blob: 258de69fdd46239bfd69777a6c0bfac9275b54f0 [file] [log] [blame]
// Copyright 2016 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef GEMMLOWP_META_SINGLE_THREAD_GEMM_H_
#define GEMMLOWP_META_SINGLE_THREAD_GEMM_H_
#include <iostream>
#include "base.h"
namespace gemmlowp {
namespace meta {
template <typename Executor, typename Params, int kernel_m, int kernel_n,
int kernel_k>
void Gemm(const Params& params);
class GemmExecutorPackRHS {
public:
template <typename P>
static int EstimateScratchSize(const P& params, int kernel_m, int kernel_n,
int kernel_k) {
const int lhs_scratch =
StreamUtil<typename P::InType, typename P::LeftStream>::Scratch(
params.left_stream, kernel_m, kernel_k);
const int rhs_chunks = ((params.n + kernel_n - 1) / kernel_n);
const int rhs_scratch =
rhs_chunks *
StreamUtil<typename P::InType, typename P::RightStream>::Scratch(
params.right_stream, kernel_n, kernel_k);
return AlignTo<64 * 1024>(lhs_scratch + rhs_scratch);
}
template <typename P, int m, int n, int k, int m_leftovers, int n_leftovers,
int k_leftovers>
static void ExecuteDispatch3D(const P& params) {
// Shorthand typedefs for streams and multiply kernels.
typedef typename P::InType InType;
typedef typename P::OutType OutType;
typedef Stream<typename P::InType, m, k, k_leftovers,
typename P::LeftStream>
LeftStreamF;
typedef Stream<typename P::InType, m_leftovers, k, k_leftovers,
typename P::LeftStream>
LeftStreamL;
typedef Stream<typename P::InType, n, k, k_leftovers,
typename P::RightStream>
RightStreamF;
typedef Stream<typename P::InType, n_leftovers, k, k_leftovers,
typename P::RightStream>
RightStreamL;
typedef Stream<typename P::OutType, m, n, 0, typename P::OutputStream>
OutputStreamFF;
typedef Stream<typename P::OutType, m_leftovers, n, 0,
typename P::OutputStream>
OutputStreamLF;
typedef MulKernel<typename P::InType, typename P::OutType,
typename P::Kernel, typename P::OutputStream, m, n, k>
KernelFF;
typedef MulKernel<typename P::InType, typename P::OutType,
typename P::Kernel, typename P::OutputStream, m,
n_leftovers, k>
KernelFL;
typedef MulKernel<typename P::InType, typename P::OutType,
typename P::Kernel, typename P::OutputStream, m_leftovers,
n, k>
KernelLF;
typedef MulKernel<typename P::InType, typename P::OutType,
typename P::Kernel, typename P::OutputStream, m_leftovers,
n_leftovers, k>
KernelLL;
#ifdef DEBUG
#ifdef DEBUG_METAGEMM_VERBOSE
std::cout << "GemmExecutor(" << typeid(P).name() << "): " << m << "x" << n
<< "x" << k << " -- " << m_leftovers << "x" << n_leftovers << "x"
<< k_leftovers << " -- " << params.m << "x" << params.n << "x"
<< params.k << std::endl;
LeftStreamF::Debug(params.left_stream);
LeftStreamL::Debug(params.left_stream);
RightStreamF::Debug(params.right_stream);
RightStreamL::Debug(params.right_stream);
OutputStreamFF::Debug(params.fused_kernel.output_stream);
OutputStreamLF::Debug(params.fused_kernel.output_stream);
KernelFF::Debug(params.fused_kernel);
KernelFL::Debug(params.fused_kernel);
KernelLF::Debug(params.fused_kernel);
KernelLL::Debug(params.fused_kernel);
#endif
#endif
int lhs_chunks = params.m / m;
int rhs_chunks = params.n / n;
// Scratch memory for packed LHS & RHS chunks.
std::uint8_t* packed_lhs = params.scratch;
std::uint8_t* packed_rhs =
params.scratch + LeftStreamF::Scratch(params.left_stream);
// Pack full RHS first.
std::uint8_t* packed_rhs_chunk = packed_rhs;
const int packed_rhs_chunk_size =
RightStreamF::PackedStride(params.right_stream);
{
const std::uint8_t* rhs_chunk =
reinterpret_cast<const std::uint8_t*>(params.rhs);
const int rhs_chunk_size =
RightStreamF::UnpackedStride(params.right_stream);
for (int i = 0; i < rhs_chunks; ++i) {
RightStreamF::Pack(reinterpret_cast<const InType*>(rhs_chunk),
params.right_stream,
reinterpret_cast<InType*>(packed_rhs_chunk));
rhs_chunk += rhs_chunk_size;
packed_rhs_chunk += packed_rhs_chunk_size;
}
RightStreamL::Pack(reinterpret_cast<const InType*>(rhs_chunk),
params.right_stream,
reinterpret_cast<InType*>(packed_rhs_chunk));
}
// Multiply RHS by LHS one LHS chunk at a time.
const std::uint8_t* lhs_chunk =
reinterpret_cast<const std::uint8_t*>(params.lhs);
std::uint8_t* result_strip = reinterpret_cast<std::uint8_t*>(params.result);
std::uint8_t* result_chunk = result_strip;
{
const int lhs_chunk_size =
LeftStreamF::UnpackedStride(params.left_stream);
const int result_strip_size =
OutputStreamFF::UnpackedStride(params.fused_kernel.output_stream);
const int result_chunk_size =
OutputStreamFF::UnpackedAdvance(params.fused_kernel.output_stream);
for (int i = 0; i < lhs_chunks; ++i) {
LeftStreamF::Pack(reinterpret_cast<const InType*>(lhs_chunk),
params.left_stream,
reinterpret_cast<InType*>(packed_lhs));
result_chunk = result_strip;
packed_rhs_chunk = packed_rhs;
for (int j = 0; j < rhs_chunks; ++j) {
KernelFF::Multiply(reinterpret_cast<const InType*>(packed_lhs),
reinterpret_cast<const InType*>(packed_rhs_chunk),
params.fused_kernel,
reinterpret_cast<OutType*>(result_chunk));
result_chunk += result_chunk_size;
packed_rhs_chunk += packed_rhs_chunk_size;
}
KernelFL::Multiply(reinterpret_cast<const InType*>(packed_lhs),
reinterpret_cast<const InType*>(packed_rhs_chunk),
params.fused_kernel,
reinterpret_cast<OutType*>(result_chunk));
lhs_chunk += lhs_chunk_size;
result_strip += result_strip_size;
}
}
// Leftover LHS chunk.
if (m_leftovers > 0) { // static if
const int result_chunk_size =
OutputStreamLF::UnpackedAdvance(params.fused_kernel.output_stream);
LeftStreamL::Pack(reinterpret_cast<const InType*>(lhs_chunk),
params.left_stream,
reinterpret_cast<InType*>(packed_lhs));
result_chunk = result_strip;
packed_rhs_chunk = packed_rhs;
for (int i = 0; i < rhs_chunks; ++i) {
KernelLF::Multiply(reinterpret_cast<const InType*>(packed_lhs),
reinterpret_cast<const InType*>(packed_rhs_chunk),
params.fused_kernel,
reinterpret_cast<OutType*>(result_chunk));
result_chunk += result_chunk_size;
packed_rhs_chunk += packed_rhs_chunk_size;
}
KernelLL::Multiply(reinterpret_cast<const InType*>(packed_lhs),
reinterpret_cast<const InType*>(packed_rhs_chunk),
params.fused_kernel,
reinterpret_cast<OutType*>(result_chunk));
}
}
};
class GemmExecutorPackLHS {
public:
template <typename P>
static int EstimateScratchSize(const P& params, int kernel_m, int kernel_n,
int kernel_k) {
const int lhs_chunks = ((params.m + kernel_m - 1) / kernel_m);
const int lhs_scratch =
lhs_chunks *
StreamUtil<typename P::InType, typename P::LeftStream>::Scratch(
params.left_stream, kernel_m, kernel_k);
const int rhs_scratch =
StreamUtil<typename P::InType, typename P::RightStream>::Scratch(
params.right_stream, kernel_n, kernel_k);
return AlignTo<64 * 1024>(lhs_scratch + rhs_scratch);
}
template <typename P, int m, int n, int k, int m_leftovers, int n_leftovers,
int k_leftovers>
static void ExecuteDispatch3D(const P& params) {
// Shorthand typedefs for streams and multiply kernels.
typedef typename P::InType InType;
typedef typename P::OutType OutType;
typedef Stream<typename P::InType, m, k, k_leftovers,
typename P::LeftStream>
LeftStreamF;
typedef Stream<typename P::InType, m_leftovers, k, k_leftovers,
typename P::LeftStream>
LeftStreamL;
typedef Stream<typename P::InType, n, k, k_leftovers,
typename P::RightStream>
RightStreamF;
typedef Stream<typename P::InType, n_leftovers, k, k_leftovers,
typename P::RightStream>
RightStreamL;
typedef Stream<typename P::OutType, m, n, 0, typename P::OutputStream>
OutputStreamFF;
typedef Stream<typename P::OutType, m, n_leftovers, 0,
typename P::OutputStream>
OutputStreamFL;
typedef MulKernel<typename P::InType, typename P::OutType,
typename P::Kernel, typename P::OutputStream, m, n, k>
KernelFF;
typedef MulKernel<typename P::InType, typename P::OutType,
typename P::Kernel, typename P::OutputStream, m,
n_leftovers, k>
KernelFL;
typedef MulKernel<typename P::InType, typename P::OutType,
typename P::Kernel, typename P::OutputStream, m_leftovers,
n, k>
KernelLF;
typedef MulKernel<typename P::InType, typename P::OutType,
typename P::Kernel, typename P::OutputStream, m_leftovers,
n_leftovers, k>
KernelLL;
#ifdef DEBUG
#ifdef DEBUG_METAGEMM_VERBOSE
std::cout << "GemmExecutor(" << typeid(P).name() << "): " << m << "x" << n
<< "x" << k << " -- " << m_leftovers << "x" << n_leftovers << "x"
<< k_leftovers << " -- " << params.m << "x" << params.n << "x"
<< params.k << std::endl;
LeftStreamF::Debug(params.left_stream);
LeftStreamL::Debug(params.left_stream);
RightStreamF::Debug(params.right_stream);
RightStreamL::Debug(params.right_stream);
OutputStreamFF::Debug(params.fused_kernel.output_stream);
OutputStreamFL::Debug(params.fused_kernel.output_stream);
KernelFF::Debug(params.fused_kernel);
KernelFL::Debug(params.fused_kernel);
KernelLF::Debug(params.fused_kernel);
KernelLL::Debug(params.fused_kernel);
#endif
#endif
int lhs_chunks = params.m / m;
int rhs_chunks = params.n / n;
// Scratch memory for packed LHS & RHS chunks.
std::uint8_t* packed_rhs = params.scratch;
std::uint8_t* packed_lhs =
params.scratch + RightStreamF::Scratch(params.right_stream);
// Pack full LHS first.
std::uint8_t* packed_lhs_chunk = packed_lhs;
const int packed_lhs_chunk_size =
LeftStreamF::PackedStride(params.left_stream);
{
const std::uint8_t* lhs_chunk =
reinterpret_cast<const std::uint8_t*>(params.lhs);
const int lhs_chunk_size =
LeftStreamF::UnpackedStride(params.left_stream);
for (int i = 0; i < lhs_chunks; ++i) {
LeftStreamF::Pack(reinterpret_cast<const InType*>(lhs_chunk),
params.left_stream,
reinterpret_cast<InType*>(packed_lhs_chunk));
lhs_chunk += lhs_chunk_size;
packed_lhs_chunk += packed_lhs_chunk_size;
}
LeftStreamL::Pack(reinterpret_cast<const InType*>(lhs_chunk),
params.left_stream,
reinterpret_cast<InType*>(packed_lhs_chunk));
}
// Multiply RHS by LHS one RHS chunk at a time.
const std::uint8_t* rhs_chunk =
reinterpret_cast<const std::uint8_t*>(params.rhs);
std::uint8_t* result_strip = reinterpret_cast<std::uint8_t*>(params.result);
std::uint8_t* result_chunk = result_strip;
{
const int rhs_chunk_size =
RightStreamF::UnpackedStride(params.right_stream);
const int result_strip_size =
OutputStreamFF::UnpackedAdvance(params.fused_kernel.output_stream);
const int result_chunk_size =
OutputStreamFF::UnpackedStride(params.fused_kernel.output_stream);
for (int i = 0; i < rhs_chunks; ++i) {
RightStreamF::Pack(reinterpret_cast<const InType*>(rhs_chunk),
params.right_stream,
reinterpret_cast<InType*>(packed_rhs));
result_chunk = result_strip;
packed_lhs_chunk = packed_lhs;
for (int j = 0; j < lhs_chunks; ++j) {
KernelFF::Multiply(reinterpret_cast<const InType*>(packed_lhs_chunk),
reinterpret_cast<const InType*>(packed_rhs),
params.fused_kernel,
reinterpret_cast<OutType*>(result_chunk));
result_chunk += result_chunk_size;
packed_lhs_chunk += packed_lhs_chunk_size;
}
KernelLF::Multiply(reinterpret_cast<const InType*>(packed_lhs_chunk),
reinterpret_cast<const InType*>(packed_rhs),
params.fused_kernel,
reinterpret_cast<OutType*>(result_chunk));
rhs_chunk += rhs_chunk_size;
result_strip += result_strip_size;
}
}
// Leftover RHS chunk.
if (n_leftovers > 0) { // static if
const int result_chunk_size =
OutputStreamFL::UnpackedStride(params.fused_kernel.output_stream);
RightStreamL::Pack(reinterpret_cast<const InType*>(rhs_chunk),
params.right_stream,
reinterpret_cast<InType*>(packed_rhs));
result_chunk = result_strip;
packed_lhs_chunk = packed_lhs;
for (int i = 0; i < lhs_chunks; ++i) {
KernelFL::Multiply(reinterpret_cast<const InType*>(packed_lhs_chunk),
reinterpret_cast<const InType*>(packed_rhs),
params.fused_kernel,
reinterpret_cast<OutType*>(result_chunk));
result_chunk += result_chunk_size;
packed_lhs_chunk += packed_lhs_chunk_size;
}
KernelLL::Multiply(reinterpret_cast<const InType*>(packed_lhs_chunk),
reinterpret_cast<const InType*>(packed_rhs),
params.fused_kernel,
reinterpret_cast<OutType*>(result_chunk));
}
}
};
namespace internal {
inline int CalculateCacheFriendlyTasksCount(int cache_size, int constant_memory,
int per_chunk_memory, int total_dim,
int chunk_dim) {
assert(constant_memory + per_chunk_memory < cache_size);
const int available_cache = cache_size - constant_memory;
const int available_chunks = available_cache / per_chunk_memory;
const int chunks_count = (total_dim + chunk_dim - 1) / chunk_dim;
return (chunks_count + available_chunks - 1) / available_chunks;
}
template <typename Params>
inline void UpdateCacheFriendlyTask(int m_offset, int m, int n_offset, int n,
const Params& params, Params* task_params) {
task_params->m = m;
task_params->lhs =
StreamUtil<typename Params::InType, typename Params::LeftStream>::Offset(
params.left_stream, params.lhs, m_offset, 0);
task_params->n = n;
task_params->rhs =
StreamUtil<typename Params::InType, typename Params::RightStream>::Offset(
params.right_stream, params.rhs, n_offset, 0);
task_params->result =
StreamUtil<typename Params::OutType, typename Params::OutputStream>::
Offset(params.fused_kernel.output_stream, params.result, m_offset,
n_offset);
}
} // namespace internal
template <int cache_size = 256 * 1024>
class GemmExecutorPackRHSCacheFriendly {
public:
template <typename P>
static int EstimateScratchSize(const P& params, int kernel_m, int kernel_n,
int kernel_k) {
return cache_size;
}
template <typename P, int m, int n, int k, int m_leftovers, int n_leftovers,
int k_leftovers>
static void ExecuteDispatch3D(const P& params) {
typedef Stream<typename P::InType, m, k, k_leftovers,
typename P::LeftStream>
LeftStream;
typedef Stream<typename P::InType, n, k, k_leftovers,
typename P::RightStream>
RightStream;
const int lhs_scratch = LeftStream::Scratch(params.left_stream);
const int rhs_scratch = RightStream::Scratch(params.right_stream);
const int cache_friendly_tasks_count =
internal::CalculateCacheFriendlyTasksCount(cache_size, lhs_scratch,
rhs_scratch, params.n, n);
if (cache_friendly_tasks_count == 1) {
GemmExecutorPackRHS::ExecuteDispatch3D<P, m, n, k, m_leftovers,
n_leftovers, k_leftovers>(params);
return;
}
const int cache_friendly_dim = params.n / cache_friendly_tasks_count;
P task_params = params;
for (int i = 0; i < cache_friendly_tasks_count - 1; ++i) {
internal::UpdateCacheFriendlyTask(0, params.m, i * cache_friendly_dim,
cache_friendly_dim, params,
&task_params);
Gemm<GemmExecutorPackRHS, P, m, n, k>(task_params);
}
const int dim_sum = (cache_friendly_tasks_count - 1) * cache_friendly_dim;
internal::UpdateCacheFriendlyTask(0, params.m, dim_sum, params.n - dim_sum,
params, &task_params);
Gemm<GemmExecutorPackRHS, P, m, n, k>(task_params);
}
};
template <int cache_size = 256 * 1024>
class GemmExecutorPackLHSCacheFriendly {
public:
template <typename P>
static int EstimateScratchSize(const P& params, int kernel_m, int kernel_n,
int kernel_k) {
return cache_size;
}
template <typename P, int m, int n, int k, int m_leftovers, int n_leftovers,
int k_leftovers>
static void ExecuteDispatch3D(const P& params) {
typedef Stream<typename P::InType, m, k, k_leftovers,
typename P::LeftStream>
LeftStream;
typedef Stream<typename P::InType, n, k, k_leftovers,
typename P::RightStream>
RightStream;
const int lhs_scratch = LeftStream::Scratch(params.left_stream);
const int rhs_scratch = RightStream::Scratch(params.right_stream);
const int cache_friendly_tasks_count =
internal::CalculateCacheFriendlyTasksCount(cache_size, rhs_scratch,
lhs_scratch, params.m, m);
if (cache_friendly_tasks_count == 1) {
GemmExecutorPackLHS::ExecuteDispatch3D<P, m, n, k, m_leftovers,
n_leftovers, k_leftovers>(params);
return;
}
const int cache_friendly_dim = params.m / cache_friendly_tasks_count;
P task_params = params;
for (int i = 0; i < cache_friendly_tasks_count - 1; ++i) {
internal::UpdateCacheFriendlyTask(i * cache_friendly_dim,
cache_friendly_dim, 0, params.n, params,
&task_params);
Gemm<GemmExecutorPackLHS, P, m, n, k>(task_params);
}
const int dim_sum = (cache_friendly_tasks_count - 1) * cache_friendly_dim;
internal::UpdateCacheFriendlyTask(dim_sum, params.m - dim_sum, 0, params.n,
params, &task_params);
Gemm<GemmExecutorPackLHS, P, m, n, k>(task_params);
}
};
namespace internal {
// Stage 3.
template <typename E, typename P, int dim_m, int dim_n, int dim_k, int fixed_m,
int fixed_n, int variable_k>
struct Dispatch3DStage3 {
static void Execute(const P& params, int k) {
#ifdef DEBUG
#ifdef DEBUG_METAGEMM_VERBOSE
std::cout << "Dispatch(3): " << dim_m << "x" << dim_n << "x" << dim_k
<< " : " << fixed_m << "x" << fixed_n << "x" << variable_k
<< std::endl
<< std::flush;
#endif
#endif
if (k == variable_k) {
E::template ExecuteDispatch3D<P, dim_m, dim_n, dim_k, fixed_m, fixed_n,
variable_k>(params);
} else {
Dispatch3DStage3<E, P, dim_m, dim_n, dim_k, fixed_m, fixed_n,
variable_k - 1>::Execute(params, k);
}
}
};
template <typename E, typename P, int dim_m, int dim_n, int dim_k, int fixed_m,
int fixed_n>
struct Dispatch3DStage3<E, P, dim_m, dim_n, dim_k, fixed_m, fixed_n, 0> {
static void Execute(const P& params, int k) {
#ifdef DEBUG
#ifdef DEBUG_METAGEMM_VERBOSE
std::cout << "Dispatch(3): " << dim_m << "x" << dim_n << "x" << dim_k
<< " : " << fixed_m << "x" << fixed_n << "x" << 0 << std::endl
<< std::flush;
#endif
#endif
if (k == 0) {
E::template ExecuteDispatch3D<P, dim_m, dim_n, dim_k, fixed_m, fixed_n,
0>(params);
} else {
std::cerr << "FATAL: dispatch3DStage3 failed: ran out of cases."
<< std::endl
<< std::flush;
std::exit(1);
}
}
};
// Stage 2.
template <typename E, typename P, int dim_m, int dim_n, int dim_k, int fixed_m,
int variable_n>
struct Dispatch3DStage2 {
static void Execute(const P& params, int n, int k) {
#ifdef DEBUG
#ifdef DEBUG_METAGEMM_VERBOSE
std::cout << "Dispatch(2): " << dim_m << "x" << dim_n << "x" << dim_k
<< " : " << fixed_m << "x" << variable_n << std::endl
<< std::flush;
#endif
#endif
if (n == variable_n) {
Dispatch3DStage3<E, P, dim_m, dim_n, dim_k, fixed_m, variable_n,
dim_k - 1>::Execute(params, k);
} else {
Dispatch3DStage2<E, P, dim_m, dim_n, dim_k, fixed_m,
variable_n - 1>::Execute(params, n, k);
}
}
};
template <typename E, typename P, int dim_m, int dim_n, int dim_k, int fixed_m>
struct Dispatch3DStage2<E, P, dim_m, dim_n, dim_k, fixed_m, 0> {
static void Execute(const P& params, int n, int k) {
#ifdef DEBUG
#ifdef DEBUG_METAGEMM_VERBOSE
std::cout << "Dispatch(2): " << dim_m << "x" << dim_n << "x" << dim_k
<< " : " << fixed_m << "x" << 0 << std::endl
<< std::flush;
#endif
#endif
if (n == 0) {
Dispatch3DStage3<E, P, dim_m, dim_n, dim_k, fixed_m, 0,
dim_k - 1>::Execute(params, k);
} else {
std::cerr << "FATAL: dispatch3DStage2 failed: ran out of cases."
<< std::endl
<< std::flush;
std::exit(1);
}
}
};
// Stage 1.
template <typename E, typename P, int dim_m, int dim_n, int dim_k,
int variable_m>
struct Dispatch3DStage1 {
static void Execute(const P& params, int m, int n, int k) {
#ifdef DEBUG
#ifdef DEBUG_METAGEMM_VERBOSE
std::cout << "Dispatch(1): " << dim_m << "x" << dim_n << "x" << dim_k
<< " : " << variable_m << std::endl
<< std::flush;
#endif
#endif
if (m == variable_m) {
Dispatch3DStage2<E, P, dim_m, dim_n, dim_k, variable_m,
dim_n - 1>::Execute(params, n, k);
} else {
Dispatch3DStage1<E, P, dim_m, dim_n, dim_k, variable_m - 1>::Execute(
params, m, n, k);
}
}
};
template <typename E, typename P, int dim_m, int dim_n, int dim_k>
struct Dispatch3DStage1<E, P, dim_m, dim_n, dim_k, 0> {
static void Execute(const P& params, int m, int n, int k) {
#ifdef DEBUG
#ifdef DEBUG_METAGEMM_VERBOSE
std::cout << "Dispatch(1): " << dim_m << "x" << dim_n << "x" << dim_k
<< " : " << 0 << std::endl
<< std::flush;
#endif
#endif
if (m == 0) {
Dispatch3DStage2<E, P, dim_m, dim_n, dim_k, 0, dim_n - 1>::Execute(params,
n, k);
} else {
std::cerr << "FATAL: dispatch3DStage1 failed: ran out of cases."
<< std::endl
<< std::flush;
std::exit(1);
}
}
};
} // namespace internal
template <typename Executor, typename Params, int kernel_m, int kernel_n,
int kernel_k>
inline void Gemm(const Params& params) {
internal::Dispatch3DStage1<Executor, Params, kernel_m, kernel_n, kernel_k,
kernel_m - 1>::Execute(params, params.m % kernel_m,
params.n % kernel_n,
params.k % kernel_k);
}
} // namespace meta
} // namespace gemmlowp
#endif // GEMMLOWP_META_SINGLE_THREAD_GEMM_H_