blob: b4c9b6720c3ca147cc13afd9bf992304f322f4d9 [file] [log] [blame]
/* plugin_common - Routines common to several plugins
* Copyright (C) 2002-2009 Josh Coalson
* Copyright (C) 2011-2016 Xiph.Org Foundation
*
* dithering routine derived from (other GPLed source):
* mad - MPEG audio decoder
* Copyright (C) 2000-2001 Robert Leslie
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "dither.h"
#include "FLAC/assert.h"
#ifdef max
#undef max
#endif
#define max(a,b) ((a)>(b)?(a):(b))
#ifndef FLaC__INLINE
#define FLaC__INLINE
#endif
/* 32-bit pseudo-random number generator
*
* @@@ According to Miroslav, this one is poor quality, the one from the
* @@@ original replaygain code is much better
*/
static FLaC__INLINE FLAC__uint32 prng(FLAC__uint32 state)
{
return (state * 0x0019660dL + 0x3c6ef35fL) & 0xffffffffL;
}
/* dither routine derived from MAD winamp plugin */
typedef struct {
FLAC__int32 error[3];
FLAC__int32 random;
} dither_state;
static FLAC__int32 linear_dither(uint32_t source_bps, uint32_t target_bps, FLAC__int32 sample, dither_state *dither, const FLAC__int32 MIN, const FLAC__int32 MAX)
{
uint32_t scalebits;
FLAC__int32 output, mask, random;
FLAC__ASSERT(source_bps < 32);
FLAC__ASSERT(target_bps <= 24);
FLAC__ASSERT(target_bps <= source_bps);
/* noise shape */
sample += dither->error[0] - dither->error[1] + dither->error[2];
dither->error[2] = dither->error[1];
dither->error[1] = dither->error[0] / 2;
/* bias */
output = sample + (1L << (source_bps - target_bps - 1));
scalebits = source_bps - target_bps;
mask = (1L << scalebits) - 1;
/* dither */
random = (FLAC__int32)prng(dither->random);
output += (random & mask) - (dither->random & mask);
dither->random = random;
/* clip */
if(output > MAX) {
output = MAX;
if(sample > MAX)
sample = MAX;
}
else if(output < MIN) {
output = MIN;
if(sample < MIN)
sample = MIN;
}
/* quantize */
output &= ~mask;
/* error feedback */
dither->error[0] = sample - output;
/* scale */
return output >> scalebits;
}
size_t FLAC__plugin_common__pack_pcm_signed_big_endian(FLAC__byte *data, const FLAC__int32 * const input[], uint32_t wide_samples, uint32_t channels, uint32_t source_bps, uint32_t target_bps)
{
static dither_state dither[FLAC_PLUGIN__MAX_SUPPORTED_CHANNELS];
FLAC__byte * const start = data;
FLAC__int32 sample;
const FLAC__int32 *input_;
uint32_t samples, channel;
const uint32_t bytes_per_sample = target_bps / 8;
const uint32_t incr = bytes_per_sample * channels;
FLAC__ASSERT(channels > 0 && channels <= FLAC_PLUGIN__MAX_SUPPORTED_CHANNELS);
FLAC__ASSERT(source_bps < 32);
FLAC__ASSERT(target_bps <= 24);
FLAC__ASSERT(target_bps <= source_bps);
FLAC__ASSERT((source_bps & 7) == 0);
FLAC__ASSERT((target_bps & 7) == 0);
if(source_bps != target_bps) {
const FLAC__int32 MIN = -(1L << (source_bps - 1));
const FLAC__int32 MAX = ~MIN; /*(1L << (source_bps-1)) - 1 */
for(channel = 0; channel < channels; channel++) {
samples = wide_samples;
data = start + bytes_per_sample * channel;
input_ = input[channel];
while(samples--) {
sample = linear_dither(source_bps, target_bps, *input_++, &dither[channel], MIN, MAX);
switch(target_bps) {
case 8:
data[0] = sample ^ 0x80;
break;
case 16:
data[0] = (FLAC__byte)(sample >> 8);
data[1] = (FLAC__byte)sample;
break;
case 24:
data[0] = (FLAC__byte)(sample >> 16);
data[1] = (FLAC__byte)(sample >> 8);
data[2] = (FLAC__byte)sample;
break;
}
data += incr;
}
}
}
else {
for(channel = 0; channel < channels; channel++) {
samples = wide_samples;
data = start + bytes_per_sample * channel;
input_ = input[channel];
while(samples--) {
sample = *input_++;
switch(target_bps) {
case 8:
data[0] = sample ^ 0x80;
break;
case 16:
data[0] = (FLAC__byte)(sample >> 8);
data[1] = (FLAC__byte)sample;
break;
case 24:
data[0] = (FLAC__byte)(sample >> 16);
data[1] = (FLAC__byte)(sample >> 8);
data[2] = (FLAC__byte)sample;
break;
}
data += incr;
}
}
}
return wide_samples * channels * (target_bps/8);
}
size_t FLAC__plugin_common__pack_pcm_signed_little_endian(FLAC__byte *data, const FLAC__int32 * const input[], uint32_t wide_samples, uint32_t channels, uint32_t source_bps, uint32_t target_bps)
{
static dither_state dither[FLAC_PLUGIN__MAX_SUPPORTED_CHANNELS];
FLAC__byte * const start = data;
FLAC__int32 sample;
const FLAC__int32 *input_;
uint32_t samples, channel;
const uint32_t bytes_per_sample = target_bps / 8;
const uint32_t incr = bytes_per_sample * channels;
FLAC__ASSERT(channels > 0 && channels <= FLAC_PLUGIN__MAX_SUPPORTED_CHANNELS);
FLAC__ASSERT(source_bps < 32);
FLAC__ASSERT(target_bps <= 24);
FLAC__ASSERT(target_bps <= source_bps);
FLAC__ASSERT((source_bps & 7) == 0);
FLAC__ASSERT((target_bps & 7) == 0);
if(source_bps != target_bps) {
const FLAC__int32 MIN = -(1L << (source_bps - 1));
const FLAC__int32 MAX = ~MIN; /*(1L << (source_bps-1)) - 1 */
for(channel = 0; channel < channels; channel++) {
samples = wide_samples;
data = start + bytes_per_sample * channel;
input_ = input[channel];
while(samples--) {
sample = linear_dither(source_bps, target_bps, *input_++, &dither[channel], MIN, MAX);
switch(target_bps) {
case 8:
data[0] = sample ^ 0x80;
break;
case 24:
data[2] = (FLAC__byte)(sample >> 16);
/* fall through */
case 16:
data[1] = (FLAC__byte)(sample >> 8);
data[0] = (FLAC__byte)sample;
}
data += incr;
}
}
}
else {
for(channel = 0; channel < channels; channel++) {
samples = wide_samples;
data = start + bytes_per_sample * channel;
input_ = input[channel];
while(samples--) {
sample = *input_++;
switch(target_bps) {
case 8:
data[0] = sample ^ 0x80;
break;
case 24:
data[2] = (FLAC__byte)(sample >> 16);
/* fall through */
case 16:
data[1] = (FLAC__byte)(sample >> 8);
data[0] = (FLAC__byte)sample;
}
data += incr;
}
}
}
return wide_samples * channels * (target_bps/8);
}