % add_type, destination, source_1, source_2)
def EmitVSub(self, sub_type, destination, source_1, source_2):
destination, source_1, source_2 = _MakeCompatible(destination, source_1,
source_2)
self.EmitOp3('vsub.%s' % sub_type, destination, source_1, source_2)
def EmitVCvt(self, cvt_to, cvt_from, destination, source):
self.EmitOp2('vcvt.%s.%s' % (cvt_to, cvt_from), destination, source)
def EmitVDup(self, dup_type, destination, source):
self.EmitOp2('vdup.%s' % dup_type, destination, source)
def EmitVMax(self, size, destination, source_1, source_2):
self.EmitOp3('vmax.%s' % size, destination, source_1, source_2)
def EmitVMin(self, size, destination, source_1, source_2):
self.EmitOp3('vmin.%s' % size, destination, source_1, source_2)
def EmitVMov(self, mov_type, destination, source):
self.EmitOp2('vmov.%s' % mov_type, destination, source)
def EmitVMovl(self, mov_type, destination, source):
if source[0] == 'q':
source = _Low(source)
self.EmitOp2('vmovl.%s' % mov_type, destination, source)
def EmitVMovl2(self, mov_type, destination_1, destination_2, source):
self.EmitVMovl(mov_type, destination_2, _High(source))
self.EmitVMovl(mov_type, destination_1, _Low(source))
def EmitVQmovn(self, mov_type, destination, source):
if destination[0] == 'q':
destination = _Low(destination)
self.EmitOp2('vqmovn.%s' % mov_type, destination, source)
def EmitVQmovn2(self, mov_type, destination, source_1, source_2):
self.EmitVQmovn(mov_type, _Low(destination), source_1)
self.EmitVQmovn(mov_type, _High(destination), source_2)
def EmitVQmovun(self, mov_type, destination, source):
if destination[0] == 'q':
destination = _Low(destination)
self.EmitOp2('vqmovun.%s' % mov_type, destination, source)
def EmitVQmovun2(self, mov_type, destination, source_1, source_2):
self.EmitVQmovun(mov_type, _Low(destination), source_1)
self.EmitVQmovun(mov_type, _High(destination), source_2)
def EmitVMul(self, mul_type, destination, source_1, source_2):
destination, source_1, source_2 = _MakeCompatible(destination, source_1,
source_2)
self.EmitOp3('vmul.%s' % mul_type, destination, source_1, source_2)
def EmitVMulScalar(self, mul_type, destination, source_1, source_2):
self.EmitOp3('vmul.%s' % mul_type, destination, source_1, source_2)
def EmitVMull(self, mul_type, destination, source_1, source_2):
self.EmitOp3('vmull.%s' % mul_type, destination, source_1, source_2)
def EmitVPadd(self, add_type, destination, source_1, source_2):
self.EmitOp3('vpadd.%s' % add_type, destination, source_1, source_2)
def EmitVPaddl(self, add_type, destination, source):
self.EmitOp2('vpaddl.%s' % add_type, destination, source)
def EmitVPadal(self, add_type, destination, source):
self.EmitOp2('vpadal.%s' % add_type, destination, source)
def EmitLdr(self, register, value):
self.EmitOp2('ldr', register, value)
def EmitVLoad(self, load_no, load_type, destination, source):
self.EmitVLoadA(load_no, load_type, [destination], source)
def EmitVLoadA(self, load_no, load_type, destinations, source):
self.EmitOp2('vld%d.%d' % (load_no, load_type),
'{%s}' % ', '.join(_ExpandQuads(destinations)), source)
def EmitVLoadAE(self,
load_type,
elem_count,
destinations,
source,
alignment=None):
bits_to_load = load_type * elem_count
destinations = _ExpandQuads(destinations)
if len(destinations) * 64 < bits_to_load:
raise ArgumentError('To few destinations: %d to load %d bits.' %
(len(destinations), bits_to_load))
while bits_to_load > 0:
if bits_to_load >= 256:
self.EmitVLoadA(1, 32, destinations[:4],
self.DereferenceIncrement(source, alignment))
bits_to_load -= 256
destinations = destinations[4:]
elif bits_to_load >= 192:
self.EmitVLoadA(1, 32, destinations[:3],
self.DereferenceIncrement(source, alignment))
bits_to_load -= 192
destinations = destinations[3:]
elif bits_to_load >= 128:
self.EmitVLoadA(1, 32, destinations[:2],
self.DereferenceIncrement(source, alignment))
bits_to_load -= 128
destinations = destinations[2:]
elif bits_to_load >= 64:
self.EmitVLoad(1, 32, destinations[0],
self.DereferenceIncrement(source, alignment))
bits_to_load -= 64
destinations = destinations[1:]
else:
destination = destinations[0]
if bits_to_load == 56:
self.EmitVLoad(1, 32,
self.Lane(32, destination, 0),
self.DereferenceIncrement(source))
self.EmitVLoad(1, 16,
self.Lane(16, destination, 2),
self.DereferenceIncrement(source))
self.EmitVLoad(1, 8,
self.Lane(8, destination, 6),
self.DereferenceIncrement(source))
elif bits_to_load == 48:
self.EmitVLoad(1, 32,
self.Lane(32, destination, 0),
self.DereferenceIncrement(source))
self.EmitVLoad(1, 16,
self.Lane(16, destination, 2),
self.DereferenceIncrement(source))
elif bits_to_load == 40:
self.EmitVLoad(1, 32,
self.Lane(32, destination, 0),
self.DereferenceIncrement(source))
self.EmitVLoad(1, 8,
self.Lane(8, destination, 4),
self.DereferenceIncrement(source))
elif bits_to_load == 32:
self.EmitVLoad(1, 32,
self.Lane(32, destination, 0),
self.DereferenceIncrement(source))
elif bits_to_load == 24:
self.EmitVLoad(1, 16,
self.Lane(16, destination, 0),
self.DereferenceIncrement(source))
self.EmitVLoad(1, 8,
self.Lane(8, destination, 2),
self.DereferenceIncrement(source))
elif bits_to_load == 16:
self.EmitVLoad(1, 16,
self.Lane(16, destination, 0),
self.DereferenceIncrement(source))
elif bits_to_load == 8:
self.EmitVLoad(1, 8,
self.Lane(8, destination, 0),
self.DereferenceIncrement(source))
else:
raise ArgumentError('Wrong leftover: %d' % bits_to_load)
return
def EmitVLoadE(self, load_type, count, destination, source, alignment=None):
self.EmitVLoadAE(load_type, count, [destination], source, alignment)
def EmitVLoadAllLanes(self, load_no, load_type, destination, source):
destinations = []
if destination[0] == 'q':
destinations.append(self.AllLanes(_Low(destination)))
destinations.append(self.AllLanes(_High(destination)))
else:
destinations.append(self.AllLanes(destination))
self.EmitVLoadA(load_no, load_type, destinations, source)
def EmitVLoadOffset(self, load_no, load_type, destination, source, offset):
self.EmitVLoadOffsetA(load_no, load_type, [destination], source, offset)
def EmitVLoadOffsetA(self, load_no, load_type, destinations, source, offset):
assert len(destinations) <= 4
self.EmitOp3('vld%d.%d' % (load_no, load_type),
'{%s}' % ', '.join(_ExpandQuads(destinations)), source, offset)
def EmitPld(self, load_address_register):
self.EmitOp1('pld', '[%s]' % load_address_register)
def EmitPldw(self, store_address_register):
self.EmitOp1('pldw', '[%s]' % store_address_register)
def EmitPldOffset(self, load_address_register, offset):
self.EmitOp1('pld', '[%s, %s]' % (load_address_register, offset))
def EmitPldwOffset(self, store_address_register, offset):
self.EmitOp1('pldw', '[%s, %s]' % (store_address_register, offset))
def EmitVShl(self, shift_type, destination, source, shift):
self.EmitOp3('vshl.%s' % shift_type, destination, source, shift)
def EmitVStore(self, store_no, store_type, source, destination):
self.EmitVStoreA(store_no, store_type, [source], destination)
def EmitVStoreA(self, store_no, store_type, sources, destination):
self.EmitOp2('vst%d.%d' % (store_no, store_type),
'{%s}' % ', '.join(_ExpandQuads(sources)), destination)
def EmitVStoreAE(self,
store_type,
elem_count,
sources,
destination,
alignment=None):
bits_to_store = store_type * elem_count
sources = _ExpandQuads(sources)
if len(sources) * 64 < bits_to_store:
raise ArgumentError('To few sources: %d to store %d bits.' %
(len(sources), bits_to_store))
while bits_to_store > 0:
if bits_to_store >= 256:
self.EmitVStoreA(1, 32, sources[:4],
self.DereferenceIncrement(destination, alignment))
bits_to_store -= 256
sources = sources[4:]
elif bits_to_store >= 192:
self.EmitVStoreA(1, 32, sources[:3],
self.DereferenceIncrement(destination, alignment))
bits_to_store -= 192
sources = sources[3:]
elif bits_to_store >= 128:
self.EmitVStoreA(1, 32, sources[:2],
self.DereferenceIncrement(destination, alignment))
bits_to_store -= 128
sources = sources[2:]
elif bits_to_store >= 64:
self.EmitVStore(1, 32, sources[0],
self.DereferenceIncrement(destination, alignment))
bits_to_store -= 64
sources = sources[1:]
else:
source = sources[0]
if bits_to_store == 56:
self.EmitVStore(1, 32,
self.Lane(32, source, 0),
self.DereferenceIncrement(destination))
self.EmitVStore(1, 16,
self.Lane(16, source, 2),
self.DereferenceIncrement(destination))
self.EmitVStore(1, 8,
self.Lane(8, source, 6),
self.DereferenceIncrement(destination))
elif bits_to_store == 48:
self.EmitVStore(1, 32,
self.Lane(32, source, 0),
self.DereferenceIncrement(destination))
self.EmitVStore(1, 16,
self.Lane(16, source, 2),
self.DereferenceIncrement(destination))
elif bits_to_store == 40:
self.EmitVStore(1, 32,
self.Lane(32, source, 0),
self.DereferenceIncrement(destination))
self.EmitVStore(1, 8,
self.Lane(8, source, 4),
self.DereferenceIncrement(destination))
elif bits_to_store == 32:
self.EmitVStore(1, 32,
self.Lane(32, source, 0),
self.DereferenceIncrement(destination))
elif bits_to_store == 24:
self.EmitVStore(1, 16,
self.Lane(16, source, 0),
self.DereferenceIncrement(destination))
self.EmitVStore(1, 8,
self.Lane(8, source, 2),
self.DereferenceIncrement(destination))
elif bits_to_store == 16:
self.EmitVStore(1, 16,
self.Lane(16, source, 0),
self.DereferenceIncrement(destination))
elif bits_to_store == 8:
self.EmitVStore(1, 8,
self.Lane(8, source, 0),
self.DereferenceIncrement(destination))
else:
raise ArgumentError('Wrong leftover: %d' % bits_to_store)
return
def EmitVStoreE(self, store_type, count, source, destination, alignment=None):
self.EmitVStoreAE(store_type, count, [source], destination, alignment)
def EmitVStoreOffset(self, store_no, store_type, source, destination, offset):
self.EmitVStoreOffsetA(store_no, store_type, [source], destination, offset)
def EmitVStoreOffsetA(self, store_no, store_type, sources, destination,
offset):
self.EmitOp3('vst%d.%d' % (store_no, store_type),
'{%s}' % ', '.join(_ExpandQuads(sources)), destination, offset)
def EmitVStoreOffsetE(self, store_type, count, source, destination, offset):
"""Emit assembly to store a number elements from the source registers."""
if store_type is not 32:
raise ArgumentError('Unsupported store_type: %d' % store_type)
sources = []
if source[0] == 'q':
sources.append(_Low(source))
sources.append(_High(source))
if count * store_type > 128:
raise ArgumentError('To many %dbit elements in a q register: %d' %
(store_type, count))
else:
sources.append(source)
if count * store_type > 64:
raise ArgumentError('To many %dbit elements in a d register: %d' %
(store_type, count))
if count == 1:
self.EmitVStoreOffset(1, store_type,
self.Lane(store_type, sources[0], 0),
self.Dereference(destination, None), offset)
elif count == 2:
self.EmitVStoreOffset(1, store_type, sources[0],
self.Dereference(destination, None), offset)
elif count == 3:
self.EmitVStore(1, store_type, sources[0],
self.DereferenceIncrement(destination, None))
self.EmitVStoreOffset(1, store_type,
self.Lane(store_type, sources[1], 0),
self.Dereference(destination, None), offset)
self.EmitSub(destination, destination, self.ImmediateConstant(8))
elif count == 4:
self.EmitVStoreOffsetA(1, store_type, sources,
self.Dereference(destination, None), offset)
else:
raise ArgumentError('To many elements: %d' % count)
def EmitVSumReduce(self, reduce_type, elem_count, reduce_count, destinations,
sources):
"""Emit assembly for n-fold horizontal sum reduction."""
if reduce_type is not 'u32':
raise ArgumentError('Unsupported reduce: %s' % reduce_type)
sources = _ExpandQuads(sources)
destinations = _ExpandQuads(destinations)
if len(destinations) * 2 < elem_count:
raise ArgumentError('Not enough space in destination: %d vs %d' %
(len(destinations) * 2, elem_count))
if len(sources) * 2 != elem_count * reduce_count:
raise ArgumentError('Wrong number of sources: %d vs %d' %
(len(sources) * 2, elem_count * reduce_count))
if reduce_count <= 1:
raise ArgumentError('Unsupported reduce_count: %d' % reduce_count)
while reduce_count > 1:
if len(sources) % 2 == 1:
sources.append(sources[-1])
if reduce_count == 2:
for i in range(len(sources) / 2):
self.EmitVPadd(reduce_type, destinations[i], sources[2 * i],
sources[2 * i + 1])
return
else:
sources_2 = []
for i in range(len(sources) / 2):
self.EmitVPadd(reduce_type, sources[2 * i], sources[2 * i],
sources[2 * i + 1])
sources_2.append(sources[2 * i])
reduce_count /= 2
sources = sources_2
def EmitVUzp(self, uzp_type, operand_1, operand_2):
self.EmitOp2('vuzp.%d' % uzp_type, operand_1, operand_2)
def EmitVTrn(self, trn_type, operand_1, operand_2):
self.EmitOp2('vtrn.%d' % trn_type, operand_1, operand_2)
def EmitColBlockStride(self, cols, stride, new_stride):
assert cols in [1, 2, 3, 4, 5, 6, 7, 8]
if cols in [5, 6, 7]:
self.EmitSub(new_stride, stride, self.ImmediateConstant(4))
def EmitLoadColBlock(self, unused_registers, load_type, cols, elements, block,
input_address, stride):
"""Load a block of column major data."""
assert cols is len(block)
assert load_type is 8
input_deref = self.Dereference(input_address, None)
input_deref_increment = self.DereferenceIncrement(input_address, None)
if cols is 1:
for i in range(elements):
self.EmitVLoadOffset(1, 8,
self.Lane(8, block[0], i), input_deref, stride)
self.EmitPld(input_address)
elif cols is 2:
for i in range(elements):
self.EmitVLoadOffset(1, 16,
self.Lane(16, block[i / 4], i % 4), input_deref,
stride)
self.EmitPld(input_address)
self.EmitVUzp(8, block[0], block[1])
elif cols is 3:
for i in range(elements):
self.EmitVLoadOffsetA(3, 8, [self.Lane(8, row, i) for row in block],
input_deref, stride)
elif cols is 4:
for i in range(elements):
self.EmitVLoadOffset(1, 32,
self.Lane(32, block[i % 4], i / 4), input_deref,
stride)
self.EmitPld(input_address)
self.EmitVTrn(16, block[0], block[2])
self.EmitVTrn(16, block[1], block[3])
self.EmitVTrn(8, block[0], block[1])
self.EmitVTrn(8, block[2], block[3])
elif cols is 5:
for i in range(elements):
self.EmitVLoad(1, 32,
self.Lane(32, block[i % 4], i / 4),
input_deref_increment)
self.EmitVLoadOffset(1, 8,
self.Lane(8, block[4], i), input_deref, stride)
self.EmitPld(input_address)
self.EmitVTrn(16, block[0], block[2])
self.EmitVTrn(16, block[1], block[3])
self.EmitVTrn(8, block[0], block[1])
self.EmitVTrn(8, block[2], block[3])
elif cols is 6:
for i in range(elements):
self.EmitVLoad(1, 32,
self.Lane(32, block[i % 4], i / 4),
input_deref_increment)
self.EmitVLoadOffset(1, 16,
self.Lane(16, block[4 + i / 4], i % 4),
input_deref, stride)
self.EmitPld(input_address)
self.EmitVTrn(16, block[0], block[2])
self.EmitVTrn(16, block[1], block[3])
self.EmitVUzp(8, block[4], block[5])
self.EmitVTrn(8, block[0], block[1])
self.EmitVTrn(8, block[2], block[3])
elif cols is 7:
for i in range(elements):
self.EmitVLoad(1, 32,
self.Lane(32, block[i % 4], i / 4),
input_deref_increment)
self.EmitVLoadOffsetA(3, 8,
[self.Lane(8, row, i) for row in block[4:]],
input_deref, stride)
self.EmitPld(input_address)
self.EmitVTrn(16, block[0], block[2])
self.EmitVTrn(16, block[1], block[3])
self.EmitVTrn(8, block[0], block[1])
self.EmitVTrn(8, block[2], block[3])
elif cols is 8:
for i in range(elements):
self.EmitVLoadOffset(1, 32, block[i], input_deref, stride)
self.EmitPld(input_address)
self.EmitVTrn(8, block[0], block[1])
self.EmitVTrn(8, block[2], block[3])
self.EmitVTrn(8, block[4], block[5])
self.EmitVTrn(8, block[6], block[7])
self.EmitVTrn(16, block[0], block[2])
self.EmitVTrn(16, block[1], block[3])
self.EmitVTrn(16, block[4], block[6])
self.EmitVTrn(16, block[5], block[7])
self.EmitVTrn(32, block[0], block[4])
self.EmitVTrn(32, block[1], block[5])
self.EmitVTrn(32, block[2], block[6])
self.EmitVTrn(32, block[3], block[7])
else:
assert False
return block
def Dereference(self, value, alignment=None):
if alignment:
return '[%s:%d]' % (value, alignment)
else:
return '[%s]' % value
def DereferenceIncrement(self, value, alignment=None):
return '%s!' % self.Dereference(value, alignment)
def ImmediateConstant(self, value):
return '#%d' % value
def AllLanes(self, value):
return '%s[]' % value
def Lane(self, bits, value, lane):
"""Get the proper n-bit lane from the given register."""
registers = []
if value[0] == 'q':
registers.append(_Low(value))
registers.append(_High(value))
else:
registers.append(value)
elems_per_register = 64 / bits
register = lane / elems_per_register
lane %= elems_per_register
return '%s[%d]' % (registers[register], lane)
def CreateRegisters(self):
return _NeonRegisters32Bit()