| /* | 
 |  * This file is part of the flashrom project. | 
 |  * | 
 |  * Copyright (C) 2009 Paul Fox <pgf@laptop.org> | 
 |  * Copyright (C) 2009, 2010 Carl-Daniel Hailfinger | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; version 2 of the License. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA | 
 |  */ | 
 |  | 
 | #if CONFIG_FT2232_SPI == 1 | 
 |  | 
 | #include <stdio.h> | 
 | #include <string.h> | 
 | #include <stdlib.h> | 
 | #include <ctype.h> | 
 | #include "flash.h" | 
 | #include "chipdrivers.h" | 
 | #include "programmer.h" | 
 | #include "spi.h" | 
 | #include <ftdi.h> | 
 |  | 
 | #define FTDI_VID		0x0403 | 
 | #define FTDI_FT2232H_PID	0x6010 | 
 | #define FTDI_FT4232H_PID	0x6011 | 
 | #define AMONTEC_JTAGKEY_PID	0xCFF8 | 
 |  | 
 | #define FIC_VID			0x1457 | 
 | #define OPENMOKO_DBGBOARD_PID	0x5118 | 
 |  | 
 | const struct usbdev_status devs_ft2232spi[] = { | 
 | 	{FTDI_VID, FTDI_FT2232H_PID, OK, "FTDI", "FT2232H"}, | 
 | 	{FTDI_VID, FTDI_FT4232H_PID, OK, "FTDI", "FT4232H"}, | 
 | 	{FTDI_VID, AMONTEC_JTAGKEY_PID, OK, "Amontec", "JTAGkey"}, | 
 | 	{FIC_VID, OPENMOKO_DBGBOARD_PID, OK, | 
 | 		"First International Computer, Inc.", | 
 | 		"OpenMoko Neo1973 Debug board (V2+)"}, | 
 | 	{}, | 
 | }; | 
 |  | 
 | /* | 
 |  * The 'H' chips can run internally at either 12MHz or 60MHz. | 
 |  * The non-H chips can only run at 12MHz. | 
 |  */ | 
 | static uint8_t clock_5x = 1; | 
 |  | 
 | /* | 
 |  * In either case, the divisor is a simple integer clock divider. | 
 |  * If clock_5x is set, this divisor divides 30MHz, else it divides 6MHz. | 
 |  */ | 
 | #define DIVIDE_BY 3  /* e.g. '3' will give either 10MHz or 2MHz SPI clock. */ | 
 |  | 
 | #define BITMODE_BITBANG_NORMAL	1 | 
 | #define BITMODE_BITBANG_SPI	2 | 
 |  | 
 | /* Set data bits low-byte command: | 
 |  *  value: 0x08  CS=high, DI=low, DO=low, SK=low | 
 |  *    dir: 0x0b  CS=output, DI=input, DO=output, SK=output | 
 |  * | 
 |  * JTAGkey(2) needs to enable its output via Bit4 / GPIOL0 | 
 |  *  value: 0x18  OE=high, CS=high, DI=low, DO=low, SK=low | 
 |  *    dir: 0x1b  OE=output, CS=output, DI=input, DO=output, SK=output | 
 |  */ | 
 | static uint8_t cs_bits = 0x08; | 
 | static uint8_t pindir = 0x0b; | 
 | static struct ftdi_context ftdic_context; | 
 |  | 
 | static const char *get_ft2232_devicename(int ft2232_vid, int ft2232_type) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; devs_ft2232spi[i].vendor_name != NULL; i++) { | 
 | 		if ((devs_ft2232spi[i].device_id == ft2232_type) | 
 | 			&& (devs_ft2232spi[i].vendor_id == ft2232_vid)) | 
 | 				return devs_ft2232spi[i].device_name; | 
 | 	} | 
 | 	return "unknown device"; | 
 | } | 
 |  | 
 | static const char *get_ft2232_vendorname(int ft2232_vid, int ft2232_type) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; devs_ft2232spi[i].vendor_name != NULL; i++) { | 
 | 		if ((devs_ft2232spi[i].device_id == ft2232_type) | 
 | 			&& (devs_ft2232spi[i].vendor_id == ft2232_vid)) | 
 | 				return devs_ft2232spi[i].vendor_name; | 
 | 	} | 
 | 	return "unknown vendor"; | 
 | } | 
 |  | 
 | static int send_buf(struct ftdi_context *ftdic, const unsigned char *buf, | 
 | 		    int size) | 
 | { | 
 | 	int r; | 
 | 	r = ftdi_write_data(ftdic, (unsigned char *) buf, size); | 
 | 	if (r < 0) { | 
 | 		msg_perr("ftdi_write_data: %d, %s\n", r, | 
 | 				ftdi_get_error_string(ftdic)); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int get_buf(struct ftdi_context *ftdic, const unsigned char *buf, | 
 | 		   int size) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	while (size > 0) { | 
 | 		r = ftdi_read_data(ftdic, (unsigned char *) buf, size); | 
 | 		if (r < 0) { | 
 | 			msg_perr("ftdi_read_data: %d, %s\n", r, | 
 | 					ftdi_get_error_string(ftdic)); | 
 | 			return 1; | 
 | 		} | 
 | 		buf += r; | 
 | 		size -= r; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ft2232_spi_init(void) | 
 | { | 
 | 	int f; | 
 | 	struct ftdi_context *ftdic = &ftdic_context; | 
 | 	unsigned char buf[512]; | 
 | 	int ft2232_vid = FTDI_VID; | 
 | 	int ft2232_type = FTDI_FT4232H_PID; | 
 | 	enum ftdi_interface ft2232_interface = INTERFACE_B; | 
 | 	char *arg; | 
 | 	double mpsse_clk; | 
 |  | 
 | 	arg = extract_programmer_param("type"); | 
 | 	if (arg) { | 
 | 		if (!strcasecmp(arg, "2232H")) | 
 | 			ft2232_type = FTDI_FT2232H_PID; | 
 | 		else if (!strcasecmp(arg, "4232H")) | 
 | 			ft2232_type = FTDI_FT4232H_PID; | 
 | 		else if (!strcasecmp(arg, "jtagkey")) { | 
 | 			ft2232_type = AMONTEC_JTAGKEY_PID; | 
 | 			ft2232_interface = INTERFACE_A; | 
 | 			cs_bits = 0x18; | 
 | 			pindir = 0x1b; | 
 | 		} else if (!strcasecmp(arg, "openmoko")) { | 
 | 			ft2232_vid = FIC_VID; | 
 | 			ft2232_type = OPENMOKO_DBGBOARD_PID; | 
 | 			ft2232_interface = INTERFACE_A; | 
 | 		} else { | 
 | 			msg_perr("Error: Invalid device type specified.\n"); | 
 | 			free(arg); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 | 	free(arg); | 
 | 	arg = extract_programmer_param("port"); | 
 | 	if (arg) { | 
 | 		switch (toupper((unsigned char)*arg)) { | 
 | 		case 'A': | 
 | 			ft2232_interface = INTERFACE_A; | 
 | 			break; | 
 | 		case 'B': | 
 | 			ft2232_interface = INTERFACE_B; | 
 | 			break; | 
 | 		default: | 
 | 			msg_perr("Error: Invalid port/interface specified.\n"); | 
 | 			free(arg); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 | 	free(arg); | 
 | 	msg_pdbg("Using device type %s %s ", | 
 | 		 get_ft2232_vendorname(ft2232_vid, ft2232_type), | 
 | 		 get_ft2232_devicename(ft2232_vid, ft2232_type)); | 
 | 	msg_pdbg("interface %s\n", | 
 | 		 (ft2232_interface == INTERFACE_A) ? "A" : "B"); | 
 |  | 
 | 	if (ftdi_init(ftdic) < 0) { | 
 | 		msg_perr("ftdi_init failed\n"); | 
 | 		return EXIT_FAILURE; // TODO | 
 | 	} | 
 |  | 
 | 	f = ftdi_usb_open(ftdic, ft2232_vid, ft2232_type); | 
 |  | 
 | 	if (f < 0 && f != -5) { | 
 | 		msg_perr("Unable to open FTDI device: %d (%s)\n", f, | 
 | 				ftdi_get_error_string(ftdic)); | 
 | 		exit(-1); // TODO | 
 | 	} | 
 |  | 
 | 	if (ftdic->type != TYPE_2232H && ftdic->type != TYPE_4232H) { | 
 | 		msg_pdbg("FTDI chip type %d is not high-speed\n", | 
 | 			ftdic->type); | 
 | 		clock_5x = 0; | 
 | 	} | 
 |  | 
 | 	if (ftdi_set_interface(ftdic, ft2232_interface) < 0) { | 
 | 		msg_perr("Unable to select interface: %s\n", | 
 | 				ftdic->error_str); | 
 | 	} | 
 |  | 
 | 	if (ftdi_usb_reset(ftdic) < 0) { | 
 | 		msg_perr("Unable to reset FTDI device\n"); | 
 | 	} | 
 |  | 
 | 	if (ftdi_set_latency_timer(ftdic, 2) < 0) { | 
 | 		msg_perr("Unable to set latency timer\n"); | 
 | 	} | 
 |  | 
 | 	if (ftdi_write_data_set_chunksize(ftdic, 256)) { | 
 | 		msg_perr("Unable to set chunk size\n"); | 
 | 	} | 
 |  | 
 | 	if (ftdi_set_bitmode(ftdic, 0x00, BITMODE_BITBANG_SPI) < 0) { | 
 | 		msg_perr("Unable to set bitmode to SPI\n"); | 
 | 	} | 
 |  | 
 | 	if (clock_5x) { | 
 | 		msg_pdbg("Disable divide-by-5 front stage\n"); | 
 | 		buf[0] = 0x8a;		/* Disable divide-by-5. */ | 
 | 		if (send_buf(ftdic, buf, 1)) | 
 | 			return -1; | 
 | 		mpsse_clk = 60.0; | 
 | 	} else { | 
 | 		mpsse_clk = 12.0; | 
 | 	} | 
 |  | 
 | 	msg_pdbg("Set clock divisor\n"); | 
 | 	buf[0] = 0x86;		/* command "set divisor" */ | 
 | 	/* valueL/valueH are (desired_divisor - 1) */ | 
 | 	buf[1] = (DIVIDE_BY - 1) & 0xff; | 
 | 	buf[2] = ((DIVIDE_BY - 1) >> 8) & 0xff; | 
 | 	if (send_buf(ftdic, buf, 3)) | 
 | 		return -1; | 
 |  | 
 | 	msg_pdbg("MPSSE clock: %f MHz divisor: %d " | 
 | 		 "SPI clock: %f MHz\n", | 
 | 		 mpsse_clk, DIVIDE_BY, | 
 | 		 (double)(mpsse_clk / (((DIVIDE_BY - 1) + 1) * 2))); | 
 |  | 
 | 	/* Disconnect TDI/DO to TDO/DI for loopback. */ | 
 | 	msg_pdbg("No loopback of TDI/DO TDO/DI\n"); | 
 | 	buf[0] = 0x85; | 
 | 	if (send_buf(ftdic, buf, 1)) | 
 | 		return -1; | 
 |  | 
 | 	msg_pdbg("Set data bits\n"); | 
 | 	buf[0] = SET_BITS_LOW; | 
 | 	buf[1] = cs_bits; | 
 | 	buf[2] = pindir; | 
 | 	if (send_buf(ftdic, buf, 3)) | 
 | 		return -1; | 
 |  | 
 | 	// msg_pdbg("\nft2232 chosen\n"); | 
 |  | 
 | 	buses_supported = CHIP_BUSTYPE_SPI; | 
 | 	spi_controller = SPI_CONTROLLER_FT2232; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ft2232_spi_send_command(unsigned int writecnt, unsigned int readcnt, | 
 | 		const unsigned char *writearr, unsigned char *readarr) | 
 | { | 
 | 	struct ftdi_context *ftdic = &ftdic_context; | 
 | 	static unsigned char *buf = NULL; | 
 | 	/* failed is special. We use bitwise ops, but it is essentially bool. */ | 
 | 	int i = 0, ret = 0, failed = 0; | 
 | 	int bufsize; | 
 | 	static int oldbufsize = 0; | 
 |  | 
 | 	if (writecnt > 65536 || readcnt > 65536) | 
 | 		return SPI_INVALID_LENGTH; | 
 |  | 
 | 	/* buf is not used for the response from the chip. */ | 
 | 	bufsize = max(writecnt + 9, 260 + 9); | 
 | 	/* Never shrink. realloc() calls are expensive. */ | 
 | 	if (bufsize > oldbufsize) { | 
 | 		buf = realloc(buf, bufsize); | 
 | 		if (!buf) { | 
 | 			msg_perr("Out of memory!\n"); | 
 | 			exit(1); | 
 | 		} | 
 | 		oldbufsize = bufsize; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Minimize USB transfers by packing as many commands as possible | 
 | 	 * together. If we're not expecting to read, we can assert CS#, write, | 
 | 	 * and deassert CS# all in one shot. If reading, we do three separate | 
 | 	 * operations. | 
 | 	 */ | 
 | 	msg_pspew("Assert CS#\n"); | 
 | 	buf[i++] = SET_BITS_LOW; | 
 | 	buf[i++] = 0 & ~cs_bits; /* assertive */ | 
 | 	buf[i++] = pindir; | 
 |  | 
 | 	if (writecnt) { | 
 | 		buf[i++] = 0x11; | 
 | 		buf[i++] = (writecnt - 1) & 0xff; | 
 | 		buf[i++] = ((writecnt - 1) >> 8) & 0xff; | 
 | 		memcpy(buf + i, writearr, writecnt); | 
 | 		i += writecnt; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Optionally terminate this batch of commands with a | 
 | 	 * read command, then do the fetch of the results. | 
 | 	 */ | 
 | 	if (readcnt) { | 
 | 		buf[i++] = 0x20; | 
 | 		buf[i++] = (readcnt - 1) & 0xff; | 
 | 		buf[i++] = ((readcnt - 1) >> 8) & 0xff; | 
 | 		ret = send_buf(ftdic, buf, i); | 
 | 		failed = ret; | 
 | 		/* We can't abort here, we still have to deassert CS#. */ | 
 | 		if (ret) | 
 | 			msg_perr("send_buf failed before read: %i\n", | 
 | 				ret); | 
 | 		i = 0; | 
 | 		if (ret == 0) { | 
 | 			/* | 
 | 			 * FIXME: This is unreliable. There's no guarantee that | 
 | 			 * we read the response directly after sending the read | 
 | 			 * command. We may be scheduled out etc. | 
 | 			 */ | 
 | 			ret = get_buf(ftdic, readarr, readcnt); | 
 | 			failed |= ret; | 
 | 			/* We can't abort here either. */ | 
 | 			if (ret) | 
 | 				msg_perr("get_buf failed: %i\n", ret); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	msg_pspew("De-assert CS#\n"); | 
 | 	buf[i++] = SET_BITS_LOW; | 
 | 	buf[i++] = cs_bits; | 
 | 	buf[i++] = pindir; | 
 | 	ret = send_buf(ftdic, buf, i); | 
 | 	failed |= ret; | 
 | 	if (ret) | 
 | 		msg_perr("send_buf failed at end: %i\n", ret); | 
 |  | 
 | 	return failed ? -1 : 0; | 
 | } | 
 |  | 
 | int ft2232_spi_read(struct flashchip *flash, uint8_t *buf, int start, int len) | 
 | { | 
 | 	/* Maximum read length is 64k bytes. */ | 
 | 	return spi_read_chunked(flash, buf, start, len, 64 * 1024); | 
 | } | 
 |  | 
 | int ft2232_spi_write_256(struct flashchip *flash, uint8_t *buf, int start, int len) | 
 | { | 
 | 	return spi_write_chunked(flash, buf, start, len, 256); | 
 | } | 
 |  | 
 | void print_supported_usbdevs(const struct usbdev_status *devs) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	msg_pinfo("USB devices:\n"); | 
 | 	for (i = 0; devs[i].vendor_name != NULL; i++) { | 
 | 		msg_pinfo("%s %s [%04x:%04x]%s\n", devs[i].vendor_name, | 
 | 			  devs[i].device_name, devs[i].vendor_id, | 
 | 			  devs[i].device_id, | 
 | 			  (devs[i].status == NT) ? " (untested)" : ""); | 
 | 	} | 
 | } | 
 |  | 
 | #endif |