blob: 340331b916b95b3d786fdc16d8580042572a7e00 [file] [log] [blame]
// Copyright 2015 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// fixedpoint.h: fixed-point arithmetic, with basic operations and
// a few math functions such as tanh.
// This is only used in output.h
// for some specific output pipeline stages (tanh); most of gemmlowp
// uses only plain integer arithmetic, not fixed-point arithmetic.
// At the most basic level, we distinguish between plain integer
// arithmetic and fixed-point arithmetic by the type of multiplication
// that is used: plain integer arithmetic uses plain (overflowing)
// integer multiplication, whereas fixed-point arithmetic uses
// "multiply-high" instructions, which means using only the most
// significant bits of the product, or equivalently, multiplying
// fixed-point numbers in the [-1 .. +1] interval.
#ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_H_
#define GEMMLOWP_INTERNAL_FIXEDPOINT_H_
#include "common.h"
#include <limits>
#include <cassert>
namespace gemmlowp {
template <typename tIntegerType>
tIntegerType BitAnd(tIntegerType a, tIntegerType b) {
return a & b;
}
template <typename tIntegerType>
tIntegerType BitOr(tIntegerType a, tIntegerType b) {
return a | b;
}
template <typename tIntegerType>
tIntegerType BitXor(tIntegerType a, tIntegerType b) {
return a ^ b;
}
template <typename tIntegerType>
tIntegerType BitNot(tIntegerType a) {
return ~a;
}
template <typename tIntegerType>
tIntegerType Add(tIntegerType a, tIntegerType b) {
return a + b;
}
template <typename tIntegerType>
tIntegerType Sub(tIntegerType a, tIntegerType b) {
return a - b;
}
template <typename tIntegerType>
tIntegerType Neg(tIntegerType a) {
return -a;
}
template <typename tIntegerType>
tIntegerType ShiftLeft(tIntegerType a, int offset) {
return a * (1 << offset);
}
template <typename tIntegerType>
tIntegerType ShiftRight(tIntegerType a, int offset) {
return a / (1 << offset);
}
template <typename tIntegerType>
tIntegerType SelectUsingMask(tIntegerType if_mask, tIntegerType then_val,
tIntegerType else_val) {
return BitXor(BitAnd(if_mask, then_val), BitAnd(BitNot(if_mask), else_val));
}
template <typename tIntegerType>
tIntegerType MaskIfNonZero(tIntegerType a) {
static const tIntegerType zero = 0;
return a ? BitNot(zero) : zero;
}
template <typename tIntegerType>
tIntegerType MaskIfZero(tIntegerType a) {
return MaskIfNonZero<tIntegerType>(!a);
}
template <typename tIntegerType>
tIntegerType MaskIfEqual(tIntegerType a, tIntegerType b) {
return MaskIfNonZero<tIntegerType>(a == b);
}
template <typename tIntegerType>
tIntegerType MaskIfNotEqual(tIntegerType a, tIntegerType b) {
return MaskIfNonZero<tIntegerType>(a != b);
}
template <typename tIntegerType>
tIntegerType MaskIfGreaterThan(tIntegerType a, tIntegerType b) {
return MaskIfNonZero<tIntegerType>(a > b);
}
template <typename tIntegerType>
tIntegerType MaskIfGreaterThanOrEqual(tIntegerType a, tIntegerType b) {
return MaskIfNonZero<tIntegerType>(a >= b);
}
template <typename tIntegerType>
tIntegerType MaskIfLessThan(tIntegerType a, tIntegerType b) {
return MaskIfNonZero<tIntegerType>(a < b);
}
template <typename tIntegerType>
tIntegerType MaskIfLessThanOrEqual(tIntegerType a, tIntegerType b) {
return MaskIfNonZero<tIntegerType>(a <= b);
}
template <typename tIntegerType>
bool All(tIntegerType a) {
return a;
}
template <typename tIntegerType>
bool Any(tIntegerType a) {
return a;
}
template <typename IntegerType>
IntegerType RoundingHalfSum(IntegerType a, IntegerType b) {
static_assert(std::is_same<IntegerType, void>::value, "unimplemented");
return a;
}
template <>
inline int32_t RoundingHalfSum(int32_t a, int32_t b) {
int64_t a64 = a;
int64_t b64 = b;
int64_t sum = a64 + b64;
int64_t sign = sum >= 0 ? 1 : -1;
return static_cast<int32_t>((sum + sign) / 2);
}
template <typename IntegerType>
IntegerType SaturatingRoundingDoublingHighMul(IntegerType a, IntegerType b) {
static_assert(std::is_same<IntegerType, void>::value, "unimplemented");
return a;
}
// This function implements the same computation as the ARMv7 NEON VQRDMULH
// instruction.
template <>
inline int32_t SaturatingRoundingDoublingHighMul(int32_t a, int32_t b) {
bool overflow = a == b && a == std::numeric_limits<int32_t>::min();
int64_t a_64(a);
int64_t b_64(b);
int64_t ab_64 = a_64 * b_64;
int32_t nudge = ab_64 >= 0 ? (1 << 30) : (1 - (1 << 30));
int32_t ab_x2_high32 = static_cast<int32_t>((ab_64 + nudge) / (1ll << 31));
return overflow ? std::numeric_limits<int32_t>::max() : ab_x2_high32;
}
template <int Exponent, typename IntegerType,
int ExponentSign = (Exponent > 0 ? 1 : Exponent < 0 ? -1 : 0)>
struct ImplSaturatingRoundingMultiplyByPOT {};
template <int Exponent, typename IntegerType>
struct ImplSaturatingRoundingMultiplyByPOT<Exponent, IntegerType, 0> {
static IntegerType eval(IntegerType x) { return x; }
};
template <int Exponent>
struct ImplSaturatingRoundingMultiplyByPOT<Exponent, int32_t, 1> {
static int32_t eval(int32_t x) {
const int64_t min = std::numeric_limits<int32_t>::min();
const int64_t max = std::numeric_limits<int32_t>::max();
return x >= (1 << (31 - Exponent)) ? max : x <= -(1 << (31 - Exponent))
? min
: x * (1 << Exponent);
}
};
template <int Exponent>
struct ImplSaturatingRoundingMultiplyByPOT<Exponent, int32_t, -1> {
static int32_t eval(int32_t x) {
int32_t b = (std::abs(x) & (1 << (-Exponent - 1))) >> (-Exponent - 1);
int32_t nudge = x >= 0 ? b : -b;
return x / (1 << -Exponent) + nudge;
}
};
template <int Exponent, typename IntegerType>
IntegerType SaturatingRoundingMultiplyByPOT(IntegerType x) {
return ImplSaturatingRoundingMultiplyByPOT<Exponent, IntegerType>::eval(x);
}
template <typename tIntegerType>
struct FixedPointRawTypeTraits {};
template <>
struct FixedPointRawTypeTraits<int32_t> {
typedef int32_t ScalarRawType;
static const int kLanes = 1;
};
template <typename tRawType>
tRawType Dup(typename FixedPointRawTypeTraits<tRawType>::ScalarRawType x) {
return x;
}
template <typename tRawType, int tIntegerBits>
class FixedPoint {
public:
typedef tRawType RawType;
typedef FixedPointRawTypeTraits<RawType> RawTypeTraits;
typedef typename RawTypeTraits::ScalarRawType ScalarRawType;
static const int kTotalBits = 8 * sizeof(ScalarRawType);
static const int kIntegerBits = tIntegerBits;
static const int kFractionalBits = kTotalBits - 1 - kIntegerBits;
static_assert(kIntegerBits >= 0 && kIntegerBits < kTotalBits,
"bad IntegerBits");
typedef FixedPoint<ScalarRawType, kIntegerBits> ScalarFixedPointType;
static const ScalarRawType ScalarRawMin() {
return std::numeric_limits<ScalarRawType>::min();
}
static const ScalarRawType ScalarRawMax() {
return std::numeric_limits<ScalarRawType>::max();
}
static const ScalarRawType RawMin() {
return VectorFromScalar(ScalarRawMin());
}
static const ScalarRawType RawMax() {
return VectorFromScalar(ScalarRawMax());
}
static FixedPoint FromRaw(RawType x) {
FixedPoint retval;
retval.raw() = x;
return retval;
}
static FixedPoint FromScalarRaw(ScalarRawType x) {
FixedPoint retval;
retval.raw() = Dup<RawType>(x);
return retval;
}
static FixedPoint FromScalarFixedPoint(ScalarFixedPointType x) {
return FromScalarRaw(x.raw());
}
template <int Exponent>
static FixedPoint ConstantPOT() {
static const int kOffset = kFractionalBits + Exponent;
static_assert(
kOffset < 31,
"Constant not exactly representable in this fixed-point format");
return FromScalarRaw(ScalarRawType(1) << kOffset);
}
static FixedPoint Zero() { return FromScalarRaw(0); }
static FixedPoint One() {
return FromScalarRaw(kIntegerBits == 0
? ScalarRawMax()
: (ScalarRawType(1) << kFractionalBits));
}
RawType raw() const { return i_; }
RawType& raw() { return i_; }
private:
RawType i_;
};
template <typename tRawType, int tIntegerBits_a, int tIntegerBits_b>
FixedPoint<tRawType, tIntegerBits_a + tIntegerBits_b> operator*(
FixedPoint<tRawType, tIntegerBits_a> a,
FixedPoint<tRawType, tIntegerBits_b> b) {
FixedPoint<tRawType, tIntegerBits_a + tIntegerBits_b> c;
c.raw() = SaturatingRoundingDoublingHighMul(a.raw(), b.raw());
return c;
}
template <int tExponent, typename tRawType, int tIntegerBits>
FixedPoint<tRawType, tExponent + tIntegerBits> ExactMulByPot(
FixedPoint<tRawType, tIntegerBits> a) {
FixedPoint<tRawType, tExponent + tIntegerBits> c;
c.raw() = a.raw();
return c;
}
template <int tExponent, typename tRawType, int tIntegerBits>
FixedPoint<tRawType, tIntegerBits> SaturatingRoundingMultiplyByPOT(
FixedPoint<tRawType, tIntegerBits> a) {
return FixedPoint<tRawType, tIntegerBits>::FromRaw(
SaturatingRoundingMultiplyByPOT<tExponent>(a.raw()));
}
#define MAKE_FIXEDPOINT_UNARY_FUNC(FuncName, ImplFuncName) \
template <typename tRawType, int tIntegerBits> \
FixedPoint<tRawType, tIntegerBits> FuncName( \
FixedPoint<tRawType, tIntegerBits> a) { \
return FixedPoint<tRawType, tIntegerBits>::FromRaw(ImplFuncName(a.raw())); \
}
#define MAKE_FIXEDPOINT_BINARY_FUNC(FuncName, ImplFuncName) \
template <typename tRawType, int tIntegerBits> \
FixedPoint<tRawType, tIntegerBits> FuncName( \
FixedPoint<tRawType, tIntegerBits> a, \
FixedPoint<tRawType, tIntegerBits> b) { \
return FixedPoint<tRawType, tIntegerBits>::FromRaw( \
ImplFuncName(a.raw(), b.raw())); \
}
MAKE_FIXEDPOINT_UNARY_FUNC(operator-, Neg)
MAKE_FIXEDPOINT_UNARY_FUNC(operator~, BitNot)
MAKE_FIXEDPOINT_BINARY_FUNC(operator+, Add)
MAKE_FIXEDPOINT_BINARY_FUNC(operator-, Sub)
MAKE_FIXEDPOINT_BINARY_FUNC(operator&, BitAnd)
MAKE_FIXEDPOINT_BINARY_FUNC(operator^, BitXor)
MAKE_FIXEDPOINT_BINARY_FUNC(operator|, BitOr)
MAKE_FIXEDPOINT_BINARY_FUNC(RoundingHalfSum, RoundingHalfSum)
#undef MAKE_FIXEDPOINT_UNARY_FUNC
#undef MAKE_FIXEDPOINT_BINARY_FUNC
#define MAKE_FIXEDPOINT_UNARY_FUNC_RETURNING_RAW(FuncName) \
template <typename tRawType, int tIntegerBits> \
tRawType FuncName(FixedPoint<tRawType, tIntegerBits> a) { \
return FuncName(a.raw()); \
}
#define MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(FuncName) \
template <typename tRawType, int tIntegerBits> \
tRawType FuncName(FixedPoint<tRawType, tIntegerBits> a, \
FixedPoint<tRawType, tIntegerBits> b) { \
return FuncName(a.raw(), b.raw()); \
}
MAKE_FIXEDPOINT_UNARY_FUNC_RETURNING_RAW(MaskIfZero)
MAKE_FIXEDPOINT_UNARY_FUNC_RETURNING_RAW(MaskIfNonZero)
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfEqual)
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfNotEqual)
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfGreaterThan)
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfGreaterThanOrEqual)
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfLessThan)
MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW(MaskIfLessThanOrEqual)
#undef MAKE_FIXEDPOINT_UNARY_FUNC_RETURNING_RAW
#undef MAKE_FIXEDPOINT_BINARY_FUNC_RETURNING_RAW
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, tIntegerBits> SelectUsingMask(
tRawType if_mask, FixedPoint<tRawType, tIntegerBits> then_val,
FixedPoint<tRawType, tIntegerBits> else_val) {
return FixedPoint<tRawType, tIntegerBits>::FromRaw(
SelectUsingMask(if_mask, then_val.raw(), else_val.raw()));
}
template <typename tRawType, int tIntegerBits>
bool operator==(FixedPoint<tRawType, tIntegerBits> a,
FixedPoint<tRawType, tIntegerBits> b) {
return All(MaskIfEqual(a.raw(), b.raw()));
}
template <typename tRawType, int tIntegerBits>
bool operator!=(FixedPoint<tRawType, tIntegerBits> a,
FixedPoint<tRawType, tIntegerBits> b) {
return !(a == b);
}
template <typename tRawType, int tIntegerBits>
double ToDouble(FixedPoint<tRawType, tIntegerBits> x) {
static_assert(FixedPointRawTypeTraits<tRawType>::kLanes == 1,
"not applicable to SIMD types");
typedef FixedPoint<tRawType, tIntegerBits> F;
return x.raw() / double(1ll << F::kFractionalBits);
}
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, tIntegerBits> ToFixedPoint(double x) {
typedef FixedPoint<tRawType, tIntegerBits> F;
return F::FromScalarRaw(static_cast<int32_t>(
std::min(std::max(round(x * double(1ll << F::kFractionalBits)),
double(F::ScalarRawMin())),
double(F::ScalarRawMax()))));
}
template <int tIntegerBitsDst, typename tRawType, int tIntegerBitsSrc>
FixedPoint<tRawType, tIntegerBitsDst> Rescale(
FixedPoint<tRawType, tIntegerBitsSrc> x) {
static const int kExponent = tIntegerBitsSrc - tIntegerBitsDst;
FixedPoint<tRawType, tIntegerBitsDst> result;
result.raw() = SaturatingRoundingMultiplyByPOT<kExponent>(x.raw());
return result;
}
#ifdef GEMMLOWP_ENABLE_FIXEDPOINT_CONSTANTS_CHECKS
template <typename FixedPointType>
FixedPointType CheckedFixedPointConstant(
typename FixedPointType::ScalarRawType raw_value, double double_value) {
typedef typename FixedPointType::RawType RawType;
static const int kIntegerBits = FixedPointType::kIntegerBits;
FixedPointType ref = FixedPointType::FromScalarRaw(raw_value);
FixedPointType check = ToFixedPoint<RawType, kIntegerBits>(double_value);
assert(ref == check);
return ref;
}
#define GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(FixedPointType, ScalarRawValue, \
DoubleValue) \
(CheckedFixedPointConstant<FixedPointType>(ScalarRawValue, DoubleValue))
#else
#define GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(FixedPointType, ScalarRawValue, \
DoubleValue) \
(FixedPointType::FromScalarRaw(ScalarRawValue))
#endif
template <typename tRawType>
FixedPoint<tRawType, 0> exp_on_interval_between_negative_one_quarter_and_0_excl(
FixedPoint<tRawType, 0> a) {
typedef FixedPoint<tRawType, 0> F;
const F constant_term =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F, 1895147668, std::exp(-1.0 / 8.0));
const F constant_1_over_3 =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F, 715827883, 1.0 / 3.0);
// We're evaluating a Taylor expansion around -1/8, so we do the change of
// variable: x = a + 1/8.
// In fixed-point with 0 integer bits, 1/8 is represented by 1 << 28.
F x = a + F::template ConstantPOT<-3>();
F x2 = x * x;
F x3 = x2 * x;
F x4 = x2 * x2;
F x4_over_4 = SaturatingRoundingMultiplyByPOT<-2>(x4);
F x4_over_24_plus_x3_over_6_plus_x2_over_2 =
SaturatingRoundingMultiplyByPOT<-1>(
((x4_over_4 + x3) * constant_1_over_3) + x2);
return constant_term +
constant_term * (x + x4_over_24_plus_x3_over_6_plus_x2_over_2);
}
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, 0> exp_on_negative_values(
FixedPoint<tRawType, tIntegerBits> a) {
typedef FixedPoint<tRawType, tIntegerBits> InputF;
typedef FixedPoint<tRawType, 0> ResultF;
static const int kFractionalBits = InputF::kFractionalBits;
static const int kIntegerBits = InputF::kIntegerBits;
static const InputF kOneQuarter = InputF::template ConstantPOT<-2>();
InputF mask = kOneQuarter - InputF::FromScalarRaw(1);
InputF a_mod_quarter_minus_one_quarter = (a & mask) - kOneQuarter;
ResultF result = exp_on_interval_between_negative_one_quarter_and_0_excl(
Rescale<0>(a_mod_quarter_minus_one_quarter));
tRawType remainder = (a_mod_quarter_minus_one_quarter - a).raw();
#define GEMMLOWP_EXP_BARREL_SHIFTER(Exponent, FixedPointMultiplier) \
if (kIntegerBits > Exponent) { \
const ResultF kMultiplier = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT( \
ResultF, FixedPointMultiplier, std::exp(-std::pow(2.0, Exponent))); \
result = SelectUsingMask( \
MaskIfNonZero(BitAnd( \
remainder, Dup<tRawType>(1 << (kFractionalBits + Exponent)))), \
result * kMultiplier, result); \
}
GEMMLOWP_EXP_BARREL_SHIFTER(-2, 1672461947);
GEMMLOWP_EXP_BARREL_SHIFTER(-1, 1302514674);
GEMMLOWP_EXP_BARREL_SHIFTER(+0, 790015084);
GEMMLOWP_EXP_BARREL_SHIFTER(+1, 290630308);
GEMMLOWP_EXP_BARREL_SHIFTER(+2, 39332535);
GEMMLOWP_EXP_BARREL_SHIFTER(+3, 720401);
GEMMLOWP_EXP_BARREL_SHIFTER(+4, 242);
#undef GEMMLOWP_EXP_BARREL_SHIFTER
if (kIntegerBits > 5) {
static const int b = kIntegerBits > 5 ? kFractionalBits + 5 : 0;
const InputF clamp =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(InputF, -(1 << b), -32.0);
result = SelectUsingMask(MaskIfLessThan(a, clamp), ResultF::Zero(), result);
}
result = SelectUsingMask(MaskIfZero(a), ResultF::One(), result);
return result;
}
template <typename tRawType>
FixedPoint<tRawType, 0> one_minus_x_over_one_plus_x_for_x_in_0_1(
FixedPoint<tRawType, 0> a) {
typedef FixedPoint<tRawType, 0> F0;
typedef FixedPoint<tRawType, 2> F2;
F0 half_denominator = RoundingHalfSum(a, F0::One());
const F2 constant_48_over_17 =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F2, 1515870810, 48.0 / 17.0);
const F2 constant_neg_32_over_17 =
GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F2, -1010580540, -32.0 / 17.0);
F2 x = constant_48_over_17 + half_denominator * constant_neg_32_over_17;
for (int i = 0; i < 3; i++) {
F2 half_denominator_times_x = half_denominator * x;
F2 one_minus_half_denominator_times_x =
F2::One() - half_denominator_times_x;
x = x + Rescale<2>(x * one_minus_half_denominator_times_x);
}
return Rescale<0>(x - F2::One());
}
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, 0> neg_tanh_on_negative_values(
FixedPoint<tRawType, tIntegerBits> a) {
return one_minus_x_over_one_plus_x_for_x_in_0_1(
exp_on_negative_values(ExactMulByPot<1>(a)));
}
template <typename tRawType, int tIntegerBits>
FixedPoint<tRawType, 0> tanh(FixedPoint<tRawType, tIntegerBits> a) {
typedef FixedPoint<tRawType, tIntegerBits> InputF;
typedef FixedPoint<tRawType, 0> ResultF;
tRawType mask_if_negative = MaskIfLessThan(a, InputF::Zero());
tRawType mask_if_zero = MaskIfZero(a);
InputF n = SelectUsingMask(mask_if_negative, a, -a);
ResultF t = neg_tanh_on_negative_values(n);
return SelectUsingMask(mask_if_zero, ResultF::Zero(),
SelectUsingMask(mask_if_negative, -t, t));
}
} // end namespace gemmlowp
#ifdef GEMMLOWP_NEON
#include "fixedpoint_neon.h"
#endif
#endif // GEMMLOWP_INTERNAL_FIXEDPOINT_H_