blob: b53a6fa5779e004a00a15865012ba916db196af1 [file] [log] [blame]
/**
* resize.c
*
* Copyright (c) 2015 Jaegeuk Kim <jaegeuk@kernel.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "fsck.h"
static int get_new_sb(struct f2fs_sb_info *sbi, struct f2fs_super_block *sb)
{
u_int32_t zone_size_bytes, zone_align_start_offset;
u_int32_t blocks_for_sit, blocks_for_nat, blocks_for_ssa;
u_int32_t sit_segments, diff, total_meta_segments;
u_int32_t total_valid_blks_available;
u_int32_t sit_bitmap_size, max_sit_bitmap_size;
u_int32_t max_nat_bitmap_size, max_nat_segments;
u_int32_t segment_size_bytes = 1 << (get_sb(log_blocksize) +
get_sb(log_blocks_per_seg));
u_int32_t blks_per_seg = 1 << get_sb(log_blocks_per_seg);
u_int32_t segs_per_zone = get_sb(segs_per_sec) * get_sb(secs_per_zone);
set_sb(block_count, config.target_sectors >>
get_sb(log_sectors_per_block));
zone_size_bytes = segment_size_bytes * segs_per_zone;
zone_align_start_offset =
(config.start_sector * config.sector_size +
2 * F2FS_BLKSIZE + zone_size_bytes - 1) /
zone_size_bytes * zone_size_bytes -
config.start_sector * config.sector_size;
set_sb(segment_count, (config.target_sectors * config.sector_size -
zone_align_start_offset) / segment_size_bytes /
config.segs_per_sec * config.segs_per_sec);
blocks_for_sit = ALIGN(get_sb(segment_count), SIT_ENTRY_PER_BLOCK);
sit_segments = SEG_ALIGN(blocks_for_sit);
set_sb(segment_count_sit, sit_segments * 2);
set_sb(nat_blkaddr, get_sb(sit_blkaddr) +
get_sb(segment_count_sit) * blks_per_seg);
total_valid_blks_available = (get_sb(segment_count) -
(get_sb(segment_count_ckpt) +
get_sb(segment_count_sit))) * blks_per_seg;
blocks_for_nat = ALIGN(total_valid_blks_available, NAT_ENTRY_PER_BLOCK);
set_sb(segment_count_nat, SEG_ALIGN(blocks_for_nat));
sit_bitmap_size = ((get_sb(segment_count_sit) / 2) <<
get_sb(log_blocks_per_seg)) / 8;
if (sit_bitmap_size > MAX_SIT_BITMAP_SIZE)
max_sit_bitmap_size = MAX_SIT_BITMAP_SIZE;
else
max_sit_bitmap_size = sit_bitmap_size;
/*
* It should be reserved minimum 1 segment for nat.
* When sit is too large, we should expand cp area. It requires more pages for cp.
*/
if (max_sit_bitmap_size >
(CHECKSUM_OFFSET - sizeof(struct f2fs_checkpoint) + 65)) {
max_nat_bitmap_size = CHECKSUM_OFFSET - sizeof(struct f2fs_checkpoint) + 1;
set_sb(cp_payload, F2FS_BLK_ALIGN(max_sit_bitmap_size));
} else {
max_nat_bitmap_size = CHECKSUM_OFFSET - sizeof(struct f2fs_checkpoint) + 1
- max_sit_bitmap_size;
set_sb(cp_payload, 0);
}
max_nat_segments = (max_nat_bitmap_size * 8) >>
get_sb(log_blocks_per_seg);
if (get_sb(segment_count_nat) > max_nat_segments)
set_sb(segment_count_nat, max_nat_segments);
set_sb(segment_count_nat, get_sb(segment_count_nat) * 2);
set_sb(ssa_blkaddr, get_sb(nat_blkaddr) +
get_sb(segment_count_nat) * blks_per_seg);
total_valid_blks_available = (get_sb(segment_count) -
(get_sb(segment_count_ckpt) +
get_sb(segment_count_sit) +
get_sb(segment_count_nat))) * blks_per_seg;
blocks_for_ssa = total_valid_blks_available / blks_per_seg + 1;
set_sb(segment_count_ssa, SEG_ALIGN(blocks_for_ssa));
total_meta_segments = get_sb(segment_count_ckpt) +
get_sb(segment_count_sit) +
get_sb(segment_count_nat) +
get_sb(segment_count_ssa);
diff = total_meta_segments % segs_per_zone;
if (diff)
set_sb(segment_count_ssa, get_sb(segment_count_ssa) +
(segs_per_zone - diff));
set_sb(main_blkaddr, get_sb(ssa_blkaddr) + get_sb(segment_count_ssa) *
blks_per_seg);
set_sb(segment_count_main, get_sb(segment_count) -
(get_sb(segment_count_ckpt) +
get_sb(segment_count_sit) +
get_sb(segment_count_nat) +
get_sb(segment_count_ssa)));
set_sb(section_count, get_sb(segment_count_main) /
get_sb(segs_per_sec));
set_sb(segment_count_main, get_sb(section_count) *
get_sb(segs_per_sec));
/* Let's determine the best reserved and overprovisioned space */
config.new_overprovision = get_best_overprovision(sb);
config.new_reserved_segments =
(2 * (100 / config.new_overprovision + 1) + 6) *
get_sb(segs_per_sec);
if ((get_sb(segment_count_main) - 2) < config.new_reserved_segments ||
get_sb(segment_count_main) * blks_per_seg >
get_sb(block_count)) {
MSG(0, "\tError: Device size is not sufficient for F2FS volume, "
"more segment needed =%u",
config.new_reserved_segments -
(get_sb(segment_count_main) - 2));
return -1;
}
return 0;
}
static void migrate_main(struct f2fs_sb_info *sbi,
struct f2fs_super_block *new_sb, unsigned int offset)
{
void *raw = calloc(BLOCK_SZ, 1);
struct seg_entry *se;
block_t from, to;
int i, j, ret;
struct f2fs_summary sum;
ASSERT(raw != NULL);
for (i = TOTAL_SEGS(sbi); i >= 0; i--) {
se = get_seg_entry(sbi, i);
if (!se->valid_blocks)
continue;
for (j = sbi->blocks_per_seg - 1; j >= 0; j--) {
if (!f2fs_test_bit(j, (const char *)se->cur_valid_map))
continue;
from = START_BLOCK(sbi, i) + j;
ret = dev_read_block(raw, from);
ASSERT(ret >= 0);
to = from + offset;
ret = dev_write_block(raw, to);
ASSERT(ret >= 0);
get_sum_entry(sbi, from, &sum);
if (IS_DATASEG(se->type))
update_data_blkaddr(sbi, le32_to_cpu(sum.nid),
le16_to_cpu(sum.ofs_in_node), to);
else
update_nat_blkaddr(sbi, 0,
le32_to_cpu(sum.nid), to);
}
}
free(raw);
DBG(0, "Info: Done to migrate data and node blocks\n");
}
static void move_ssa(struct f2fs_sb_info *sbi, unsigned int segno,
block_t new_sum_blk_addr)
{
struct f2fs_summary_block *sum_blk;
int type;
sum_blk = get_sum_block(sbi, segno, &type);
if (type < SEG_TYPE_MAX) {
int ret;
ret = dev_write_block(sum_blk, new_sum_blk_addr);
ASSERT(ret >= 0);
DBG(1, "Write summary block: (%d) segno=%x/%x --> (%d) %x\n",
type, segno, GET_SUM_BLKADDR(sbi, segno),
IS_SUM_NODE_SEG(sum_blk->footer),
new_sum_blk_addr);
}
if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA ||
type == SEG_TYPE_MAX) {
free(sum_blk);
}
DBG(1, "Info: Done to migrate SSA blocks\n");
}
static void migrate_ssa(struct f2fs_sb_info *sbi,
struct f2fs_super_block *new_sb, unsigned int offset)
{
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
block_t old_sum_blkaddr = get_sb(ssa_blkaddr);
block_t new_sum_blkaddr = get_newsb(ssa_blkaddr);
int segno;
if (new_sum_blkaddr < old_sum_blkaddr + offset) {
for (segno = offset; segno < TOTAL_SEGS(sbi); segno++)
move_ssa(sbi, segno, new_sum_blkaddr + segno - offset);
} else {
for (segno = TOTAL_SEGS(sbi) - 1; segno >= offset; segno--)
move_ssa(sbi, segno, new_sum_blkaddr + segno - offset);
}
DBG(0, "Info: Done to migrate SSA blocks\n");
}
static int shrink_nats(struct f2fs_sb_info *sbi,
struct f2fs_super_block *new_sb)
{
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
struct f2fs_nm_info *nm_i = NM_I(sbi);
block_t old_nat_blkaddr = get_sb(nat_blkaddr);
unsigned int nat_blocks;
void *nat_block, *zero_block;
int nid, ret, new_max_nid;
pgoff_t block_off;
pgoff_t block_addr;
int seg_off;
nat_block = malloc(BLOCK_SZ);
ASSERT(nat_block);
zero_block = calloc(BLOCK_SZ, 1);
ASSERT(zero_block);
nat_blocks = get_newsb(segment_count_nat) >> 1;
nat_blocks = nat_blocks << get_sb(log_blocks_per_seg);
new_max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
for (nid = nm_i->max_nid - 1; nid > new_max_nid; nid -= NAT_ENTRY_PER_BLOCK) {
block_off = nid / NAT_ENTRY_PER_BLOCK;
seg_off = block_off >> sbi->log_blocks_per_seg;
block_addr = (pgoff_t)(old_nat_blkaddr +
(seg_off << sbi->log_blocks_per_seg << 1) +
(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
block_addr += sbi->blocks_per_seg;
ret = dev_read_block(nat_block, block_addr);
ASSERT(ret >= 0);
if (memcmp(zero_block, nat_block, BLOCK_SZ)) {
ret = -1;
goto not_avail;
}
}
ret = 0;
nm_i->max_nid = new_max_nid;
not_avail:
free(nat_block);
free(zero_block);
return ret;
}
static void migrate_nat(struct f2fs_sb_info *sbi,
struct f2fs_super_block *new_sb)
{
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
struct f2fs_nm_info *nm_i = NM_I(sbi);
block_t old_nat_blkaddr = get_sb(nat_blkaddr);
block_t new_nat_blkaddr = get_newsb(nat_blkaddr);
unsigned int nat_blocks;
void *nat_block;
int nid, ret, new_max_nid;
pgoff_t block_off;
pgoff_t block_addr;
int seg_off;
nat_block = malloc(BLOCK_SZ);
ASSERT(nat_block);
for (nid = nm_i->max_nid - 1; nid >= 0; nid -= NAT_ENTRY_PER_BLOCK) {
block_off = nid / NAT_ENTRY_PER_BLOCK;
seg_off = block_off >> sbi->log_blocks_per_seg;
block_addr = (pgoff_t)(old_nat_blkaddr +
(seg_off << sbi->log_blocks_per_seg << 1) +
(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
block_addr += sbi->blocks_per_seg;
ret = dev_read_block(nat_block, block_addr);
ASSERT(ret >= 0);
block_addr = (pgoff_t)(new_nat_blkaddr +
(seg_off << sbi->log_blocks_per_seg << 1) +
(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
/* new bitmap should be zeros */
ret = dev_write_block(nat_block, block_addr);
ASSERT(ret >= 0);
}
/* zero out newly assigned nids */
memset(nat_block, 0, BLOCK_SZ);
nat_blocks = get_newsb(segment_count_nat) >> 1;
nat_blocks = nat_blocks << get_sb(log_blocks_per_seg);
new_max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
DBG(1, "Write NAT block: %x->%x, max_nid=%x->%x\n",
old_nat_blkaddr, new_nat_blkaddr,
get_sb(segment_count_nat),
get_newsb(segment_count_nat));
for (nid = nm_i->max_nid; nid < new_max_nid;
nid += NAT_ENTRY_PER_BLOCK) {
block_off = nid / NAT_ENTRY_PER_BLOCK;
seg_off = block_off >> sbi->log_blocks_per_seg;
block_addr = (pgoff_t)(new_nat_blkaddr +
(seg_off << sbi->log_blocks_per_seg << 1) +
(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
ret = dev_write_block(nat_block, block_addr);
ASSERT(ret >= 0);
DBG(1, "Write NAT: %lx\n", block_addr);
}
DBG(0, "Info: Done to migrate NAT blocks\n");
}
static void migrate_sit(struct f2fs_sb_info *sbi,
struct f2fs_super_block *new_sb, unsigned int offset)
{
struct sit_info *sit_i = SIT_I(sbi);
unsigned int ofs = 0, pre_ofs = 0;
unsigned int segno, index;
struct f2fs_sit_block *sit_blk = calloc(BLOCK_SZ, 1);
block_t sit_blks = get_newsb(segment_count_sit) <<
(sbi->log_blocks_per_seg - 1);
struct seg_entry *se;
block_t blk_addr = 0;
int ret;
ASSERT(sit_blk);
/* initialize with zeros */
for (index = 0; index < sit_blks; index++) {
ret = dev_write_block(sit_blk, get_newsb(sit_blkaddr) + index);
ASSERT(ret >= 0);
DBG(1, "Write zero sit: %x\n", get_newsb(sit_blkaddr) + index);
}
for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
struct f2fs_sit_entry *sit;
se = get_seg_entry(sbi, segno);
if (segno < offset) {
ASSERT(se->valid_blocks == 0);
continue;
}
ofs = SIT_BLOCK_OFFSET(sit_i, segno - offset);
if (ofs != pre_ofs) {
blk_addr = get_newsb(sit_blkaddr) + pre_ofs;
ret = dev_write_block(sit_blk, blk_addr);
ASSERT(ret >= 0);
DBG(1, "Write valid sit: %x\n", blk_addr);
pre_ofs = ofs;
memset(sit_blk, 0, BLOCK_SZ);
}
sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno - offset)];
memcpy(sit->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
sit->vblocks = cpu_to_le16((se->type << SIT_VBLOCKS_SHIFT) |
se->valid_blocks);
}
blk_addr = get_newsb(sit_blkaddr) + ofs;
ret = dev_write_block(sit_blk, blk_addr);
DBG(1, "Write valid sit: %x\n", blk_addr);
ASSERT(ret >= 0);
free(sit_blk);
DBG(0, "Info: Done to migrate SIT blocks\n");
}
static void rebuild_checkpoint(struct f2fs_sb_info *sbi,
struct f2fs_super_block *new_sb, unsigned int offset)
{
struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
struct f2fs_checkpoint *new_cp;
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
unsigned int free_segment_count, new_segment_count;
block_t new_cp_blks = 1 + get_newsb(cp_payload);
block_t orphan_blks = 0;
block_t new_cp_blk_no, old_cp_blk_no;
u_int32_t crc = 0;
void *buf;
int i, ret;
new_cp = calloc(new_cp_blks * BLOCK_SZ, 1);
ASSERT(new_cp);
buf = malloc(BLOCK_SZ);
ASSERT(buf);
/* ovp / free segments */
set_cp(rsvd_segment_count, config.new_reserved_segments);
set_cp(overprov_segment_count, (get_newsb(segment_count_main) -
get_cp(rsvd_segment_count)) *
config.new_overprovision / 100);
set_cp(overprov_segment_count, get_cp(overprov_segment_count) +
get_cp(rsvd_segment_count));
free_segment_count = get_cp(free_segment_count);
new_segment_count = get_newsb(segment_count_main) -
get_sb(segment_count_main);
set_cp(free_segment_count, free_segment_count + new_segment_count);
set_cp(user_block_count, ((get_newsb(segment_count_main) -
get_cp(overprov_segment_count)) * config.blks_per_seg));
if (is_set_ckpt_flags(cp, CP_ORPHAN_PRESENT_FLAG))
orphan_blks = __start_sum_addr(sbi) - 1;
set_cp(cp_pack_start_sum, 1 + get_newsb(cp_payload));
set_cp(cp_pack_total_block_count, 8 + orphan_blks + get_newsb(cp_payload));
/* cur->segno - offset */
for (i = 0; i < NO_CHECK_TYPE; i++) {
if (i < CURSEG_HOT_NODE) {
set_cp(cur_data_segno[i],
CURSEG_I(sbi, i)->segno - offset);
} else {
int n = i - CURSEG_HOT_NODE;
set_cp(cur_node_segno[n],
CURSEG_I(sbi, i)->segno - offset);
}
}
/* sit / nat ver bitmap bytesize */
set_cp(sit_ver_bitmap_bytesize,
((get_newsb(segment_count_sit) / 2) <<
get_newsb(log_blocks_per_seg)) / 8);
set_cp(nat_ver_bitmap_bytesize,
((get_newsb(segment_count_nat) / 2) <<
get_newsb(log_blocks_per_seg)) / 8);
memcpy(new_cp, cp, (unsigned char *)cp->sit_nat_version_bitmap -
(unsigned char *)cp);
crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, new_cp, CHECKSUM_OFFSET);
*((__le32 *)((unsigned char *)new_cp + CHECKSUM_OFFSET)) = cpu_to_le32(crc);
/* Write a new checkpoint in the other set */
new_cp_blk_no = old_cp_blk_no = get_sb(cp_blkaddr);
if (sbi->cur_cp == 2)
old_cp_blk_no += 1 << get_sb(log_blocks_per_seg);
else
new_cp_blk_no += 1 << get_sb(log_blocks_per_seg);
/* write first cp */
ret = dev_write_block(new_cp, new_cp_blk_no++);
ASSERT(ret >= 0);
memset(buf, 0, BLOCK_SZ);
for (i = 0; i < get_newsb(cp_payload); i++) {
ret = dev_write_block(buf, new_cp_blk_no++);
ASSERT(ret >= 0);
}
for (i = 0; i < orphan_blks; i++) {
block_t orphan_blk_no = old_cp_blk_no + 1 + get_sb(cp_payload);
ret = dev_read_block(buf, orphan_blk_no++);
ASSERT(ret >= 0);
ret = dev_write_block(buf, new_cp_blk_no++);
ASSERT(ret >= 0);
}
/* update summary blocks having nullified journal entries */
for (i = 0; i < NO_CHECK_TYPE; i++) {
struct curseg_info *curseg = CURSEG_I(sbi, i);
ret = dev_write_block(curseg->sum_blk, new_cp_blk_no++);
ASSERT(ret >= 0);
}
/* write the last cp */
ret = dev_write_block(new_cp, new_cp_blk_no++);
ASSERT(ret >= 0);
/* disable old checkpoint */
memset(buf, 0, BLOCK_SZ);
ret = dev_write_block(buf, old_cp_blk_no);
ASSERT(ret >= 0);
free(buf);
free(new_cp);
DBG(0, "Info: Done to rebuild checkpoint blocks\n");
}
static void rebuild_superblock(struct f2fs_sb_info *sbi,
struct f2fs_super_block *new_sb)
{
int index, ret;
u_int8_t *buf;
buf = calloc(BLOCK_SZ, 1);
memcpy(buf + F2FS_SUPER_OFFSET, new_sb, sizeof(*new_sb));
for (index = 0; index < 2; index++) {
ret = dev_write_block(buf, index);
ASSERT(ret >= 0);
}
free(buf);
DBG(0, "Info: Done to rebuild superblock\n");
}
int f2fs_resize(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
struct f2fs_super_block new_sb_raw;
struct f2fs_super_block *new_sb = &new_sb_raw;
block_t end_blkaddr, old_main_blkaddr, new_main_blkaddr;
unsigned int offset, offset_seg;
int err = -1;
/* flush NAT/SIT journal entries */
flush_journal_entries(sbi);
memcpy(new_sb, F2FS_RAW_SUPER(sbi), sizeof(*new_sb));
if (get_new_sb(sbi, new_sb))
return -1;
/* check nat availability */
if (get_sb(segment_count_nat) > get_newsb(segment_count_nat)) {
err = shrink_nats(sbi, new_sb);
if (err) {
MSG(0, "\tError: Failed to shrink NATs\n");
return err;
}
}
config.dbg_lv = 1;
print_raw_sb_info(sb);
print_raw_sb_info(new_sb);
config.dbg_lv = 0;
old_main_blkaddr = get_sb(main_blkaddr);
new_main_blkaddr = get_newsb(main_blkaddr);
offset = new_main_blkaddr - old_main_blkaddr;
end_blkaddr = (get_sb(segment_count) << get_sb(log_blocks_per_seg)) +
get_sb(main_blkaddr);
if (old_main_blkaddr > new_main_blkaddr) {
MSG(0, "\tError: Support resize to expand only\n");
return -1;
}
err = -EAGAIN;
offset_seg = offset >> get_sb(log_blocks_per_seg);
if (new_main_blkaddr < end_blkaddr) {
err = f2fs_defragment(sbi, old_main_blkaddr, offset,
new_main_blkaddr, 0);
if (err)
MSG(0, "Skip defragement\n");
}
/* move whole data region */
if (err)
migrate_main(sbi, new_sb, offset);
migrate_ssa(sbi, new_sb, offset_seg);
migrate_nat(sbi, new_sb);
migrate_sit(sbi, new_sb, offset_seg);
rebuild_checkpoint(sbi, new_sb, offset_seg);
rebuild_superblock(sbi, new_sb);
return 0;
}