blob: 19944cb5615e4be83453acf52484ca14309a891f [file] [log] [blame]
#ifndef _APPS_STD_SKEL_H
#define _APPS_STD_SKEL_H
/*
* Copyright (c) 2019, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "apps_std.h"
#ifndef _QAIC_ENV_H
#define _QAIC_ENV_H
#ifdef __GNUC__
#ifdef __clang__
#pragma GCC diagnostic ignored "-Wunknown-pragmas"
#else
#pragma GCC diagnostic ignored "-Wpragmas"
#endif
#pragma GCC diagnostic ignored "-Wuninitialized"
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Wunused-function"
#endif
#ifndef _ATTRIBUTE_UNUSED
#ifdef _WIN32
#define _ATTRIBUTE_UNUSED
#else
#define _ATTRIBUTE_UNUSED __attribute__ ((unused))
#endif
#endif // _ATTRIBUTE_UNUSED
#ifndef __QAIC_REMOTE
#define __QAIC_REMOTE(ff) ff
#endif //__QAIC_REMOTE
#ifndef __QAIC_HEADER
#define __QAIC_HEADER(ff) ff
#endif //__QAIC_HEADER
#ifndef __QAIC_HEADER_EXPORT
#define __QAIC_HEADER_EXPORT
#endif // __QAIC_HEADER_EXPORT
#ifndef __QAIC_HEADER_ATTRIBUTE
#define __QAIC_HEADER_ATTRIBUTE
#endif // __QAIC_HEADER_ATTRIBUTE
#ifndef __QAIC_IMPL
#define __QAIC_IMPL(ff) ff
#endif //__QAIC_IMPL
#ifndef __QAIC_IMPL_EXPORT
#define __QAIC_IMPL_EXPORT
#endif // __QAIC_IMPL_EXPORT
#ifndef __QAIC_IMPL_ATTRIBUTE
#define __QAIC_IMPL_ATTRIBUTE
#endif // __QAIC_IMPL_ATTRIBUTE
#ifndef __QAIC_STUB
#define __QAIC_STUB(ff) ff
#endif //__QAIC_STUB
#ifndef __QAIC_STUB_EXPORT
#define __QAIC_STUB_EXPORT
#endif // __QAIC_STUB_EXPORT
#ifndef __QAIC_STUB_ATTRIBUTE
#define __QAIC_STUB_ATTRIBUTE
#endif // __QAIC_STUB_ATTRIBUTE
#ifndef __QAIC_SKEL
#define __QAIC_SKEL(ff) ff
#endif //__QAIC_SKEL__
#ifndef __QAIC_SKEL_EXPORT
#define __QAIC_SKEL_EXPORT
#endif // __QAIC_SKEL_EXPORT
#ifndef __QAIC_SKEL_ATTRIBUTE
#define __QAIC_SKEL_ATTRIBUTE
#endif // __QAIC_SKEL_ATTRIBUTE
#ifdef __QAIC_DEBUG__
#ifndef __QAIC_DBG_PRINTF__
#include <stdio.h>
#define __QAIC_DBG_PRINTF__( ee ) do { printf ee ; } while(0)
#endif
#else
#define __QAIC_DBG_PRINTF__( ee ) (void)0
#endif
#define _OFFSET(src, sof) ((void*)(((char*)(src)) + (sof)))
#define _COPY(dst, dof, src, sof, sz) \
do {\
struct __copy { \
char ar[sz]; \
};\
*(struct __copy*)_OFFSET(dst, dof) = *(struct __copy*)_OFFSET(src, sof);\
} while (0)
#define _COPYIF(dst, dof, src, sof, sz) \
do {\
if(_OFFSET(dst, dof) != _OFFSET(src, sof)) {\
_COPY(dst, dof, src, sof, sz); \
} \
} while (0)
_ATTRIBUTE_UNUSED
static __inline void _qaic_memmove(void* dst, void* src, int size) {
int i;
for(i = 0; i < size; ++i) {
((char*)dst)[i] = ((char*)src)[i];
}
}
#define _MEMMOVEIF(dst, src, sz) \
do {\
if(dst != src) {\
_qaic_memmove(dst, src, sz);\
} \
} while (0)
#define _ASSIGN(dst, src, sof) \
do {\
dst = OFFSET(src, sof); \
} while (0)
#define _STD_STRLEN_IF(str) (str == 0 ? 0 : strlen(str))
#include "AEEStdErr.h"
#define _TRY(ee, func) \
do { \
if (AEE_SUCCESS != ((ee) = func)) {\
__QAIC_DBG_PRINTF__((__FILE__ ":%d:error:%d:%s\n", __LINE__, (int)(ee),#func));\
goto ee##bail;\
} \
} while (0)
#define _CATCH(exception) exception##bail: if (exception != AEE_SUCCESS)
#define _ASSERT(nErr, ff) _TRY(nErr, 0 == (ff) ? AEE_EBADPARM : AEE_SUCCESS)
#ifdef __QAIC_DEBUG__
#define _ALLOCATE(nErr, pal, size, alignment, pv) _TRY(nErr, _allocator_alloc(pal, __FILE_LINE__, size, alignment, (void**)&pv))
#else
#define _ALLOCATE(nErr, pal, size, alignment, pv) _TRY(nErr, _allocator_alloc(pal, 0, size, alignment, (void**)&pv))
#endif
#endif // _QAIC_ENV_H
#include "remote.h"
#include <string.h>
#ifndef _ALLOCATOR_H
#define _ALLOCATOR_H
#include <stdlib.h>
#include <stdint.h>
typedef struct _heap _heap;
struct _heap {
_heap* pPrev;
const char* loc;
uint64_t buf;
};
typedef struct _allocator {
_heap* pheap;
uint8_t* stack;
uint8_t* stackEnd;
int nSize;
} _allocator;
_ATTRIBUTE_UNUSED
static __inline int _heap_alloc(_heap** ppa, const char* loc, int size, void** ppbuf) {
_heap* pn = 0;
pn = malloc(size + sizeof(_heap) - sizeof(uint64_t));
if(pn != 0) {
pn->pPrev = *ppa;
pn->loc = loc;
*ppa = pn;
*ppbuf = (void*)&(pn->buf);
return 0;
} else {
return -1;
}
}
#define _ALIGN_SIZE(x, y) (((x) + (y-1)) & ~(y-1))
_ATTRIBUTE_UNUSED
static __inline int _allocator_alloc(_allocator* me,
const char* loc,
int size,
unsigned int al,
void** ppbuf) {
if(size < 0) {
return -1;
} else if (size == 0) {
*ppbuf = 0;
return 0;
}
if((_ALIGN_SIZE((uintptr_t)me->stackEnd, al) + size) < (uintptr_t)me->stack + me->nSize) {
*ppbuf = (uint8_t*)_ALIGN_SIZE((uintptr_t)me->stackEnd, al);
me->stackEnd = (uint8_t*)_ALIGN_SIZE((uintptr_t)me->stackEnd, al) + size;
return 0;
} else {
return _heap_alloc(&me->pheap, loc, size, ppbuf);
}
}
_ATTRIBUTE_UNUSED
static __inline void _allocator_deinit(_allocator* me) {
_heap* pa = me->pheap;
while(pa != 0) {
_heap* pn = pa;
const char* loc = pn->loc;
(void)loc;
pa = pn->pPrev;
free(pn);
}
}
_ATTRIBUTE_UNUSED
static __inline void _allocator_init(_allocator* me, uint8_t* stack, int stackSize) {
me->stack = stack;
me->stackEnd = stack + stackSize;
me->nSize = stackSize;
me->pheap = 0;
}
#endif // _ALLOCATOR_H
#ifndef SLIM_H
#define SLIM_H
#include <stdint.h>
//a C data structure for the idl types that can be used to implement
//static and dynamic language bindings fairly efficiently.
//
//the goal is to have a minimal ROM and RAM footprint and without
//doing too many allocations. A good way to package these things seemed
//like the module boundary, so all the idls within one module can share
//all the type references.
#define PARAMETER_IN 0x0
#define PARAMETER_OUT 0x1
#define PARAMETER_INOUT 0x2
#define PARAMETER_ROUT 0x3
#define PARAMETER_INROUT 0x4
//the types that we get from idl
#define TYPE_OBJECT 0x0
#define TYPE_INTERFACE 0x1
#define TYPE_PRIMITIVE 0x2
#define TYPE_ENUM 0x3
#define TYPE_STRING 0x4
#define TYPE_WSTRING 0x5
#define TYPE_STRUCTURE 0x6
#define TYPE_UNION 0x7
#define TYPE_ARRAY 0x8
#define TYPE_SEQUENCE 0x9
//these require the pack/unpack to recurse
//so it's a hint to those languages that can optimize in cases where
//recursion isn't necessary.
#define TYPE_COMPLEX_STRUCTURE (0x10 | TYPE_STRUCTURE)
#define TYPE_COMPLEX_UNION (0x10 | TYPE_UNION)
#define TYPE_COMPLEX_ARRAY (0x10 | TYPE_ARRAY)
#define TYPE_COMPLEX_SEQUENCE (0x10 | TYPE_SEQUENCE)
typedef struct Type Type;
#define INHERIT_TYPE\
int32_t nativeSize; /*in the simple case its the same as wire size and alignment*/\
union {\
struct {\
const uintptr_t p1;\
const uintptr_t p2;\
} _cast;\
struct {\
uint32_t iid;\
uint32_t bNotNil;\
} object;\
struct {\
const Type *arrayType;\
int32_t nItems;\
} array;\
struct {\
const Type *seqType;\
int32_t nMaxLen;\
} seqSimple; \
struct {\
uint32_t bFloating;\
uint32_t bSigned;\
} prim; \
const SequenceType* seqComplex;\
const UnionType *unionType;\
const StructType *structType;\
int32_t stringMaxLen;\
uint8_t bInterfaceNotNil;\
} param;\
uint8_t type;\
uint8_t nativeAlignment\
typedef struct UnionType UnionType;
typedef struct StructType StructType;
typedef struct SequenceType SequenceType;
struct Type {
INHERIT_TYPE;
};
struct SequenceType {
const Type * seqType;
uint32_t nMaxLen;
uint32_t inSize;
uint32_t routSizePrimIn;
uint32_t routSizePrimROut;
};
//byte offset from the start of the case values for
//this unions case value array. it MUST be aligned
//at the alignment requrements for the descriptor
//
//if negative it means that the unions cases are
//simple enumerators, so the value read from the descriptor
//can be used directly to find the correct case
typedef union CaseValuePtr CaseValuePtr;
union CaseValuePtr {
const uint8_t* value8s;
const uint16_t* value16s;
const uint32_t* value32s;
const uint64_t* value64s;
};
//these are only used in complex cases
//so I pulled them out of the type definition as references to make
//the type smaller
struct UnionType {
const Type *descriptor;
uint32_t nCases;
const CaseValuePtr caseValues;
const Type * const *cases;
int32_t inSize;
int32_t routSizePrimIn;
int32_t routSizePrimROut;
uint8_t inAlignment;
uint8_t routAlignmentPrimIn;
uint8_t routAlignmentPrimROut;
uint8_t inCaseAlignment;
uint8_t routCaseAlignmentPrimIn;
uint8_t routCaseAlignmentPrimROut;
uint8_t nativeCaseAlignment;
uint8_t bDefaultCase;
};
struct StructType {
uint32_t nMembers;
const Type * const *members;
int32_t inSize;
int32_t routSizePrimIn;
int32_t routSizePrimROut;
uint8_t inAlignment;
uint8_t routAlignmentPrimIn;
uint8_t routAlignmentPrimROut;
};
typedef struct Parameter Parameter;
struct Parameter {
INHERIT_TYPE;
uint8_t mode;
uint8_t bNotNil;
};
#define SLIM_IFPTR32(is32,is64) (sizeof(uintptr_t) == 4 ? (is32) : (is64))
#define SLIM_SCALARS_IS_DYNAMIC(u) (((u) & 0x00ffffff) == 0x00ffffff)
typedef struct Method Method;
struct Method {
uint32_t uScalars; //no method index
int32_t primInSize;
int32_t primROutSize;
int maxArgs;
int numParams;
const Parameter * const *params;
uint8_t primInAlignment;
uint8_t primROutAlignment;
};
typedef struct Interface Interface;
struct Interface {
int nMethods;
const Method * const *methodArray;
int nIIds;
const uint32_t *iids;
const uint16_t* methodStringArray;
const uint16_t* methodStrings;
const char* strings;
};
#endif //SLIM_H
#ifndef _APPS_STD_SLIM_H
#define _APPS_STD_SLIM_H
#include "remote.h"
#include <stdint.h>
#ifndef __QAIC_SLIM
#define __QAIC_SLIM(ff) ff
#endif
#ifndef __QAIC_SLIM_EXPORT
#define __QAIC_SLIM_EXPORT
#endif
static const Type types[7];
static const Type* const typeArrays[15] = {&(types[2]),&(types[2]),&(types[2]),&(types[5]),&(types[5]),&(types[2]),&(types[2]),&(types[6]),&(types[6]),&(types[6]),&(types[6]),&(types[6]),&(types[6]),&(types[3]),&(types[4])};
static const StructType structTypes[3] = {{0x1,&(typeArrays[0]),0x8,0x0,0x8,0x8,0x1,0x8},{0x2,&(typeArrays[13]),0x104,0x0,0x104,0x4,0x1,0x4},{0xd,&(typeArrays[0]),0x60,0x0,0x60,0x8,0x1,0x8}};
static const SequenceType sequenceTypes[1] = {{&(types[1]),0x0,0x4,0x4,0x0}};
static const Type types[7] = {{0x1,{{(const uintptr_t)0,(const uintptr_t)0}}, 2,0x1},{SLIM_IFPTR32(0x8,0x10),{{(const uintptr_t)0x0,0}}, 4,SLIM_IFPTR32(0x4,0x8)},{0x8,{{(const uintptr_t)0,(const uintptr_t)0}}, 2,0x8},{0x4,{{(const uintptr_t)0,(const uintptr_t)1}}, 2,0x4},{0xff,{{(const uintptr_t)&(types[0]),(const uintptr_t)0xff}}, 8,0x1},{0x4,{{(const uintptr_t)0,(const uintptr_t)0}}, 2,0x4},{0x8,{{(const uintptr_t)0,(const uintptr_t)1}}, 2,0x8}};
static const Parameter parameters[16] = {{SLIM_IFPTR32(0x8,0x10),{{(const uintptr_t)0x0,0}}, 4,SLIM_IFPTR32(0x4,0x8),0,0},{0x4,{{(const uintptr_t)0,(const uintptr_t)1}}, 2,0x4,3,0},{0x4,{{(const uintptr_t)0,(const uintptr_t)1}}, 2,0x4,0,0},{SLIM_IFPTR32(0x8,0x10),{{(const uintptr_t)&(types[0]),(const uintptr_t)0x0}}, 9,SLIM_IFPTR32(0x4,0x8),3,0},{SLIM_IFPTR32(0x8,0x10),{{(const uintptr_t)&(types[0]),(const uintptr_t)0x0}}, 9,SLIM_IFPTR32(0x4,0x8),0,0},{0x4,{{0,0}}, 3,0x4,0,0},{0x8,{{(const uintptr_t)0,(const uintptr_t)0}}, 2,0x8,3,0},{SLIM_IFPTR32(0x8,0x10),{{(const uintptr_t)0x0,0}}, 4,SLIM_IFPTR32(0x4,0x8),3,0},{SLIM_IFPTR32(0x8,0x10),{{(const uintptr_t)&(sequenceTypes[0]),0}}, 25,SLIM_IFPTR32(0x4,0x8),3,0},{0x4,{{(const uintptr_t)0,(const uintptr_t)0}}, 2,0x4,3,0},{0x2,{{(const uintptr_t)0,(const uintptr_t)0}}, 2,0x2,3,0},{0x1,{{(const uintptr_t)0,(const uintptr_t)0}}, 2,0x1,3,0},{0x8,{{(const uintptr_t)&(structTypes[0]),0}}, 6,0x8,3,0},{0x8,{{(const uintptr_t)&(structTypes[0]),0}}, 6,0x8,0,0},{0x104,{{(const uintptr_t)&(structTypes[1]),0}}, 6,0x4,3,0},{0x60,{{(const uintptr_t)&(structTypes[2]),0}}, 6,0x8,3,0}};
static const Parameter* const parameterArrays[44] = {(&(parameters[0])),(&(parameters[0])),(&(parameters[8])),(&(parameters[9])),(&(parameters[10])),(&(parameters[0])),(&(parameters[0])),(&(parameters[0])),(&(parameters[0])),(&(parameters[1])),(&(parameters[2])),(&(parameters[4])),(&(parameters[1])),(&(parameters[1])),(&(parameters[2])),(&(parameters[3])),(&(parameters[1])),(&(parameters[1])),(&(parameters[2])),(&(parameters[0])),(&(parameters[0])),(&(parameters[1])),(&(parameters[13])),(&(parameters[14])),(&(parameters[1])),(&(parameters[0])),(&(parameters[0])),(&(parameters[2])),(&(parameters[0])),(&(parameters[7])),(&(parameters[1])),(&(parameters[2])),(&(parameters[2])),(&(parameters[5])),(&(parameters[0])),(&(parameters[15])),(&(parameters[0])),(&(parameters[12])),(&(parameters[0])),(&(parameters[11])),(&(parameters[2])),(&(parameters[6])),(&(parameters[2])),(&(parameters[1]))};
static const Method methods[23] = {{REMOTE_SCALARS_MAKEX(0,0,0x3,0x1,0x0,0x0),0x8,0x4,3,3,(&(parameterArrays[7])),0x4,0x4},{REMOTE_SCALARS_MAKEX(0,0,0x3,0x1,0x0,0x0),0xc,0x4,4,4,(&(parameterArrays[18])),0x4,0x4},{REMOTE_SCALARS_MAKEX(0,0,0x1,0x0,0x0,0x0),0x4,0x0,1,1,(&(parameterArrays[10])),0x4,0x0},{REMOTE_SCALARS_MAKEX(0,0,0x1,0x2,0x0,0x0),0x8,0x8,6,4,(&(parameterArrays[14])),0x4,0x4},{REMOTE_SCALARS_MAKEX(0,0,0x2,0x1,0x0,0x0),0x8,0x8,5,4,(&(parameterArrays[10])),0x4,0x4},{REMOTE_SCALARS_MAKEX(0,0,0x1,0x2,0x0,0x0),0x8,0x4,5,3,(&(parameterArrays[14])),0x4,0x4},{REMOTE_SCALARS_MAKEX(0,0,0x2,0x0,0x0,0x0),0x8,0x0,3,2,(&(parameterArrays[10])),0x4,0x0},{REMOTE_SCALARS_MAKEX(0,0,0x1,0x1,0x0,0x0),0x4,0x4,2,2,(&(parameterArrays[42])),0x4,0x4},{REMOTE_SCALARS_MAKEX(0,0,0x1,0x0,0x0,0x0),0xc,0x0,3,3,(&(parameterArrays[31])),0x4,0x0},{REMOTE_SCALARS_MAKEX(0,0,0x1,0x1,0x0,0x0),0x4,0x8,2,2,(&(parameterArrays[40])),0x4,0x8},{REMOTE_SCALARS_MAKEX(0,0,0x2,0x0,0x0,0x0),0x4,0x0,1,1,(&(parameterArrays[0])),0x4,0x0},{REMOTE_SCALARS_MAKEX(0,0,0x2,0x2,0x0,0x0),0x8,0x4,5,3,(&(parameterArrays[28])),0x4,0x4},{REMOTE_SCALARS_MAKEX(0,0,0x3,0x0,0x0,0x0),0xc,0x0,3,3,(&(parameterArrays[25])),0x4,0x0},{REMOTE_SCALARS_MAKEX(0,0,0x5,0x1,0x0,0x0),0x10,0x4,5,5,(&(parameterArrays[5])),0x4,0x4},{REMOTE_SCALARS_MAKEX(0,0,255,255,15,15),0xc,0x6,7,5,(&(parameterArrays[0])),0x4,0x4},{REMOTE_SCALARS_MAKEX(0,0,0x2,0x1,0x0,0x0),0x4,0x1,2,2,(&(parameterArrays[38])),0x4,0x1},{REMOTE_SCALARS_MAKEX(0,0,0x2,0x1,0x0,0x0),0x4,0x8,2,2,(&(parameterArrays[36])),0x4,0x8},{REMOTE_SCALARS_MAKEX(0,0,0x1,0x0,0x0,0x0),0x8,0x0,1,1,(&(parameterArrays[22])),0x8,0x0},{REMOTE_SCALARS_MAKEX(0,0,0x1,0x1,0x0,0x0),0x8,0x108,3,3,(&(parameterArrays[22])),0x8,0x4},{REMOTE_SCALARS_MAKEX(0,0,0x2,0x0,0x0,0x0),0x8,0x0,2,2,(&(parameterArrays[26])),0x4,0x0},{REMOTE_SCALARS_MAKEX(0,0,0x2,0x1,0x0,0x0),0x4,0x60,2,2,(&(parameterArrays[34])),0x4,0x8},{REMOTE_SCALARS_MAKEX(0,0,0x1,0x0,0x0,0x0),0x8,0x0,2,2,(&(parameterArrays[31])),0x4,0x0},{REMOTE_SCALARS_MAKEX(0,0,0x3,0x0,0x0,0x0),0x8,0x0,2,2,(&(parameterArrays[0])),0x4,0x0}};
static const Method* const methodArrays[34] = {&(methods[0]),&(methods[1]),&(methods[2]),&(methods[2]),&(methods[3]),&(methods[4]),&(methods[5]),&(methods[6]),&(methods[7]),&(methods[8]),&(methods[9]),&(methods[2]),&(methods[7]),&(methods[7]),&(methods[2]),&(methods[10]),&(methods[11]),&(methods[12]),&(methods[10]),&(methods[13]),&(methods[5]),&(methods[14]),&(methods[15]),&(methods[2]),&(methods[10]),&(methods[7]),&(methods[16]),&(methods[17]),&(methods[18]),&(methods[19]),&(methods[10]),&(methods[20]),&(methods[21]),&(methods[22])};
static const char strings[530] = "get_search_paths_with_env\0fdopen_decrypt\0fopen_with_env\0print_string\0bytesWritten\0fileExists\0maxPathLen\0envvarname\0ctimensec\0mtimensec\0atimensec\0valLenReq\0posLenReq\0bytesRead\0closedir\0numPaths\0unsetenv\0override\0clearerr\0newname\0oldname\0frename\0readdir\0opendir\0fremove\0fsetpos\0fgetpos\0freopen\0ftrunc\0dirent\0handle\0exists\0getenv\0ferror\0rewind\0whence\0offset\0fwrite\0fclose\0fflush\0ctime\0mtime\0atime\0nlink\0rmdir\0mkdir\0fsync\0paths\0fgets\0delim\0fseek\0ftell\0fread\0psout\0fopen\0size\0rdev\0stat\0path\0feof\0flen\0bEOF\0mode\0tsz\0ino\0val\0str\0buf\0sin\0";
static const uint16_t methodStrings[129] = {476,110,476,506,472,510,501,394,471,466,388,135,382,125,376,115,244,180,306,299,510,110,496,0,104,430,418,184,93,41,104,430,110,501,454,355,526,522,69,496,448,526,522,165,496,284,526,110,501,454,252,110,180,306,424,526,522,496,195,110,514,202,320,110,514,145,436,526,348,341,276,526,272,155,460,110,501,454,236,228,220,292,526,348,406,110,501,175,180,306,26,526,454,82,481,313,327,526,216,486,526,496,491,526,492,442,526,272,268,526,272,400,110,260,110,412,526,193,110,56,518,211,526,334,526,362,526,369,526};
static const uint16_t methodStringsArrays[34] = {74,45,127,125,40,35,70,108,105,66,102,123,99,96,121,119,62,58,117,29,54,23,93,115,113,90,50,87,16,84,111,0,81,78};
__QAIC_SLIM_EXPORT const Interface __QAIC_SLIM(apps_std_slim) = {34,&(methodArrays[0]),0,0,&(methodStringsArrays [0]),methodStrings,strings};
#endif //_APPS_STD_SLIM_H
extern int adsp_mmap_fd_getinfo(int, uint32_t *);
#ifdef __cplusplus
extern "C" {
#endif
static __inline int _skel_method(int (*_pfn)(char*, char*), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
uint32_t _in0[1];
char* _in1[1];
uint32_t _in1Len[1];
char* _in2[1];
uint32_t _in2Len[1];
uint32_t* _primIn;
remote_arg* _praIn;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((3 + 0) + (((0 + 0) + 0) + 0))) <= _praEnd);
_ASSERT(_nErr, _pra[0].buf.nLen >= 12);
_primIn = _pra[0].buf.pv;
_COPY(_in0, 0, _primIn, 0, 4);
_COPY(_in1Len, 0, _primIn, 4, 4);
_praIn = (_pra + 1);
_ASSERT(_nErr, (int)((_praIn[0].buf.nLen / 1)) >= (int)(_in1Len[0]));
_in1[0] = _praIn[0].buf.pv;
_ASSERT(_nErr, (_in1Len[0] > 0) && (_in1[0][(_in1Len[0] - 1)] == 0));
_COPY(_in2Len, 0, _primIn, 8, 4);
_ASSERT(_nErr, (int)((_praIn[1].buf.nLen / 1)) >= (int)(_in2Len[0]));
_in2[0] = _praIn[1].buf.pv;
_ASSERT(_nErr, (_in2Len[0] > 0) && (_in2[0][(_in2Len[0] - 1)] == 0));
_TRY(_nErr, _pfn(*_in1, *_in2));
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_1(int (*_pfn)(uint32_t, uint32_t), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
uint32_t _in0[1];
uint32_t _in1[1];
uint32_t _in2[1];
uint32_t* _primIn;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((1 + 0) + (((0 + 0) + 0) + 0))) <= _praEnd);
_ASSERT(_nErr, _pra[0].buf.nLen >= 12);
_primIn = _pra[0].buf.pv;
_COPY(_in0, 0, _primIn, 0, 4);
_COPY(_in1, 0, _primIn, 4, 4);
_COPY(_in2, 0, _primIn, 8, 4);
_TRY(_nErr, _pfn(*_in1, *_in2));
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_2(int (*_pfn)(char*, uint64_t*), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
uint32_t _in0[1];
char* _in1[1];
uint32_t _in1Len[1];
uint64_t _rout2[12];
uint32_t* _primIn;
int _numIn[1];
uint64_t* _primROut;
remote_arg* _praIn;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((2 + 1) + (((0 + 0) + 0) + 0))) <= _praEnd);
_numIn[0] = (REMOTE_SCALARS_INBUFS(_sc) - 1);
_ASSERT(_nErr, _pra[0].buf.nLen >= 8);
_primIn = _pra[0].buf.pv;
_ASSERT(_nErr, _pra[(_numIn[0] + 1)].buf.nLen >= 96);
_primROut = _pra[(_numIn[0] + 1)].buf.pv;
_COPY(_in0, 0, _primIn, 0, 4);
_COPY(_in1Len, 0, _primIn, 4, 4);
_praIn = (_pra + 1);
_ASSERT(_nErr, (int)((_praIn[0].buf.nLen / 1)) >= (int)(_in1Len[0]));
_in1[0] = _praIn[0].buf.pv;
_ASSERT(_nErr, (_in1Len[0] > 0) && (_in1[0][(_in1Len[0] - 1)] == 0));
_TRY(_nErr, _pfn(*_in1, _rout2));
_COPY(_primROut, 0, _rout2, 0, 96);
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_invoke(uint32_t _mid, uint32_t _sc, remote_arg* _pra) {
switch(_mid)
{
case 31:
return _skel_method_2((void*)__QAIC_IMPL(apps_std_stat), _sc, _pra);
case 32:
return _skel_method_1((void*)__QAIC_IMPL(apps_std_ftrunc), _sc, _pra);
case 33:
return _skel_method((void*)__QAIC_IMPL(apps_std_frename), _sc, _pra);
}
return AEE_EUNSUPPORTED;
}
static __inline int _skel_method_3(int (*_pfn)(char*), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
char* _in0[1];
uint32_t _in0Len[1];
uint32_t* _primIn;
remote_arg* _praIn;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((2 + 0) + (((0 + 0) + 0) + 0))) <= _praEnd);
_ASSERT(_nErr, _pra[0].buf.nLen >= 4);
_primIn = _pra[0].buf.pv;
_COPY(_in0Len, 0, _primIn, 0, 4);
_praIn = (_pra + 1);
_ASSERT(_nErr, (int)((_praIn[0].buf.nLen / 1)) >= (int)(_in0Len[0]));
_in0[0] = _praIn[0].buf.pv;
_ASSERT(_nErr, (_in0Len[0] > 0) && (_in0[0][(_in0Len[0] - 1)] == 0));
_TRY(_nErr, _pfn(*_in0));
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_4(int (*_pfn)(char*, uint32_t), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
char* _in0[1];
uint32_t _in0Len[1];
uint32_t _in1[1];
uint32_t* _primIn;
remote_arg* _praIn;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((2 + 0) + (((0 + 0) + 0) + 0))) <= _praEnd);
_ASSERT(_nErr, _pra[0].buf.nLen >= 8);
_primIn = _pra[0].buf.pv;
_COPY(_in0Len, 0, _primIn, 0, 4);
_praIn = (_pra + 1);
_ASSERT(_nErr, (int)((_praIn[0].buf.nLen / 1)) >= (int)(_in0Len[0]));
_in0[0] = _praIn[0].buf.pv;
_ASSERT(_nErr, (_in0Len[0] > 0) && (_in0[0][(_in0Len[0] - 1)] == 0));
_COPY(_in1, 0, _primIn, 4, 4);
_TRY(_nErr, _pfn(*_in0, *_in1));
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_5(int (*_pfn)(uint64_t*, uint32_t*, uint32_t*), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
uint64_t _in0[1];
uint32_t _rout1[65];
uint32_t _rout2[1];
uint64_t* _primIn;
int _numIn[1];
uint32_t* _primROut;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((1 + 1) + (((0 + 0) + 0) + 0))) <= _praEnd);
_numIn[0] = (REMOTE_SCALARS_INBUFS(_sc) - 1);
_ASSERT(_nErr, _pra[0].buf.nLen >= 8);
_primIn = _pra[0].buf.pv;
_ASSERT(_nErr, _pra[(_numIn[0] + 1)].buf.nLen >= 264);
_primROut = _pra[(_numIn[0] + 1)].buf.pv;
_COPY(_in0, 0, _primIn, 0, 8);
_TRY(_nErr, _pfn(_in0, _rout1, _rout2));
_COPY(_primROut, 0, _rout1, 0, 260);
_COPY(_primROut, 260, _rout2, 0, 4);
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_6(int (*_pfn)(uint64_t*), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
uint64_t _in0[1];
uint64_t* _primIn;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((1 + 0) + (((0 + 0) + 0) + 0))) <= _praEnd);
_ASSERT(_nErr, _pra[0].buf.nLen >= 8);
_primIn = _pra[0].buf.pv;
_COPY(_in0, 0, _primIn, 0, 8);
_TRY(_nErr, _pfn(_in0));
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_7(int (*_pfn)(char*, uint64_t*), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
char* _in0[1];
uint32_t _in0Len[1];
uint64_t _rout1[1];
uint32_t* _primIn;
int _numIn[1];
uint64_t* _primROut;
remote_arg* _praIn;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((2 + 1) + (((0 + 0) + 0) + 0))) <= _praEnd);
_numIn[0] = (REMOTE_SCALARS_INBUFS(_sc) - 1);
_ASSERT(_nErr, _pra[0].buf.nLen >= 4);
_primIn = _pra[0].buf.pv;
_ASSERT(_nErr, _pra[(_numIn[0] + 1)].buf.nLen >= 8);
_primROut = _pra[(_numIn[0] + 1)].buf.pv;
_COPY(_in0Len, 0, _primIn, 0, 4);
_praIn = (_pra + 1);
_ASSERT(_nErr, (int)((_praIn[0].buf.nLen / 1)) >= (int)(_in0Len[0]));
_in0[0] = _praIn[0].buf.pv;
_ASSERT(_nErr, (_in0Len[0] > 0) && (_in0[0][(_in0Len[0] - 1)] == 0));
_TRY(_nErr, _pfn(*_in0, _rout1));
_COPY(_primROut, 0, _rout1, 0, 8);
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_8(int (*_pfn)(uint32_t, uint32_t*), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
uint32_t _in0[1];
uint32_t _rout1[1];
uint32_t* _primIn;
int _numIn[1];
uint32_t* _primROut;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((1 + 1) + (((0 + 0) + 0) + 0))) <= _praEnd);
_numIn[0] = (REMOTE_SCALARS_INBUFS(_sc) - 1);
_ASSERT(_nErr, _pra[0].buf.nLen >= 4);
_primIn = _pra[0].buf.pv;
_ASSERT(_nErr, _pra[(_numIn[0] + 1)].buf.nLen >= 4);
_primROut = _pra[(_numIn[0] + 1)].buf.pv;
_COPY(_in0, 0, _primIn, 0, 4);
_TRY(_nErr, _pfn(*_in0, _rout1));
_COPY(_primROut, 0, _rout1, 0, 4);
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_9(int (*_pfn)(uint32_t), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
uint32_t _in0[1];
uint32_t* _primIn;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((1 + 0) + (((0 + 0) + 0) + 0))) <= _praEnd);
_ASSERT(_nErr, _pra[0].buf.nLen >= 4);
_primIn = _pra[0].buf.pv;
_COPY(_in0, 0, _primIn, 0, 4);
_TRY(_nErr, _pfn(*_in0));
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_10(int (*_pfn)(char*, uint8_t*), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
char* _in0[1];
uint32_t _in0Len[1];
uint8_t _rout1[1];
uint32_t* _primIn;
int _numIn[1];
uint8_t* _primROut;
remote_arg* _praIn;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((2 + 1) + (((0 + 0) + 0) + 0))) <= _praEnd);
_numIn[0] = (REMOTE_SCALARS_INBUFS(_sc) - 1);
_ASSERT(_nErr, _pra[0].buf.nLen >= 4);
_primIn = _pra[0].buf.pv;
_ASSERT(_nErr, _pra[(_numIn[0] + 1)].buf.nLen >= 1);
_primROut = _pra[(_numIn[0] + 1)].buf.pv;
_COPY(_in0Len, 0, _primIn, 0, 4);
_praIn = (_pra + 1);
_ASSERT(_nErr, (int)((_praIn[0].buf.nLen / 1)) >= (int)(_in0Len[0]));
_in0[0] = _praIn[0].buf.pv;
_ASSERT(_nErr, (_in0Len[0] > 0) && (_in0[0][(_in0Len[0] - 1)] == 0));
_TRY(_nErr, _pfn(*_in0, _rout1));
_COPY(_primROut, 0, _rout1, 0, 1);
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_pack(remote_arg* _praROutPost, remote_arg* _ppraROutPost[1], void* _primROut, char* _rout0[1], uint32_t _rout0Len[1]) {
int _nErr = 0;
remote_arg* _praROutPostStart = _praROutPost;
remote_arg** _ppraROutPostStart = _ppraROutPost;
_ppraROutPost = &_praROutPost;
_ppraROutPostStart[0] += (_praROutPost - _praROutPostStart) +1;
return _nErr;
}
static __inline int _skel_unpack(_allocator* _al, remote_arg* _praIn, remote_arg* _ppraIn[1], remote_arg* _praROut, remote_arg* _ppraROut[1], remote_arg* _praHIn, remote_arg* _ppraHIn[1], remote_arg* _praHROut, remote_arg* _ppraHROut[1], void* _primIn, void* _primROut, char* _rout0[1], uint32_t _rout0Len[1]) {
int _nErr = 0;
remote_arg* _praInStart = _praIn;
remote_arg** _ppraInStart = _ppraIn;
remote_arg* _praROutStart = _praROut;
remote_arg** _ppraROutStart = _ppraROut;
_ppraIn = &_praIn;
_ppraROut = &_praROut;
_COPY(_rout0Len, 0, _primIn, 0, 4);
_ASSERT(_nErr, (int)((_praROut[0].buf.nLen / 1)) >= (int)(_rout0Len[0]));
_rout0[0] = _praROut[0].buf.pv;
_ppraInStart[0] += (_praIn - _praInStart) + 0;
_ppraROutStart[0] += (_praROut - _praROutStart) +1;
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_11(int (*_pfn)(char*, char*, void*, uint32_t, uint32_t*, uint16_t*), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
char* _in0[1];
uint32_t _in0Len[1];
char* _in1[1];
uint32_t _in1Len[1];
void* _rout2[1];
uint32_t _rout2Len[1];
uint32_t _rout3[1];
uint16_t _rout4[1];
uint32_t* _primIn;
int _numIn[1];
uint32_t* _primROut;
int _numInH[1];
int _numROut[1];
remote_arg* _praIn;
remote_arg* _praROut;
remote_arg* _praROutPost;
remote_arg** _ppraROutPost = &_praROutPost;
_allocator _al[1] = {{0}};
remote_arg** _ppraIn = &_praIn;
remote_arg** _ppraROut = &_praROut;
remote_arg* _praHIn = 0;
remote_arg** _ppraHIn = &_praHIn;
remote_arg* _praHROut = 0;
remote_arg** _ppraHROut = &_praHROut;
char* _seq_primIn2;
char* _seq_nat2;
int _ii;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((4 + 1) + (((0 + 0) + 0) + 0))) <= _praEnd);
_numIn[0] = (REMOTE_SCALARS_INBUFS(_sc) - 1);
_ASSERT(_nErr, _pra[0].buf.nLen >= 12);
_primIn = _pra[0].buf.pv;
_ASSERT(_nErr, _pra[(_numIn[0] + 1)].buf.nLen >= 6);
_primROut = _pra[(_numIn[0] + 1)].buf.pv;
_numInH[0] = REMOTE_SCALARS_INHANDLES(_sc);
_numROut[0] = REMOTE_SCALARS_OUTBUFS(_sc);
_praIn = (_pra + 1);
_praROut = (_praIn + _numIn[0] + 1);
_praROutPost = _praROut;
_COPY(_in0Len, 0, _primIn, 0, 4);
_ASSERT(_nErr, (int)((_praIn[0].buf.nLen / 1)) >= (int)(_in0Len[0]));
_in0[0] = _praIn[0].buf.pv;
_ASSERT(_nErr, (_in0Len[0] > 0) && (_in0[0][(_in0Len[0] - 1)] == 0));
_COPY(_in1Len, 0, _primIn, 4, 4);
_ASSERT(_nErr, (int)((_praIn[1].buf.nLen / 1)) >= (int)(_in1Len[0]));
_in1[0] = _praIn[1].buf.pv;
_ASSERT(_nErr, (_in1Len[0] > 0) && (_in1[0][(_in1Len[0] - 1)] == 0));
_COPY(_rout2Len, 0, _primIn, 8, 4);
_allocator_init(_al, 0, 0);
if(_praHIn == 0)
{
_praHIn = ((_praROut + _numROut[0]) + 1);
}
if(_praHROut == 0)
(_praHROut = _praHIn + _numInH[0] + 0);
_ASSERT(_nErr, (int)((_praIn[2].buf.nLen / 4)) >= (int)(_rout2Len[0]));
_ALLOCATE(_nErr, _al, (_rout2Len[0] * SLIM_IFPTR32(8, 16)), SLIM_IFPTR32(4, 8), _rout2[0]);
for(_ii = 0, _seq_primIn2 = (char*)_praIn[2].buf.pv, _seq_nat2 = (char*)_rout2[0];_ii < (int)_rout2Len[0];++_ii, _seq_primIn2 = (_seq_primIn2 + 4), _seq_nat2 = (_seq_nat2 + SLIM_IFPTR32(8, 16)))
{
_TRY(_nErr, _skel_unpack(_al, (_praIn + 3), _ppraIn, (_praROut + 0), _ppraROut, _praHIn, _ppraHIn, _praHROut, _ppraHROut, _seq_primIn2, 0, SLIM_IFPTR32((char**)&(((uint32_t*)_seq_nat2)[0]), (char**)&(((uint64_t*)_seq_nat2)[0])), SLIM_IFPTR32((uint32_t*)&(((uint32_t*)_seq_nat2)[1]), (uint32_t*)&(((uint32_t*)_seq_nat2)[2]))));
}
_TRY(_nErr, _pfn(*_in0, *_in1, *_rout2, *_rout2Len, _rout3, _rout4));
for(_ii = 0, _seq_nat2 = (char*)_rout2[0];_ii < (int)_rout2Len[0];++_ii, _seq_nat2 = (_seq_nat2 + SLIM_IFPTR32(8, 16)))
{
_TRY(_nErr, _skel_pack((_praROutPost + 0), _ppraROutPost, 0, SLIM_IFPTR32((char**)&(((uint32_t*)_seq_nat2)[0]), (char**)&(((uint64_t*)_seq_nat2)[0])), SLIM_IFPTR32((uint32_t*)&(((uint32_t*)_seq_nat2)[1]), (uint32_t*)&(((uint32_t*)_seq_nat2)[2]))));
}
_COPY(_primROut, 0, _rout3, 0, 4);
_COPY(_primROut, 4, _rout4, 0, 2);
_CATCH(_nErr) {}
_allocator_deinit(_al);
return _nErr;
}
static __inline int _skel_method_12(int (*_pfn)(uint32_t, char*, uint32_t, uint32_t*), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
uint32_t _in0[1];
char* _rout1[1];
uint32_t _rout1Len[1];
uint32_t _rout2[1];
uint32_t* _primIn;
int _numIn[1];
uint32_t* _primROut;
remote_arg* _praIn;
remote_arg* _praROut;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((1 + 2) + (((0 + 0) + 0) + 0))) <= _praEnd);
_numIn[0] = (REMOTE_SCALARS_INBUFS(_sc) - 1);
_ASSERT(_nErr, _pra[0].buf.nLen >= 8);
_primIn = _pra[0].buf.pv;
_ASSERT(_nErr, _pra[(_numIn[0] + 1)].buf.nLen >= 4);
_primROut = _pra[(_numIn[0] + 1)].buf.pv;
_COPY(_in0, 0, _primIn, 0, 4);
_COPY(_rout1Len, 0, _primIn, 4, 4);
_praIn = (_pra + 1);
_praROut = (_praIn + _numIn[0] + 1);
_ASSERT(_nErr, (int)((_praROut[0].buf.nLen / 1)) >= (int)(_rout1Len[0]));
_rout1[0] = _praROut[0].buf.pv;
_TRY(_nErr, _pfn(*_in0, *_rout1, *_rout1Len, _rout2));
_COPY(_primROut, 0, _rout2, 0, 4);
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_13(int (*_pfn)(char*, char*, char*, char*, uint32_t*), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
char* _in0[1];
uint32_t _in0Len[1];
char* _in1[1];
uint32_t _in1Len[1];
char* _in2[1];
uint32_t _in2Len[1];
char* _in3[1];
uint32_t _in3Len[1];
uint32_t _rout4[1];
uint32_t* _primIn;
int _numIn[1];
uint32_t* _primROut;
remote_arg* _praIn;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((5 + 1) + (((0 + 0) + 0) + 0))) <= _praEnd);
_numIn[0] = (REMOTE_SCALARS_INBUFS(_sc) - 1);
_ASSERT(_nErr, _pra[0].buf.nLen >= 16);
_primIn = _pra[0].buf.pv;
_ASSERT(_nErr, _pra[(_numIn[0] + 1)].buf.nLen >= 4);
_primROut = _pra[(_numIn[0] + 1)].buf.pv;
_COPY(_in0Len, 0, _primIn, 0, 4);
_praIn = (_pra + 1);
_ASSERT(_nErr, (int)((_praIn[0].buf.nLen / 1)) >= (int)(_in0Len[0]));
_in0[0] = _praIn[0].buf.pv;
_ASSERT(_nErr, (_in0Len[0] > 0) && (_in0[0][(_in0Len[0] - 1)] == 0));
_COPY(_in1Len, 0, _primIn, 4, 4);
_ASSERT(_nErr, (int)((_praIn[1].buf.nLen / 1)) >= (int)(_in1Len[0]));
_in1[0] = _praIn[1].buf.pv;
_ASSERT(_nErr, (_in1Len[0] > 0) && (_in1[0][(_in1Len[0] - 1)] == 0));
_COPY(_in2Len, 0, _primIn, 8, 4);
_ASSERT(_nErr, (int)((_praIn[2].buf.nLen / 1)) >= (int)(_in2Len[0]));
_in2[0] = _praIn[2].buf.pv;
_ASSERT(_nErr, (_in2Len[0] > 0) && (_in2[0][(_in2Len[0] - 1)] == 0));
_COPY(_in3Len, 0, _primIn, 12, 4);
_ASSERT(_nErr, (int)((_praIn[3].buf.nLen / 1)) >= (int)(_in3Len[0]));
_in3[0] = _praIn[3].buf.pv;
_ASSERT(_nErr, (_in3Len[0] > 0) && (_in3[0][(_in3Len[0] - 1)] == 0));
_TRY(_nErr, _pfn(*_in0, *_in1, *_in2, *_in3, _rout4));
_COPY(_primROut, 0, _rout4, 0, 4);
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_14(int (*_pfn)(char*, char*, uint32_t), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
char* _in0[1];
uint32_t _in0Len[1];
char* _in1[1];
uint32_t _in1Len[1];
uint32_t _in2[1];
uint32_t* _primIn;
remote_arg* _praIn;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((3 + 0) + (((0 + 0) + 0) + 0))) <= _praEnd);
_ASSERT(_nErr, _pra[0].buf.nLen >= 12);
_primIn = _pra[0].buf.pv;
_COPY(_in0Len, 0, _primIn, 0, 4);
_praIn = (_pra + 1);
_ASSERT(_nErr, (int)((_praIn[0].buf.nLen / 1)) >= (int)(_in0Len[0]));
_in0[0] = _praIn[0].buf.pv;
_ASSERT(_nErr, (_in0Len[0] > 0) && (_in0[0][(_in0Len[0] - 1)] == 0));
_COPY(_in1Len, 0, _primIn, 4, 4);
_ASSERT(_nErr, (int)((_praIn[1].buf.nLen / 1)) >= (int)(_in1Len[0]));
_in1[0] = _praIn[1].buf.pv;
_ASSERT(_nErr, (_in1Len[0] > 0) && (_in1[0][(_in1Len[0] - 1)] == 0));
_COPY(_in2, 0, _primIn, 8, 4);
_TRY(_nErr, _pfn(*_in0, *_in1, *_in2));
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_15(int (*_pfn)(char*, char*, uint32_t, uint32_t*), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
char* _in0[1];
uint32_t _in0Len[1];
char* _rout1[1];
uint32_t _rout1Len[1];
uint32_t _rout2[1];
uint32_t* _primIn;
int _numIn[1];
uint32_t* _primROut;
remote_arg* _praIn;
remote_arg* _praROut;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((2 + 2) + (((0 + 0) + 0) + 0))) <= _praEnd);
_numIn[0] = (REMOTE_SCALARS_INBUFS(_sc) - 1);
_ASSERT(_nErr, _pra[0].buf.nLen >= 8);
_primIn = _pra[0].buf.pv;
_ASSERT(_nErr, _pra[(_numIn[0] + 1)].buf.nLen >= 4);
_primROut = _pra[(_numIn[0] + 1)].buf.pv;
_COPY(_in0Len, 0, _primIn, 0, 4);
_praIn = (_pra + 1);
_ASSERT(_nErr, (int)((_praIn[0].buf.nLen / 1)) >= (int)(_in0Len[0]));
_in0[0] = _praIn[0].buf.pv;
_ASSERT(_nErr, (_in0Len[0] > 0) && (_in0[0][(_in0Len[0] - 1)] == 0));
_COPY(_rout1Len, 0, _primIn, 4, 4);
_praROut = (_praIn + _numIn[0] + 1);
_ASSERT(_nErr, (int)((_praROut[0].buf.nLen / 1)) >= (int)(_rout1Len[0]));
_rout1[0] = _praROut[0].buf.pv;
_TRY(_nErr, _pfn(*_in0, *_rout1, *_rout1Len, _rout2));
_COPY(_primROut, 0, _rout2, 0, 4);
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_16(int (*_pfn)(uint32_t, uint64_t*), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
uint32_t _in0[1];
uint64_t _rout1[1];
uint32_t* _primIn;
int _numIn[1];
uint64_t* _primROut;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((1 + 1) + (((0 + 0) + 0) + 0))) <= _praEnd);
_numIn[0] = (REMOTE_SCALARS_INBUFS(_sc) - 1);
_ASSERT(_nErr, _pra[0].buf.nLen >= 4);
_primIn = _pra[0].buf.pv;
_ASSERT(_nErr, _pra[(_numIn[0] + 1)].buf.nLen >= 8);
_primROut = _pra[(_numIn[0] + 1)].buf.pv;
_COPY(_in0, 0, _primIn, 0, 4);
_TRY(_nErr, _pfn(*_in0, _rout1));
_COPY(_primROut, 0, _rout1, 0, 8);
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_17(int (*_pfn)(uint32_t, uint32_t, uint32_t), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
uint32_t _in0[1];
uint32_t _in1[1];
uint32_t _in2[1];
uint32_t* _primIn;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((1 + 0) + (((0 + 0) + 0) + 0))) <= _praEnd);
_ASSERT(_nErr, _pra[0].buf.nLen >= 12);
_primIn = _pra[0].buf.pv;
_COPY(_in0, 0, _primIn, 0, 4);
_COPY(_in1, 0, _primIn, 4, 4);
_COPY(_in2, 0, _primIn, 8, 4);
_TRY(_nErr, _pfn(*_in0, *_in1, *_in2));
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_18(int (*_pfn)(uint32_t, char*, uint32_t), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
uint32_t _in0[1];
char* _in1[1];
uint32_t _in1Len[1];
uint32_t* _primIn;
remote_arg* _praIn;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((2 + 0) + (((0 + 0) + 0) + 0))) <= _praEnd);
_ASSERT(_nErr, _pra[0].buf.nLen >= 8);
_primIn = _pra[0].buf.pv;
_COPY(_in0, 0, _primIn, 0, 4);
_COPY(_in1Len, 0, _primIn, 4, 4);
_praIn = (_pra + 1);
_ASSERT(_nErr, (int)((_praIn[0].buf.nLen / 1)) >= (int)(_in1Len[0]));
_in1[0] = _praIn[0].buf.pv;
_TRY(_nErr, _pfn(*_in0, *_in1, *_in1Len));
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_19(int (*_pfn)(uint32_t, char*, uint32_t, uint32_t*, uint32_t*), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
uint32_t _in0[1];
char* _in1[1];
uint32_t _in1Len[1];
uint32_t _rout2[1];
uint32_t _rout3[1];
uint32_t* _primIn;
int _numIn[1];
uint32_t* _primROut;
remote_arg* _praIn;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((2 + 1) + (((0 + 0) + 0) + 0))) <= _praEnd);
_numIn[0] = (REMOTE_SCALARS_INBUFS(_sc) - 1);
_ASSERT(_nErr, _pra[0].buf.nLen >= 8);
_primIn = _pra[0].buf.pv;
_ASSERT(_nErr, _pra[(_numIn[0] + 1)].buf.nLen >= 8);
_primROut = _pra[(_numIn[0] + 1)].buf.pv;
_COPY(_in0, 0, _primIn, 0, 4);
_COPY(_in1Len, 0, _primIn, 4, 4);
_praIn = (_pra + 1);
_ASSERT(_nErr, (int)((_praIn[0].buf.nLen / 1)) >= (int)(_in1Len[0]));
_in1[0] = _praIn[0].buf.pv;
_TRY(_nErr, _pfn(*_in0, *_in1, *_in1Len, _rout2, _rout3));
_COPY(_primROut, 0, _rout2, 0, 4);
_COPY(_primROut, 4, _rout3, 0, 4);
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_20(int (*_pfn)(uint32_t, char*, uint32_t, uint32_t*, uint32_t*), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
uint32_t _in0[1];
char* _rout1[1];
uint32_t _rout1Len[1];
uint32_t _rout2[1];
uint32_t _rout3[1];
uint32_t* _primIn;
int _numIn[1];
uint32_t* _primROut;
remote_arg* _praIn;
remote_arg* _praROut;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((1 + 2) + (((0 + 0) + 0) + 0))) <= _praEnd);
_numIn[0] = (REMOTE_SCALARS_INBUFS(_sc) - 1);
_ASSERT(_nErr, _pra[0].buf.nLen >= 8);
_primIn = _pra[0].buf.pv;
_ASSERT(_nErr, _pra[(_numIn[0] + 1)].buf.nLen >= 8);
_primROut = _pra[(_numIn[0] + 1)].buf.pv;
_COPY(_in0, 0, _primIn, 0, 4);
_COPY(_rout1Len, 0, _primIn, 4, 4);
_praIn = (_pra + 1);
_praROut = (_praIn + _numIn[0] + 1);
_ASSERT(_nErr, (int)((_praROut[0].buf.nLen / 1)) >= (int)(_rout1Len[0]));
_rout1[0] = _praROut[0].buf.pv;
_TRY(_nErr, _pfn(*_in0, *_rout1, *_rout1Len, _rout2, _rout3));
_COPY(_primROut, 0, _rout2, 0, 4);
_COPY(_primROut, 4, _rout3, 0, 4);
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_21(int (*_pfn)(uint32_t, char*, char*, uint32_t*), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
uint32_t _in0[1];
char* _in1[1];
uint32_t _in1Len[1];
char* _in2[1];
uint32_t _in2Len[1];
uint32_t _rout3[1];
uint32_t* _primIn;
int _numIn[1];
uint32_t* _primROut;
remote_arg* _praIn;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((3 + 1) + (((0 + 0) + 0) + 0))) <= _praEnd);
_numIn[0] = (REMOTE_SCALARS_INBUFS(_sc) - 1);
_ASSERT(_nErr, _pra[0].buf.nLen >= 12);
_primIn = _pra[0].buf.pv;
_ASSERT(_nErr, _pra[(_numIn[0] + 1)].buf.nLen >= 4);
_primROut = _pra[(_numIn[0] + 1)].buf.pv;
_COPY(_in0, 0, _primIn, 0, 4);
_COPY(_in1Len, 0, _primIn, 4, 4);
_praIn = (_pra + 1);
_ASSERT(_nErr, (int)((_praIn[0].buf.nLen / 1)) >= (int)(_in1Len[0]));
_in1[0] = _praIn[0].buf.pv;
_ASSERT(_nErr, (_in1Len[0] > 0) && (_in1[0][(_in1Len[0] - 1)] == 0));
_COPY(_in2Len, 0, _primIn, 8, 4);
_ASSERT(_nErr, (int)((_praIn[1].buf.nLen / 1)) >= (int)(_in2Len[0]));
_in2[0] = _praIn[1].buf.pv;
_ASSERT(_nErr, (_in2Len[0] > 0) && (_in2[0][(_in2Len[0] - 1)] == 0));
_TRY(_nErr, _pfn(*_in0, *_in1, *_in2, _rout3));
_COPY(_primROut, 0, _rout3, 0, 4);
_CATCH(_nErr) {}
return _nErr;
}
static __inline int _skel_method_22(int (*_pfn)(char*, char*, uint32_t*), uint32_t _sc, remote_arg* _pra) {
remote_arg* _praEnd;
char* _in0[1];
uint32_t _in0Len[1];
char* _in1[1];
uint32_t _in1Len[1];
uint32_t _rout2[1];
uint32_t* _primIn;
int _numIn[1];
uint32_t* _primROut;
remote_arg* _praIn;
int _nErr = 0;
_praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc) + REMOTE_SCALARS_INHANDLES(_sc) + REMOTE_SCALARS_OUTHANDLES(_sc));
_ASSERT(_nErr, (_pra + ((3 + 1) + (((0 + 0) + 0) + 0))) <= _praEnd);
_numIn[0] = (REMOTE_SCALARS_INBUFS(_sc) - 1);
_ASSERT(_nErr, _pra[0].buf.nLen >= 8);
_primIn = _pra[0].buf.pv;
_ASSERT(_nErr, _pra[(_numIn[0] + 1)].buf.nLen >= 4);
_primROut = _pra[(_numIn[0] + 1)].buf.pv;
_COPY(_in0Len, 0, _primIn, 0, 4);
_praIn = (_pra + 1);
_ASSERT(_nErr, (int)((_praIn[0].buf.nLen / 1)) >= (int)(_in0Len[0]));
_in0[0] = _praIn[0].buf.pv;
_ASSERT(_nErr, (_in0Len[0] > 0) && (_in0[0][(_in0Len[0] - 1)] == 0));
_COPY(_in1Len, 0, _primIn, 4, 4);
_ASSERT(_nErr, (int)((_praIn[1].buf.nLen / 1)) >= (int)(_in1Len[0]));
_in1[0] = _praIn[1].buf.pv;
_ASSERT(_nErr, (_in1Len[0] > 0) && (_in1[0][(_in1Len[0] - 1)] == 0));
_TRY(_nErr, _pfn(*_in0, *_in1, _rout2));
_COPY(_primROut, 0, _rout2, 0, 4);
_CATCH(_nErr) {}
return _nErr;
}
__QAIC_SKEL_EXPORT int __QAIC_SKEL(apps_std_skel_invoke)(uint32_t _sc, remote_arg* _pra) __QAIC_SKEL_ATTRIBUTE {
switch(REMOTE_SCALARS_METHOD(_sc))
{
case 0:
return _skel_method_22((void*)__QAIC_IMPL(apps_std_fopen), _sc, _pra);
case 1:
return _skel_method_21((void*)__QAIC_IMPL(apps_std_freopen), _sc, _pra);
case 2:
return _skel_method_9((void*)__QAIC_IMPL(apps_std_fflush), _sc, _pra);
case 3:
return _skel_method_9((void*)__QAIC_IMPL(apps_std_fclose), _sc, _pra);
case 4:
return _skel_method_20((void*)__QAIC_IMPL(apps_std_fread), _sc, _pra);
case 5:
return _skel_method_19((void*)__QAIC_IMPL(apps_std_fwrite), _sc, _pra);
case 6:
return _skel_method_12((void*)__QAIC_IMPL(apps_std_fgetpos), _sc, _pra);
case 7:
return _skel_method_18((void*)__QAIC_IMPL(apps_std_fsetpos), _sc, _pra);
case 8:
return _skel_method_8((void*)__QAIC_IMPL(apps_std_ftell), _sc, _pra);
case 9:
return _skel_method_17((void*)__QAIC_IMPL(apps_std_fseek), _sc, _pra);
case 10:
return _skel_method_16((void*)__QAIC_IMPL(apps_std_flen), _sc, _pra);
case 11:
return _skel_method_9((void*)__QAIC_IMPL(apps_std_rewind), _sc, _pra);
case 12:
return _skel_method_8((void*)__QAIC_IMPL(apps_std_feof), _sc, _pra);
case 13:
return _skel_method_8((void*)__QAIC_IMPL(apps_std_ferror), _sc, _pra);
case 14:
return _skel_method_9((void*)__QAIC_IMPL(apps_std_clearerr), _sc, _pra);
case 15:
return _skel_method_3((void*)__QAIC_IMPL(apps_std_print_string), _sc, _pra);
case 16:
return _skel_method_15((void*)__QAIC_IMPL(apps_std_getenv), _sc, _pra);
case 17:
return _skel_method_14((void*)__QAIC_IMPL(apps_std_setenv), _sc, _pra);
case 18:
return _skel_method_3((void*)__QAIC_IMPL(apps_std_unsetenv), _sc, _pra);
case 19:
return _skel_method_13((void*)__QAIC_IMPL(apps_std_fopen_with_env), _sc, _pra);
case 20:
return _skel_method_12((void*)__QAIC_IMPL(apps_std_fgets), _sc, _pra);
case 21:
return _skel_method_11((void*)__QAIC_IMPL(apps_std_get_search_paths_with_env), _sc, _pra);
case 22:
return _skel_method_10((void*)__QAIC_IMPL(apps_std_fileExists), _sc, _pra);
case 23:
return _skel_method_9((void*)__QAIC_IMPL(apps_std_fsync), _sc, _pra);
case 24:
return _skel_method_3((void*)__QAIC_IMPL(apps_std_fremove), _sc, _pra);
case 25:
return _skel_method_8((void*)__QAIC_IMPL(apps_std_fdopen_decrypt), _sc, _pra);
case 26:
return _skel_method_7((void*)__QAIC_IMPL(apps_std_opendir), _sc, _pra);
case 27:
return _skel_method_6((void*)__QAIC_IMPL(apps_std_closedir), _sc, _pra);
case 28:
return _skel_method_5((void*)__QAIC_IMPL(apps_std_readdir), _sc, _pra);
case 29:
return _skel_method_4((void*)__QAIC_IMPL(apps_std_mkdir), _sc, _pra);
case 30:
return _skel_method_3((void*)__QAIC_IMPL(apps_std_rmdir), _sc, _pra);
case 31:
{
uint32_t* _mid;
if(REMOTE_SCALARS_INBUFS(_sc) < 1 || _pra[0].buf.nLen < 4) { return AEE_EBADPARM; }
_mid = (uint32_t*)_pra[0].buf.pv;
return _skel_invoke(*_mid, _sc, _pra);
}
}
return AEE_EUNSUPPORTED;
}
#ifdef __cplusplus
}
#endif
#endif //_APPS_STD_SKEL_H