| /** | 
 |  * f2fs_format.c | 
 |  * | 
 |  * Copyright (c) 2012 Samsung Electronics Co., Ltd. | 
 |  *             http://www.samsung.com/ | 
 |  * | 
 |  * Dual licensed under the GPL or LGPL version 2 licenses. | 
 |  */ | 
 | #include <stdio.h> | 
 | #include <stdlib.h> | 
 | #include <fcntl.h> | 
 | #include <string.h> | 
 | #include <unistd.h> | 
 | #include <f2fs_fs.h> | 
 | #include <assert.h> | 
 | #include <stdbool.h> | 
 |  | 
 | #ifdef HAVE_SYS_STAT_H | 
 | #include <sys/stat.h> | 
 | #endif | 
 | #ifdef HAVE_SYS_MOUNT_H | 
 | #include <sys/mount.h> | 
 | #endif | 
 | #include <time.h> | 
 |  | 
 | #ifdef HAVE_UUID_UUID_H | 
 | #include <uuid/uuid.h> | 
 | #endif | 
 | #ifndef HAVE_LIBUUID | 
 | #define uuid_parse(a, b) -1 | 
 | #define uuid_generate(a) | 
 | #define uuid_unparse(a, b) -1 | 
 | #endif | 
 |  | 
 | #include "quota.h" | 
 | #include "f2fs_format_utils.h" | 
 |  | 
 | extern struct f2fs_configuration c; | 
 | struct f2fs_super_block raw_sb; | 
 | struct f2fs_super_block *sb = &raw_sb; | 
 | struct f2fs_checkpoint *cp; | 
 |  | 
 | static inline bool device_is_aliased(unsigned int dev_num) | 
 | { | 
 | 	if (dev_num >= c.ndevs) | 
 | 		return false; | 
 | 	return c.devices[dev_num].alias_filename != NULL; | 
 | } | 
 |  | 
 | static inline unsigned int target_device_index(uint64_t blkaddr) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < c.ndevs; i++) | 
 | 		if (c.devices[i].start_blkaddr <= blkaddr && | 
 | 				c.devices[i].end_blkaddr >= blkaddr) | 
 | 			return i; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define GET_SEGNO(blk_addr) ((blk_addr - get_sb(main_blkaddr)) / \ | 
 | 				c.blks_per_seg) | 
 | #define START_BLOCK(segno) (segno * c.blks_per_seg + get_sb(main_blkaddr)) | 
 |  | 
 | /* Return first segment number of each area */ | 
 | static inline uint32_t next_zone(int seg_type) | 
 | { | 
 | 	uint32_t next_seg = c.cur_seg[seg_type] + c.segs_per_zone; | 
 | 	uint64_t next_blkaddr = START_BLOCK(next_seg); | 
 | 	int dev_num; | 
 |  | 
 | 	dev_num = target_device_index(next_blkaddr); | 
 | 	if (!device_is_aliased(dev_num)) | 
 | 		return GET_SEGNO(next_blkaddr); | 
 |  | 
 | 	while (dev_num < c.ndevs && device_is_aliased(dev_num)) | 
 | 		dev_num++; | 
 |  | 
 | 	return GET_SEGNO(c.devices[dev_num - 1].end_blkaddr + 1); | 
 | } | 
 |  | 
 | static inline uint32_t last_zone(uint32_t total_zone) | 
 | { | 
 | 	uint32_t last_seg = (total_zone - 1) * c.segs_per_zone; | 
 | 	uint64_t last_blkaddr = START_BLOCK(last_seg); | 
 | 	int dev_num; | 
 |  | 
 | 	dev_num = target_device_index(last_blkaddr); | 
 | 	if (!device_is_aliased(dev_num)) | 
 | 		return GET_SEGNO(last_blkaddr); | 
 |  | 
 | 	while (dev_num > 0 && device_is_aliased(dev_num)) | 
 | 		dev_num--; | 
 |  | 
 | 	return GET_SEGNO(c.devices[dev_num + 1].start_blkaddr) - | 
 | 		c.segs_per_zone; | 
 | } | 
 |  | 
 | #define last_section(cur)	(cur + (c.secs_per_zone - 1) * c.segs_per_sec) | 
 |  | 
 | /* Return time fixed by the user or current time by default */ | 
 | #define mkfs_time ((c.fixed_time == -1) ? time(NULL) : c.fixed_time) | 
 |  | 
 | const char *media_ext_lists[] = { | 
 | 	/* common prefix */ | 
 | 	"mp", // Covers mp3, mp4, mpeg, mpg | 
 | 	"wm", // Covers wma, wmb, wmv | 
 | 	"og", // Covers oga, ogg, ogm, ogv | 
 | 	"jp", // Covers jpg, jpeg, jp2 | 
 |  | 
 | 	/* video */ | 
 | 	"avi", | 
 | 	"m4v", | 
 | 	"m4p", | 
 | 	"mkv", | 
 | 	"mov", | 
 | 	"webm", | 
 |  | 
 | 	/* audio */ | 
 | 	"wav", | 
 | 	"m4a", | 
 | 	"3gp", | 
 | 	"opus", | 
 | 	"flac", | 
 |  | 
 | 	/* image */ | 
 | 	"gif", | 
 | 	"png", | 
 | 	"svg", | 
 | 	"webp", | 
 |  | 
 | 	/* archives */ | 
 | 	"jar", | 
 | 	"deb", | 
 | 	"iso", | 
 | 	"gz", | 
 | 	"xz", | 
 | 	"zst", | 
 |  | 
 | 	/* others */ | 
 | 	"pdf", | 
 | 	"pyc", // Python bytecode | 
 | 	"ttc", | 
 | 	"ttf", | 
 | 	"exe", | 
 |  | 
 | 	/* android */ | 
 | 	"apk", | 
 | 	"cnt", // Image alias | 
 | 	"exo", // YouTube | 
 | 	"odex", // Android RunTime | 
 | 	"vdex", // Android RunTime | 
 | 	"so", | 
 |  | 
 | 	NULL | 
 | }; | 
 |  | 
 | const char *hot_ext_lists[] = { | 
 | 	"db", | 
 |  | 
 | #ifndef WITH_ANDROID | 
 | 	/* Virtual machines */ | 
 | 	"vmdk", // VMware or VirtualBox | 
 | 	"vdi", // VirtualBox | 
 | 	"qcow2", // QEMU | 
 | #endif | 
 | 	NULL | 
 | }; | 
 |  | 
 | const char **default_ext_list[] = { | 
 | 	media_ext_lists, | 
 | 	hot_ext_lists | 
 | }; | 
 |  | 
 | static bool is_extension_exist(const char *name) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < F2FS_MAX_EXTENSION; i++) { | 
 | 		char *ext = (char *)sb->extension_list[i]; | 
 | 		if (!strcmp(ext, name)) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void cure_extension_list(void) | 
 | { | 
 | 	const char **extlist; | 
 | 	char *ext_str; | 
 | 	char *ue; | 
 | 	int name_len; | 
 | 	int i, pos = 0; | 
 |  | 
 | 	set_sb(extension_count, 0); | 
 | 	memset(sb->extension_list, 0, sizeof(sb->extension_list)); | 
 |  | 
 | 	for (i = 0; i < 2; i++) { | 
 | 		ext_str = c.extension_list[i]; | 
 | 		extlist = default_ext_list[i]; | 
 |  | 
 | 		while (*extlist) { | 
 | 			name_len = strlen(*extlist); | 
 | 			memcpy(sb->extension_list[pos++], *extlist, name_len); | 
 | 			extlist++; | 
 | 		} | 
 | 		if (i == 0) | 
 | 			set_sb(extension_count, pos); | 
 | 		else | 
 | 			sb->hot_ext_count = pos - get_sb(extension_count);; | 
 |  | 
 | 		if (!ext_str) | 
 | 			continue; | 
 |  | 
 | 		/* add user ext list */ | 
 | 		ue = strtok(ext_str, ", "); | 
 | 		while (ue != NULL) { | 
 | 			name_len = strlen(ue); | 
 | 			if (name_len >= F2FS_EXTENSION_LEN) { | 
 | 				MSG(0, "\tWarn: Extension name (%s) is too long\n", ue); | 
 | 				goto next; | 
 | 			} | 
 | 			if (!is_extension_exist(ue)) | 
 | 				memcpy(sb->extension_list[pos++], ue, name_len); | 
 | next: | 
 | 			ue = strtok(NULL, ", "); | 
 | 			if (pos >= F2FS_MAX_EXTENSION) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		if (i == 0) | 
 | 			set_sb(extension_count, pos); | 
 | 		else | 
 | 			sb->hot_ext_count = pos - get_sb(extension_count); | 
 |  | 
 | 		free(c.extension_list[i]); | 
 | 	} | 
 | } | 
 |  | 
 | static void verify_cur_segs(void) | 
 | { | 
 | 	int i, j; | 
 | 	int reorder = 0; | 
 |  | 
 | 	for (i = 0; i < NR_CURSEG_TYPE; i++) { | 
 | 		for (j = i + 1; j < NR_CURSEG_TYPE; j++) { | 
 | 			if (c.cur_seg[i] == c.cur_seg[j]) { | 
 | 				reorder = 1; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!reorder) | 
 | 		return; | 
 |  | 
 | 	c.cur_seg[0] = 0; | 
 | 	for (i = 1; i < NR_CURSEG_TYPE; i++) | 
 | 		c.cur_seg[i] = next_zone(i - 1); | 
 | } | 
 |  | 
 | static int f2fs_prepare_super_block(void) | 
 | { | 
 | 	uint32_t blk_size_bytes; | 
 | 	uint32_t log_sectorsize, log_sectors_per_block; | 
 | 	uint32_t log_blocksize, log_blks_per_seg; | 
 | 	uint32_t segment_size_bytes, zone_size_bytes; | 
 | 	uint32_t alignment_bytes; | 
 | 	uint32_t sit_segments, nat_segments; | 
 | 	uint32_t blocks_for_sit, blocks_for_nat, blocks_for_ssa; | 
 | 	uint32_t total_valid_blks_available; | 
 | 	uint64_t zone_align_start_offset, diff; | 
 | 	uint64_t total_meta_zones, total_meta_segments; | 
 | 	uint32_t sit_bitmap_size, max_sit_bitmap_size; | 
 | 	uint32_t max_nat_bitmap_size, max_nat_segments; | 
 | 	uint32_t total_zones, avail_zones = 0; | 
 | 	enum quota_type qtype; | 
 | 	int i; | 
 |  | 
 | 	set_sb(magic, F2FS_SUPER_MAGIC); | 
 | 	set_sb(major_ver, F2FS_MAJOR_VERSION); | 
 | 	set_sb(minor_ver, F2FS_MINOR_VERSION); | 
 |  | 
 | 	log_sectorsize = log_base_2(c.sector_size); | 
 | 	log_sectors_per_block = log_base_2(c.sectors_per_blk); | 
 | 	log_blocksize = log_sectorsize + log_sectors_per_block; | 
 | 	log_blks_per_seg = log_base_2(c.blks_per_seg); | 
 |  | 
 | 	set_sb(log_sectorsize, log_sectorsize); | 
 | 	set_sb(log_sectors_per_block, log_sectors_per_block); | 
 |  | 
 | 	set_sb(log_blocksize, log_blocksize); | 
 | 	set_sb(log_blocks_per_seg, log_blks_per_seg); | 
 |  | 
 | 	set_sb(segs_per_sec, c.segs_per_sec); | 
 | 	set_sb(secs_per_zone, c.secs_per_zone); | 
 |  | 
 | 	blk_size_bytes = 1 << log_blocksize; | 
 | 	segment_size_bytes = blk_size_bytes * c.blks_per_seg; | 
 | 	zone_size_bytes = | 
 | 		blk_size_bytes * c.secs_per_zone * | 
 | 		c.segs_per_sec * c.blks_per_seg; | 
 |  | 
 | 	set_sb(checksum_offset, 0); | 
 |  | 
 | 	set_sb(block_count, c.total_sectors >> log_sectors_per_block); | 
 |  | 
 | 	alignment_bytes = c.zoned_mode && c.ndevs > 1 ? segment_size_bytes : zone_size_bytes; | 
 |  | 
 | 	zone_align_start_offset = | 
 | 		((uint64_t) c.start_sector * DEFAULT_SECTOR_SIZE + | 
 | 		2 * F2FS_BLKSIZE + alignment_bytes  - 1) / | 
 | 		alignment_bytes  * alignment_bytes  - | 
 | 		(uint64_t) c.start_sector * DEFAULT_SECTOR_SIZE; | 
 |  | 
 | 	if (c.feature & F2FS_FEATURE_RO) | 
 | 		zone_align_start_offset = 8192; | 
 |  | 
 | 	if (c.start_sector % DEFAULT_SECTORS_PER_BLOCK) { | 
 | 		MSG(1, "\t%s: Align start sector number to the page unit\n", | 
 | 				c.zoned_mode ? "FAIL" : "WARN"); | 
 | 		MSG(1, "\ti.e., start sector: %d, ofs:%d (sects/page: %d)\n", | 
 | 				c.start_sector, | 
 | 				c.start_sector % DEFAULT_SECTORS_PER_BLOCK, | 
 | 				DEFAULT_SECTORS_PER_BLOCK); | 
 | 		if (c.zoned_mode) | 
 | 			return -1; | 
 | 	} | 
 |  | 
 | 	if (c.zoned_mode && c.ndevs > 1) | 
 | 		zone_align_start_offset += | 
 | 			(c.devices[0].total_sectors * c.sector_size - | 
 | 			 zone_align_start_offset) % zone_size_bytes; | 
 |  | 
 | 	set_sb(segment0_blkaddr, zone_align_start_offset / blk_size_bytes); | 
 | 	sb->cp_blkaddr = sb->segment0_blkaddr; | 
 |  | 
 | 	MSG(0, "Info: zone aligned segment0 blkaddr: %u\n", | 
 | 					get_sb(segment0_blkaddr)); | 
 |  | 
 | 	if (c.zoned_mode && | 
 | 		((c.ndevs == 1 && | 
 | 			(get_sb(segment0_blkaddr) + c.start_sector / | 
 | 			DEFAULT_SECTORS_PER_BLOCK) % c.zone_blocks) || | 
 | 		(c.ndevs > 1 && | 
 | 			c.devices[1].start_blkaddr % c.zone_blocks))) { | 
 | 		MSG(1, "\tError: Unaligned segment0 block address %u\n", | 
 | 				get_sb(segment0_blkaddr)); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < c.ndevs; i++) { | 
 | 		if (i == 0) { | 
 | 			c.devices[i].total_segments = | 
 | 				((c.devices[i].total_sectors * | 
 | 				c.sector_size - zone_align_start_offset) / | 
 | 				segment_size_bytes) / c.segs_per_zone * | 
 | 				c.segs_per_zone; | 
 | 			c.devices[i].start_blkaddr = 0; | 
 | 			c.devices[i].end_blkaddr = c.devices[i].total_segments * | 
 | 						c.blks_per_seg - 1 + | 
 | 						sb->segment0_blkaddr; | 
 | 		} else { | 
 | 			c.devices[i].total_segments = | 
 | 				(c.devices[i].total_sectors / | 
 | 				(c.sectors_per_blk * c.blks_per_seg)) / | 
 | 				c.segs_per_zone * c.segs_per_zone; | 
 | 			c.devices[i].start_blkaddr = | 
 | 					c.devices[i - 1].end_blkaddr + 1; | 
 | 			c.devices[i].end_blkaddr = c.devices[i].start_blkaddr + | 
 | 					c.devices[i].total_segments * | 
 | 					c.blks_per_seg - 1; | 
 | 			if (device_is_aliased(i)) { | 
 | 				if (c.devices[i].zoned_model == | 
 | 						F2FS_ZONED_HM) { | 
 | 					MSG(1, "\tError: do not support " | 
 | 					"device aliasing for device[%d]\n", i); | 
 | 					return -1; | 
 | 				} | 
 | 				c.aliased_segments += | 
 | 					c.devices[i].total_segments; | 
 | 			} | 
 | 		} | 
 | 		if (c.ndevs > 1) { | 
 | 			strncpy((char *)sb->devs[i].path, c.devices[i].path, MAX_PATH_LEN); | 
 | 			sb->devs[i].total_segments = | 
 | 					cpu_to_le32(c.devices[i].total_segments); | 
 | 		} | 
 |  | 
 | 		c.total_segments += c.devices[i].total_segments; | 
 | 	} | 
 | 	set_sb(segment_count, c.total_segments); | 
 | 	set_sb(segment_count_ckpt, F2FS_NUMBER_OF_CHECKPOINT_PACK); | 
 |  | 
 | 	set_sb(sit_blkaddr, get_sb(segment0_blkaddr) + | 
 | 			get_sb(segment_count_ckpt) * c.blks_per_seg); | 
 |  | 
 | 	blocks_for_sit = SIZE_ALIGN(get_sb(segment_count), SIT_ENTRY_PER_BLOCK); | 
 |  | 
 | 	sit_segments = SEG_ALIGN(blocks_for_sit); | 
 |  | 
 | 	set_sb(segment_count_sit, sit_segments * 2); | 
 |  | 
 | 	set_sb(nat_blkaddr, get_sb(sit_blkaddr) + get_sb(segment_count_sit) * | 
 | 			c.blks_per_seg); | 
 |  | 
 | 	total_valid_blks_available = (get_sb(segment_count) - | 
 | 			(get_sb(segment_count_ckpt) + | 
 | 			get_sb(segment_count_sit))) * c.blks_per_seg; | 
 |  | 
 | 	blocks_for_nat = SIZE_ALIGN(total_valid_blks_available, | 
 | 			NAT_ENTRY_PER_BLOCK); | 
 |  | 
 | 	if (c.large_nat_bitmap) { | 
 | 		nat_segments = SEG_ALIGN(blocks_for_nat) * | 
 | 						DEFAULT_NAT_ENTRY_RATIO / 100; | 
 | 		set_sb(segment_count_nat, nat_segments ? nat_segments : 1); | 
 | 		max_nat_bitmap_size = (get_sb(segment_count_nat) << | 
 | 						log_blks_per_seg) / 8; | 
 | 		set_sb(segment_count_nat, get_sb(segment_count_nat) * 2); | 
 | 	} else { | 
 | 		set_sb(segment_count_nat, SEG_ALIGN(blocks_for_nat)); | 
 | 		max_nat_bitmap_size = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The number of node segments should not be exceeded a "Threshold". | 
 | 	 * This number resizes NAT bitmap area in a CP page. | 
 | 	 * So the threshold is determined not to overflow one CP page | 
 | 	 */ | 
 | 	sit_bitmap_size = ((get_sb(segment_count_sit) / 2) << | 
 | 				log_blks_per_seg) / 8; | 
 |  | 
 | 	if (sit_bitmap_size > MAX_SIT_BITMAP_SIZE) | 
 | 		max_sit_bitmap_size = MAX_SIT_BITMAP_SIZE; | 
 | 	else | 
 | 		max_sit_bitmap_size = sit_bitmap_size; | 
 |  | 
 | 	if (c.large_nat_bitmap) { | 
 | 		/* use cp_payload if free space of f2fs_checkpoint is not enough */ | 
 | 		if (max_sit_bitmap_size + max_nat_bitmap_size > | 
 | 						MAX_BITMAP_SIZE_IN_CKPT) { | 
 | 			uint32_t diff =  max_sit_bitmap_size + | 
 | 						max_nat_bitmap_size - | 
 | 						MAX_BITMAP_SIZE_IN_CKPT; | 
 | 			set_sb(cp_payload, F2FS_BLK_ALIGN(diff)); | 
 | 		} else { | 
 | 			set_sb(cp_payload, 0); | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * It should be reserved minimum 1 segment for nat. | 
 | 		 * When sit is too large, we should expand cp area. | 
 | 		 * It requires more pages for cp. | 
 | 		 */ | 
 | 		if (max_sit_bitmap_size > MAX_SIT_BITMAP_SIZE_IN_CKPT) { | 
 | 			max_nat_bitmap_size = MAX_BITMAP_SIZE_IN_CKPT; | 
 | 			set_sb(cp_payload, F2FS_BLK_ALIGN(max_sit_bitmap_size)); | 
 | 	        } else { | 
 | 			max_nat_bitmap_size = MAX_BITMAP_SIZE_IN_CKPT - | 
 | 							max_sit_bitmap_size; | 
 | 			set_sb(cp_payload, 0); | 
 | 		} | 
 | 		max_nat_segments = (max_nat_bitmap_size * 8) >> log_blks_per_seg; | 
 |  | 
 | 		if (get_sb(segment_count_nat) > max_nat_segments) | 
 | 			set_sb(segment_count_nat, max_nat_segments); | 
 |  | 
 | 		set_sb(segment_count_nat, get_sb(segment_count_nat) * 2); | 
 | 	} | 
 |  | 
 | 	set_sb(ssa_blkaddr, get_sb(nat_blkaddr) + get_sb(segment_count_nat) * | 
 | 			c.blks_per_seg); | 
 |  | 
 | 	total_valid_blks_available = (get_sb(segment_count) - | 
 | 			(get_sb(segment_count_ckpt) + | 
 | 			get_sb(segment_count_sit) + | 
 | 			get_sb(segment_count_nat))) * | 
 | 			c.blks_per_seg; | 
 |  | 
 | 	if (c.feature & F2FS_FEATURE_RO) | 
 | 		blocks_for_ssa = 0; | 
 | 	else | 
 | 		blocks_for_ssa = total_valid_blks_available / | 
 | 				c.blks_per_seg + 1; | 
 |  | 
 | 	set_sb(segment_count_ssa, SEG_ALIGN(blocks_for_ssa)); | 
 |  | 
 | 	total_meta_segments = get_sb(segment_count_ckpt) + | 
 | 		get_sb(segment_count_sit) + | 
 | 		get_sb(segment_count_nat) + | 
 | 		get_sb(segment_count_ssa); | 
 | 	diff = total_meta_segments % (c.segs_per_zone); | 
 | 	if (diff) | 
 | 		set_sb(segment_count_ssa, get_sb(segment_count_ssa) + | 
 | 			(c.segs_per_zone - diff)); | 
 |  | 
 | 	total_meta_zones = ZONE_ALIGN(total_meta_segments * | 
 | 						c.blks_per_seg); | 
 |  | 
 | 	set_sb(main_blkaddr, get_sb(segment0_blkaddr) + total_meta_zones * | 
 | 				c.segs_per_zone * c.blks_per_seg); | 
 |  | 
 | 	if (c.zoned_mode) { | 
 | 		/* | 
 | 		 * Make sure there is enough randomly writeable | 
 | 		 * space at the beginning of the disk. | 
 | 		 */ | 
 | 		unsigned long main_blkzone = get_sb(main_blkaddr) / c.zone_blocks; | 
 |  | 
 | 		if (c.devices[0].zoned_model == F2FS_ZONED_HM && | 
 | 				c.devices[0].nr_rnd_zones < main_blkzone) { | 
 | 			MSG(0, "\tError: Device does not have enough random " | 
 | 					"write zones for F2FS volume (%lu needed)\n", | 
 | 					main_blkzone); | 
 | 			return -1; | 
 | 		} | 
 | 		/* | 
 | 		 * Check if conventional device has enough space | 
 | 		 * to accommodate all metadata, zoned device should | 
 | 		 * not overlap to metadata area. | 
 | 		 */ | 
 | 		for (i = 1; i < c.ndevs; i++) { | 
 | 			if (c.devices[i].zoned_model != F2FS_ZONED_NONE && | 
 | 				c.devices[i].start_blkaddr < get_sb(main_blkaddr)) { | 
 | 				MSG(0, "\tError: Conventional device %s is too small," | 
 | 					" (%"PRIu64" MiB needed).\n", c.devices[0].path, | 
 | 					(get_sb(main_blkaddr) - | 
 | 					c.devices[i].start_blkaddr) >> 8); | 
 | 				return -1; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	total_zones = get_sb(segment_count) / (c.segs_per_zone) - | 
 | 							total_meta_zones; | 
 | 	if (total_zones == 0) | 
 | 		goto too_small; | 
 | 	set_sb(section_count, total_zones * c.secs_per_zone); | 
 |  | 
 | 	set_sb(segment_count_main, get_sb(section_count) * c.segs_per_sec); | 
 |  | 
 | 	/* | 
 | 	 * Let's determine the best reserved and overprovisioned space. | 
 | 	 * For Zoned device, if zone capacity less than zone size, the segments | 
 | 	 * starting after the zone capacity are unusable in each zone. So get | 
 | 	 * overprovision ratio and reserved seg count based on avg usable | 
 | 	 * segs_per_sec. | 
 | 	 */ | 
 | 	if (c.overprovision == 0) | 
 | 		c.overprovision = get_best_overprovision(sb); | 
 |  | 
 | 	c.reserved_segments = get_reserved(sb, c.overprovision); | 
 |  | 
 | 	if (c.feature & F2FS_FEATURE_RO) { | 
 | 		c.overprovision = 0; | 
 | 		c.reserved_segments = 0; | 
 | 	} | 
 | 	if ((!(c.feature & F2FS_FEATURE_RO) && | 
 | 		c.overprovision == 0) || | 
 | 		c.total_segments < F2FS_MIN_SEGMENTS || | 
 | 		(c.devices[0].total_sectors * | 
 | 			c.sector_size < zone_align_start_offset) || | 
 | 		(get_sb(segment_count_main) - NR_CURSEG_TYPE) < | 
 | 						c.reserved_segments) { | 
 | 		goto too_small; | 
 | 	} | 
 |  | 
 | 	if (c.vol_uuid) { | 
 | 		if (uuid_parse(c.vol_uuid, sb->uuid)) { | 
 | 			MSG(0, "\tError: supplied string is not a valid UUID\n"); | 
 | 			return -1; | 
 | 		} | 
 | 	} else { | 
 | 		uuid_generate(sb->uuid); | 
 | 	} | 
 |  | 
 | 	/* precompute checksum seed for metadata */ | 
 | 	if (c.feature & F2FS_FEATURE_INODE_CHKSUM) | 
 | 		c.chksum_seed = f2fs_cal_crc32(~0, sb->uuid, sizeof(sb->uuid)); | 
 |  | 
 | 	utf8_to_utf16((char *)sb->volume_name, (const char *)c.vol_label, | 
 | 				MAX_VOLUME_NAME, strlen(c.vol_label)); | 
 | 	set_sb(node_ino, 1); | 
 | 	set_sb(meta_ino, 2); | 
 | 	set_sb(root_ino, 3); | 
 | 	c.next_free_nid = 4; | 
 |  | 
 | 	for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) { | 
 | 		if (!((1 << qtype) & c.quota_bits)) | 
 | 			continue; | 
 | 		sb->qf_ino[qtype] = cpu_to_le32(c.next_free_nid++); | 
 | 		MSG(0, "Info: add quota type = %u => %u\n", | 
 | 					qtype, c.next_free_nid - 1); | 
 | 	} | 
 |  | 
 | 	if (c.feature & F2FS_FEATURE_LOST_FOUND) | 
 | 		c.lpf_ino = c.next_free_nid++; | 
 |  | 
 | 	if (c.aliased_devices) { | 
 | 		c.first_alias_ino = c.next_free_nid; | 
 | 		c.next_free_nid += c.aliased_devices; | 
 | 		avail_zones += c.aliased_segments / c.segs_per_zone; | 
 | 	} | 
 |  | 
 | 	if (c.feature & F2FS_FEATURE_RO) | 
 | 		avail_zones += 2; | 
 | 	else | 
 | 		avail_zones += 6; | 
 |  | 
 | 	if (total_zones <= avail_zones) { | 
 | 		MSG(1, "\tError: %d zones: Need more zones " | 
 | 			"by shrinking zone size\n", total_zones); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	if (c.feature & F2FS_FEATURE_RO) { | 
 | 		c.cur_seg[CURSEG_HOT_NODE] = last_section(last_zone(total_zones)); | 
 | 		c.cur_seg[CURSEG_WARM_NODE] = 0; | 
 | 		c.cur_seg[CURSEG_COLD_NODE] = 0; | 
 | 		c.cur_seg[CURSEG_HOT_DATA] = 0; | 
 | 		c.cur_seg[CURSEG_COLD_DATA] = 0; | 
 | 		c.cur_seg[CURSEG_WARM_DATA] = 0; | 
 | 	} else if (c.zoned_mode) { | 
 | 		c.cur_seg[CURSEG_HOT_NODE] = 0; | 
 | 		if (c.zoned_model == F2FS_ZONED_HM) { | 
 | 			uint32_t conv_zones = | 
 | 				c.devices[0].total_segments / c.segs_per_zone | 
 | 				- total_meta_zones; | 
 |  | 
 | 			if (total_zones - conv_zones >= avail_zones) | 
 | 				c.cur_seg[CURSEG_HOT_NODE] = | 
 | 					(c.devices[1].start_blkaddr - | 
 | 					 get_sb(main_blkaddr)) / c.blks_per_seg; | 
 | 		} | 
 | 		c.cur_seg[CURSEG_WARM_NODE] = next_zone(CURSEG_HOT_NODE); | 
 | 		c.cur_seg[CURSEG_COLD_NODE] = next_zone(CURSEG_WARM_NODE); | 
 | 		c.cur_seg[CURSEG_HOT_DATA] = next_zone(CURSEG_COLD_NODE); | 
 | 		c.cur_seg[CURSEG_WARM_DATA] = next_zone(CURSEG_HOT_DATA); | 
 | 		c.cur_seg[CURSEG_COLD_DATA] = next_zone(CURSEG_WARM_DATA); | 
 | 	} else { | 
 | 		c.cur_seg[CURSEG_HOT_NODE] = 0; | 
 | 		c.cur_seg[CURSEG_WARM_NODE] = next_zone(CURSEG_HOT_NODE); | 
 | 		c.cur_seg[CURSEG_COLD_NODE] = next_zone(CURSEG_WARM_NODE); | 
 | 		c.cur_seg[CURSEG_HOT_DATA] = next_zone(CURSEG_COLD_NODE); | 
 | 		c.cur_seg[CURSEG_COLD_DATA] = | 
 | 				max(last_zone((total_zones >> 2)), | 
 | 					next_zone(CURSEG_HOT_DATA)); | 
 | 		c.cur_seg[CURSEG_WARM_DATA] = | 
 | 				max(last_zone((total_zones >> 1)), | 
 | 					next_zone(CURSEG_COLD_DATA)); | 
 | 	} | 
 |  | 
 | 	/* if there is redundancy, reassign it */ | 
 | 	if (!(c.feature & F2FS_FEATURE_RO)) | 
 | 		verify_cur_segs(); | 
 |  | 
 | 	cure_extension_list(); | 
 |  | 
 | 	/* get kernel version */ | 
 | 	if (c.kd >= 0) { | 
 | 		dev_read_version(c.version, 0, VERSION_LEN); | 
 | 		get_kernel_version(c.version); | 
 | 	} else { | 
 | 		get_kernel_uname_version(c.version); | 
 | 	} | 
 | 	MSG(0, "Info: format version with\n  \"%s\"\n", c.version); | 
 |  | 
 | 	memcpy(sb->version, c.version, VERSION_LEN); | 
 | 	memcpy(sb->init_version, c.version, VERSION_LEN); | 
 |  | 
 | 	if (c.feature & F2FS_FEATURE_CASEFOLD) { | 
 | 		set_sb(s_encoding, c.s_encoding); | 
 | 		set_sb(s_encoding_flags, c.s_encoding_flags); | 
 | 	} | 
 |  | 
 | 	sb->feature = cpu_to_le32(c.feature); | 
 |  | 
 | 	if (c.feature & F2FS_FEATURE_SB_CHKSUM) { | 
 | 		set_sb(checksum_offset, SB_CHKSUM_OFFSET); | 
 | 		set_sb(crc, f2fs_cal_crc32(F2FS_SUPER_MAGIC, sb, | 
 | 						SB_CHKSUM_OFFSET)); | 
 | 		MSG(1, "Info: SB CRC is set: offset (%d), crc (0x%x)\n", | 
 | 					get_sb(checksum_offset), get_sb(crc)); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | too_small: | 
 | 	MSG(0, "\tError: Device size is not sufficient for F2FS volume\n"); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static int f2fs_init_sit_area(void) | 
 | { | 
 | 	uint32_t blk_size, seg_size; | 
 | 	uint32_t index = 0; | 
 | 	uint64_t sit_seg_addr = 0; | 
 | 	uint8_t *zero_buf = NULL; | 
 |  | 
 | 	blk_size = 1 << get_sb(log_blocksize); | 
 | 	seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size; | 
 |  | 
 | 	zero_buf = calloc(sizeof(uint8_t), seg_size); | 
 | 	if(zero_buf == NULL) { | 
 | 		MSG(1, "\tError: Calloc Failed for sit_zero_buf!!!\n"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	sit_seg_addr = get_sb(sit_blkaddr); | 
 | 	sit_seg_addr *= blk_size; | 
 |  | 
 | 	DBG(1, "\tFilling sit area at offset 0x%08"PRIx64"\n", sit_seg_addr); | 
 | 	for (index = 0; index < (get_sb(segment_count_sit) / 2); index++) { | 
 | 		if (dev_fill(zero_buf, sit_seg_addr, seg_size, WRITE_LIFE_NONE)) { | 
 | 			MSG(1, "\tError: While zeroing out the sit area " | 
 | 					"on disk!!!\n"); | 
 | 			free(zero_buf); | 
 | 			return -1; | 
 | 		} | 
 | 		sit_seg_addr += seg_size; | 
 | 	} | 
 |  | 
 | 	free(zero_buf); | 
 | 	return 0 ; | 
 | } | 
 |  | 
 | static int f2fs_init_nat_area(void) | 
 | { | 
 | 	uint32_t blk_size, seg_size; | 
 | 	uint32_t index = 0; | 
 | 	uint64_t nat_seg_addr = 0; | 
 | 	uint8_t *nat_buf = NULL; | 
 |  | 
 | 	blk_size = 1 << get_sb(log_blocksize); | 
 | 	seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size; | 
 |  | 
 | 	nat_buf = calloc(sizeof(uint8_t), seg_size); | 
 | 	if (nat_buf == NULL) { | 
 | 		MSG(1, "\tError: Calloc Failed for nat_zero_blk!!!\n"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	nat_seg_addr = get_sb(nat_blkaddr); | 
 | 	nat_seg_addr *= blk_size; | 
 |  | 
 | 	DBG(1, "\tFilling nat area at offset 0x%08"PRIx64"\n", nat_seg_addr); | 
 | 	for (index = 0; index < get_sb(segment_count_nat) / 2; index++) { | 
 | 		if (dev_fill(nat_buf, nat_seg_addr, seg_size, WRITE_LIFE_NONE)) { | 
 | 			MSG(1, "\tError: While zeroing out the nat area " | 
 | 					"on disk!!!\n"); | 
 | 			free(nat_buf); | 
 | 			return -1; | 
 | 		} | 
 | 		nat_seg_addr = nat_seg_addr + (2 * seg_size); | 
 | 	} | 
 |  | 
 | 	free(nat_buf); | 
 | 	return 0 ; | 
 | } | 
 |  | 
 | static int f2fs_write_check_point_pack(void) | 
 | { | 
 | 	struct f2fs_summary_block *sum; | 
 | 	struct f2fs_journal *journal; | 
 | 	uint32_t blk_size_bytes; | 
 | 	uint32_t nat_bits_bytes, nat_bits_blocks; | 
 | 	unsigned char *nat_bits = NULL, *empty_nat_bits; | 
 | 	uint64_t cp_seg_blk = 0; | 
 | 	uint32_t crc = 0, flags; | 
 | 	unsigned int i; | 
 | 	char *cp_payload = NULL; | 
 | 	char *sum_compact, *sum_compact_p; | 
 | 	struct f2fs_summary *sum_entry; | 
 | 	unsigned short vblocks; | 
 | 	uint32_t used_segments = c.aliased_segments; | 
 | 	int ret = -1; | 
 |  | 
 | 	cp = calloc(F2FS_BLKSIZE, 1); | 
 | 	if (cp == NULL) { | 
 | 		MSG(1, "\tError: Calloc failed for f2fs_checkpoint!!!\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	sum = calloc(F2FS_BLKSIZE, 1); | 
 | 	if (sum == NULL) { | 
 | 		MSG(1, "\tError: Calloc failed for summary_node!!!\n"); | 
 | 		goto free_cp; | 
 | 	} | 
 |  | 
 | 	sum_compact = calloc(F2FS_BLKSIZE, 1); | 
 | 	if (sum_compact == NULL) { | 
 | 		MSG(1, "\tError: Calloc failed for summary buffer!!!\n"); | 
 | 		goto free_sum; | 
 | 	} | 
 | 	sum_compact_p = sum_compact; | 
 |  | 
 | 	nat_bits_bytes = get_sb(segment_count_nat) << 5; | 
 | 	nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 + | 
 | 						F2FS_BLKSIZE - 1); | 
 | 	nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks); | 
 | 	if (nat_bits == NULL) { | 
 | 		MSG(1, "\tError: Calloc failed for nat bits buffer!!!\n"); | 
 | 		goto free_sum_compact; | 
 | 	} | 
 |  | 
 | 	cp_payload = calloc(F2FS_BLKSIZE, 1); | 
 | 	if (cp_payload == NULL) { | 
 | 		MSG(1, "\tError: Calloc failed for cp_payload!!!\n"); | 
 | 		goto free_nat_bits; | 
 | 	} | 
 |  | 
 | 	/* 1. cp page 1 of checkpoint pack 1 */ | 
 | 	srand((c.fake_seed) ? 0 : time(NULL)); | 
 | 	cp->checkpoint_ver = cpu_to_le64(rand() | 0x1); | 
 | 	set_cp(cur_node_segno[0], c.cur_seg[CURSEG_HOT_NODE]); | 
 | 	set_cp(cur_node_segno[1], c.cur_seg[CURSEG_WARM_NODE]); | 
 | 	set_cp(cur_node_segno[2], c.cur_seg[CURSEG_COLD_NODE]); | 
 | 	set_cp(cur_data_segno[0], c.cur_seg[CURSEG_HOT_DATA]); | 
 | 	set_cp(cur_data_segno[1], c.cur_seg[CURSEG_WARM_DATA]); | 
 | 	set_cp(cur_data_segno[2], c.cur_seg[CURSEG_COLD_DATA]); | 
 | 	for (i = 3; i < MAX_ACTIVE_NODE_LOGS; i++) { | 
 | 		set_cp(cur_node_segno[i], 0xffffffff); | 
 | 		set_cp(cur_data_segno[i], 0xffffffff); | 
 | 	} | 
 |  | 
 | 	set_cp(cur_node_blkoff[0], c.curseg_offset[CURSEG_HOT_NODE]); | 
 | 	set_cp(cur_node_blkoff[2], c.curseg_offset[CURSEG_COLD_NODE]); | 
 | 	set_cp(cur_data_blkoff[0], c.curseg_offset[CURSEG_HOT_DATA]); | 
 | 	set_cp(cur_data_blkoff[2], c.curseg_offset[CURSEG_COLD_DATA]); | 
 | 	set_cp(valid_block_count, c.curseg_offset[CURSEG_HOT_NODE] + | 
 | 			c.curseg_offset[CURSEG_HOT_DATA] + | 
 | 			c.curseg_offset[CURSEG_COLD_NODE] + | 
 | 			c.curseg_offset[CURSEG_COLD_DATA] + | 
 | 			c.aliased_segments * c.blks_per_seg); | 
 | 	set_cp(rsvd_segment_count, c.reserved_segments); | 
 |  | 
 | 	/* | 
 | 	 * For zoned devices, if zone capacity less than zone size, get | 
 | 	 * overprovision segment count based on usable segments in the device. | 
 | 	 */ | 
 | 	set_cp(overprov_segment_count, (f2fs_get_usable_segments(sb) - | 
 | 			get_cp(rsvd_segment_count)) * | 
 | 			c.overprovision / 100); | 
 |  | 
 | 	/* | 
 | 	 * If conf_reserved_sections has a non zero value, overprov_segment_count | 
 | 	 * is set to overprov_segment_count + rsvd_segment_count. | 
 | 	 */ | 
 | 	if (c.conf_reserved_sections) { | 
 | 		/* | 
 | 		 * Overprovision segments must be bigger than two sections. | 
 | 		 * In non configurable reserved section case, overprovision | 
 | 		 * segments are always bigger than two sections. | 
 | 		 */ | 
 | 		if (get_cp(overprov_segment_count) < | 
 | 					overprovision_segment_buffer(sb)) { | 
 | 			MSG(0, "\tError: Not enough overprovision segments (%u)\n", | 
 | 			    get_cp(overprov_segment_count)); | 
 | 			goto free_cp_payload; | 
 | 		} | 
 | 		set_cp(overprov_segment_count, get_cp(overprov_segment_count) + | 
 | 				get_cp(rsvd_segment_count)); | 
 | 	 } else { | 
 | 		/* | 
 | 		 * overprov_segment_count must bigger than rsvd_segment_count. | 
 | 		 */ | 
 | 		set_cp(overprov_segment_count, max(get_cp(rsvd_segment_count), | 
 | 			get_cp(overprov_segment_count)) + overprovision_segment_buffer(sb)); | 
 | 	 } | 
 |  | 
 | 	if (f2fs_get_usable_segments(sb) <= get_cp(overprov_segment_count)) { | 
 | 		MSG(0, "\tError: Not enough segments to create F2FS Volume\n"); | 
 | 		goto free_cp_payload; | 
 | 	} | 
 | 	MSG(0, "Info: Overprovision ratio = %.3lf%%\n", c.overprovision); | 
 | 	MSG(0, "Info: Overprovision segments = %u (GC reserved = %u)\n", | 
 | 					get_cp(overprov_segment_count), | 
 | 					c.reserved_segments); | 
 |  | 
 | 	/* main segments - reserved segments - (node + data segments) */ | 
 | 	if (c.feature & F2FS_FEATURE_RO) | 
 | 		used_segments += 2; | 
 | 	else | 
 | 		used_segments += 6; | 
 |  | 
 | 	set_cp(user_block_count, (f2fs_get_usable_segments(sb) - | 
 | 			get_cp(overprov_segment_count)) * c.blks_per_seg); | 
 | 	set_cp(free_segment_count, f2fs_get_usable_segments(sb) - | 
 | 			used_segments); | 
 |  | 
 | 	/* cp page (2), data summaries (1), node summaries (3) */ | 
 | 	set_cp(cp_pack_total_block_count, 6 + get_sb(cp_payload)); | 
 | 	flags = CP_UMOUNT_FLAG | CP_COMPACT_SUM_FLAG; | 
 | 	if (get_cp(cp_pack_total_block_count) <= | 
 | 			(1 << get_sb(log_blocks_per_seg)) - nat_bits_blocks) | 
 | 		flags |= CP_NAT_BITS_FLAG; | 
 |  | 
 | 	if (c.trimmed) | 
 | 		flags |= CP_TRIMMED_FLAG; | 
 |  | 
 | 	if (c.large_nat_bitmap) | 
 | 		flags |= CP_LARGE_NAT_BITMAP_FLAG; | 
 |  | 
 | 	set_cp(ckpt_flags, flags); | 
 | 	set_cp(cp_pack_start_sum, 1 + get_sb(cp_payload)); | 
 | 	set_cp(valid_node_count, c.curseg_offset[CURSEG_HOT_NODE] + | 
 | 			c.curseg_offset[CURSEG_COLD_NODE]); | 
 | 	set_cp(valid_inode_count, c.curseg_offset[CURSEG_HOT_NODE] + | 
 | 			c.curseg_offset[CURSEG_COLD_NODE]); | 
 | 	set_cp(next_free_nid, c.next_free_nid); | 
 | 	set_cp(sit_ver_bitmap_bytesize, ((get_sb(segment_count_sit) / 2) << | 
 | 			get_sb(log_blocks_per_seg)) / 8); | 
 |  | 
 | 	set_cp(nat_ver_bitmap_bytesize, ((get_sb(segment_count_nat) / 2) << | 
 | 			 get_sb(log_blocks_per_seg)) / 8); | 
 |  | 
 | 	if (c.large_nat_bitmap) | 
 | 		set_cp(checksum_offset, CP_MIN_CHKSUM_OFFSET); | 
 | 	else | 
 | 		set_cp(checksum_offset, CP_CHKSUM_OFFSET); | 
 |  | 
 | 	crc = f2fs_checkpoint_chksum(cp); | 
 | 	*((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) = | 
 | 							cpu_to_le32(crc); | 
 |  | 
 | 	blk_size_bytes = 1 << get_sb(log_blocksize); | 
 |  | 
 | 	if (blk_size_bytes != F2FS_BLKSIZE) { | 
 | 		MSG(1, "\tError: Wrong block size %d / %d!!!\n", | 
 | 					blk_size_bytes, F2FS_BLKSIZE); | 
 | 		goto free_cp_payload; | 
 | 	} | 
 |  | 
 | 	cp_seg_blk = get_sb(segment0_blkaddr); | 
 |  | 
 | 	DBG(1, "\tWriting main segments, cp at offset 0x%08"PRIx64"\n", | 
 | 						cp_seg_blk); | 
 | 	if (dev_write_block(cp, cp_seg_blk, WRITE_LIFE_NONE)) { | 
 | 		MSG(1, "\tError: While writing the cp to disk!!!\n"); | 
 | 		goto free_cp_payload; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < get_sb(cp_payload); i++) { | 
 | 		cp_seg_blk++; | 
 | 		if (dev_fill_block(cp_payload, cp_seg_blk, WRITE_LIFE_NONE)) { | 
 | 			MSG(1, "\tError: While zeroing out the sit bitmap area " | 
 | 					"on disk!!!\n"); | 
 | 			goto free_cp_payload; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Prepare and write Segment summary for HOT/WARM/COLD DATA | 
 | 	 * | 
 | 	 * The structure of compact summary | 
 | 	 * +-------------------+ | 
 | 	 * | nat_journal       | | 
 | 	 * +-------------------+ | 
 | 	 * | sit_journal       | | 
 | 	 * +-------------------+ | 
 | 	 * | hot data summary  | | 
 | 	 * +-------------------+ | 
 | 	 * | warm data summary | | 
 | 	 * +-------------------+ | 
 | 	 * | cold data summary | | 
 | 	 * +-------------------+ | 
 | 	*/ | 
 |  | 
 | 	/* nat_sjournal */ | 
 | 	journal = &c.nat_jnl; | 
 | 	memcpy(sum_compact_p, &journal->n_nats, SUM_JOURNAL_SIZE); | 
 | 	sum_compact_p += SUM_JOURNAL_SIZE; | 
 |  | 
 | 	/* sit_journal */ | 
 | 	journal = &c.sit_jnl; | 
 |  | 
 | 	if (c.feature & F2FS_FEATURE_RO) { | 
 | 		i = CURSEG_RO_HOT_DATA; | 
 | 		vblocks = le16_to_cpu(journal->sit_j.entries[i].se.vblocks); | 
 | 		journal->sit_j.entries[i].segno = cp->cur_data_segno[0]; | 
 | 		journal->sit_j.entries[i].se.vblocks = | 
 | 				cpu_to_le16(vblocks | (CURSEG_HOT_DATA << 10)); | 
 |  | 
 | 		i = CURSEG_RO_HOT_NODE; | 
 | 		vblocks = le16_to_cpu(journal->sit_j.entries[i].se.vblocks); | 
 | 		journal->sit_j.entries[i].segno = cp->cur_node_segno[0]; | 
 | 		journal->sit_j.entries[i].se.vblocks |= | 
 | 				cpu_to_le16(vblocks | (CURSEG_HOT_NODE << 10)); | 
 |  | 
 | 		journal->n_sits = cpu_to_le16(2); | 
 | 	} else { | 
 | 		for (i = CURSEG_HOT_DATA; i < NR_CURSEG_TYPE; i++) { | 
 | 			if (i < NR_CURSEG_DATA_TYPE) | 
 | 				journal->sit_j.entries[i].segno = | 
 | 					cp->cur_data_segno[i]; | 
 |  | 
 | 			else | 
 | 				journal->sit_j.entries[i].segno = | 
 | 					cp->cur_node_segno[i - NR_CURSEG_DATA_TYPE]; | 
 |  | 
 | 			vblocks = | 
 | 				le16_to_cpu(journal->sit_j.entries[i].se.vblocks); | 
 | 			journal->sit_j.entries[i].se.vblocks = | 
 | 						cpu_to_le16(vblocks | (i << 10)); | 
 | 		} | 
 |  | 
 | 		journal->n_sits = cpu_to_le16(6); | 
 | 	} | 
 |  | 
 | 	memcpy(sum_compact_p, &journal->n_sits, SUM_JOURNAL_SIZE); | 
 | 	sum_compact_p += SUM_JOURNAL_SIZE; | 
 |  | 
 | 	/* hot data summary */ | 
 | 	memset(sum, 0, F2FS_BLKSIZE); | 
 | 	SET_SUM_TYPE(sum, SUM_TYPE_DATA); | 
 |  | 
 | 	sum_entry = (struct f2fs_summary *)sum_compact_p; | 
 | 	memcpy(sum_entry, c.sum[CURSEG_HOT_DATA], | 
 | 			sizeof(struct f2fs_summary) * MAX_CACHE_SUMS); | 
 |  | 
 | 	/* warm data summary, nothing to do */ | 
 | 	/* cold data summary, nothing to do */ | 
 |  | 
 | 	cp_seg_blk++; | 
 | 	DBG(1, "\tWriting Segment summary for HOT/WARM/COLD_DATA, at offset 0x%08"PRIx64"\n", | 
 | 			cp_seg_blk); | 
 | 	if (dev_write_block(sum_compact, cp_seg_blk, WRITE_LIFE_NONE)) { | 
 | 		MSG(1, "\tError: While writing the sum_blk to disk!!!\n"); | 
 | 		goto free_cp_payload; | 
 | 	} | 
 |  | 
 | 	/* Prepare and write Segment summary for HOT_NODE */ | 
 | 	memset(sum, 0, F2FS_BLKSIZE); | 
 | 	SET_SUM_TYPE(sum, SUM_TYPE_NODE); | 
 | 	memcpy(sum->entries, c.sum[CURSEG_HOT_NODE], | 
 | 			sizeof(struct f2fs_summary) * MAX_CACHE_SUMS); | 
 |  | 
 | 	cp_seg_blk++; | 
 | 	DBG(1, "\tWriting Segment summary for HOT_NODE, at offset 0x%08"PRIx64"\n", | 
 | 			cp_seg_blk); | 
 | 	if (dev_write_block(sum, cp_seg_blk, WRITE_LIFE_NONE)) { | 
 | 		MSG(1, "\tError: While writing the sum_blk to disk!!!\n"); | 
 | 		goto free_cp_payload; | 
 | 	} | 
 |  | 
 | 	/* Fill segment summary for WARM_NODE to zero. */ | 
 | 	memset(sum, 0, F2FS_BLKSIZE); | 
 | 	SET_SUM_TYPE(sum, SUM_TYPE_NODE); | 
 |  | 
 | 	cp_seg_blk++; | 
 | 	DBG(1, "\tWriting Segment summary for WARM_NODE, at offset 0x%08"PRIx64"\n", | 
 | 			cp_seg_blk); | 
 | 	if (dev_write_block(sum, cp_seg_blk, WRITE_LIFE_NONE)) { | 
 | 		MSG(1, "\tError: While writing the sum_blk to disk!!!\n"); | 
 | 		goto free_cp_payload; | 
 | 	} | 
 |  | 
 | 	/* Prepare and write Segment summary for COLD_NODE */ | 
 | 	memset(sum, 0, F2FS_BLKSIZE); | 
 | 	SET_SUM_TYPE(sum, SUM_TYPE_NODE); | 
 | 	memcpy(sum->entries, c.sum[CURSEG_COLD_NODE], | 
 | 			sizeof(struct f2fs_summary) * MAX_CACHE_SUMS); | 
 |  | 
 | 	cp_seg_blk++; | 
 | 	DBG(1, "\tWriting Segment summary for COLD_NODE, at offset 0x%08"PRIx64"\n", | 
 | 			cp_seg_blk); | 
 | 	if (dev_write_block(sum, cp_seg_blk, WRITE_LIFE_NONE)) { | 
 | 		MSG(1, "\tError: While writing the sum_blk to disk!!!\n"); | 
 | 		goto free_cp_payload; | 
 | 	} | 
 |  | 
 | 	/* cp page2 */ | 
 | 	cp_seg_blk++; | 
 | 	DBG(1, "\tWriting cp page2, at offset 0x%08"PRIx64"\n", cp_seg_blk); | 
 | 	if (dev_write_block(cp, cp_seg_blk, WRITE_LIFE_NONE)) { | 
 | 		MSG(1, "\tError: While writing the cp to disk!!!\n"); | 
 | 		goto free_cp_payload; | 
 | 	} | 
 |  | 
 | 	/* write NAT bits, if possible */ | 
 | 	if (flags & CP_NAT_BITS_FLAG) { | 
 | 		uint32_t i; | 
 |  | 
 | 		*(__le64 *)nat_bits = get_cp_crc(cp); | 
 | 		empty_nat_bits = nat_bits + 8 + nat_bits_bytes; | 
 | 		memset(empty_nat_bits, 0xff, nat_bits_bytes); | 
 | 		test_and_clear_bit_le(0, empty_nat_bits); | 
 |  | 
 | 		/* write the last blocks in cp pack */ | 
 | 		cp_seg_blk = get_sb(segment0_blkaddr) + (1 << | 
 | 				get_sb(log_blocks_per_seg)) - nat_bits_blocks; | 
 |  | 
 | 		DBG(1, "\tWriting NAT bits pages, at offset 0x%08"PRIx64"\n", | 
 | 					cp_seg_blk); | 
 |  | 
 | 		for (i = 0; i < nat_bits_blocks; i++) { | 
 | 			if (dev_write_block(nat_bits + i * | 
 | 						F2FS_BLKSIZE, cp_seg_blk + i, | 
 | 						WRITE_LIFE_NONE)) { | 
 | 				MSG(1, "\tError: write NAT bits to disk!!!\n"); | 
 | 				goto free_cp_payload; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* cp page 1 of check point pack 2 | 
 | 	 * Initialize other checkpoint pack with version zero | 
 | 	 */ | 
 | 	cp->checkpoint_ver = 0; | 
 |  | 
 | 	crc = f2fs_checkpoint_chksum(cp); | 
 | 	*((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) = | 
 | 							cpu_to_le32(crc); | 
 | 	cp_seg_blk = get_sb(segment0_blkaddr) + c.blks_per_seg; | 
 | 	DBG(1, "\tWriting cp page 1 of checkpoint pack 2, at offset 0x%08"PRIx64"\n", | 
 | 				cp_seg_blk); | 
 | 	if (dev_write_block(cp, cp_seg_blk, WRITE_LIFE_NONE)) { | 
 | 		MSG(1, "\tError: While writing the cp to disk!!!\n"); | 
 | 		goto free_cp_payload; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < get_sb(cp_payload); i++) { | 
 | 		cp_seg_blk++; | 
 | 		if (dev_fill_block(cp_payload, cp_seg_blk, WRITE_LIFE_NONE)) { | 
 | 			MSG(1, "\tError: While zeroing out the sit bitmap area " | 
 | 					"on disk!!!\n"); | 
 | 			goto free_cp_payload; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* cp page 2 of check point pack 2 */ | 
 | 	cp_seg_blk += (le32_to_cpu(cp->cp_pack_total_block_count) - | 
 | 					get_sb(cp_payload) - 1); | 
 | 	DBG(1, "\tWriting cp page 2 of checkpoint pack 2, at offset 0x%08"PRIx64"\n", | 
 | 				cp_seg_blk); | 
 | 	if (dev_write_block(cp, cp_seg_blk, WRITE_LIFE_NONE)) { | 
 | 		MSG(1, "\tError: While writing the cp to disk!!!\n"); | 
 | 		goto free_cp_payload; | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | free_cp_payload: | 
 | 	free(cp_payload); | 
 | free_nat_bits: | 
 | 	free(nat_bits); | 
 | free_sum_compact: | 
 | 	free(sum_compact); | 
 | free_sum: | 
 | 	free(sum); | 
 | free_cp: | 
 | 	free(cp); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int f2fs_write_super_block(void) | 
 | { | 
 | 	int index; | 
 | 	uint8_t *zero_buff; | 
 |  | 
 | 	zero_buff = calloc(F2FS_BLKSIZE, 1); | 
 | 	if (zero_buff == NULL) { | 
 | 		MSG(1, "\tError: Calloc Failed for super_blk_zero_buf!!!\n"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	memcpy(zero_buff + F2FS_SUPER_OFFSET, sb, sizeof(*sb)); | 
 | 	DBG(1, "\tWriting super block, at offset 0x%08x\n", 0); | 
 | 	for (index = 0; index < 2; index++) { | 
 | 		if (dev_write_block(zero_buff, index, WRITE_LIFE_NONE)) { | 
 | 			MSG(1, "\tError: While while writing super_blk " | 
 | 					"on disk!!! index : %d\n", index); | 
 | 			free(zero_buff); | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	free(zero_buff); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifndef WITH_ANDROID | 
 | static int f2fs_discard_obsolete_dnode(void) | 
 | { | 
 | 	struct f2fs_node *raw_node; | 
 | 	uint64_t next_blkaddr = 0, offset; | 
 | 	u64 end_blkaddr = (get_sb(segment_count_main) << | 
 | 			get_sb(log_blocks_per_seg)) + get_sb(main_blkaddr); | 
 | 	uint64_t start_inode_pos = get_sb(main_blkaddr); | 
 | 	uint64_t last_inode_pos; | 
 |  | 
 | 	if (c.zoned_mode || c.feature & F2FS_FEATURE_RO) | 
 | 		return 0; | 
 |  | 
 | 	raw_node = calloc(F2FS_BLKSIZE, 1); | 
 | 	if (raw_node == NULL) { | 
 | 		MSG(1, "\tError: Calloc Failed for discard_raw_node!!!\n"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	/* avoid power-off-recovery based on roll-forward policy */ | 
 | 	offset = get_sb(main_blkaddr); | 
 | 	offset += c.cur_seg[CURSEG_WARM_NODE] * c.blks_per_seg; | 
 |  | 
 | 	last_inode_pos = start_inode_pos + | 
 | 		c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg + | 
 | 		c.curseg_offset[CURSEG_COLD_NODE] - 1; | 
 |  | 
 | 	do { | 
 | 		if (offset < get_sb(main_blkaddr) || offset >= end_blkaddr) | 
 | 			break; | 
 |  | 
 | 		if (dev_read_block(raw_node, offset)) { | 
 | 			MSG(1, "\tError: While traversing direct node!!!\n"); | 
 | 			free(raw_node); | 
 | 			return -1; | 
 | 		} | 
 |  | 
 | 		next_blkaddr = le32_to_cpu(F2FS_NODE_FOOTER(raw_node)->next_blkaddr); | 
 | 		memset(raw_node, 0, F2FS_BLKSIZE); | 
 |  | 
 | 		DBG(1, "\tDiscard dnode, at offset 0x%08"PRIx64"\n", offset); | 
 | 		if (dev_write_block(raw_node, offset, | 
 | 				    f2fs_io_type_to_rw_hint(CURSEG_WARM_NODE))) { | 
 | 			MSG(1, "\tError: While discarding direct node!!!\n"); | 
 | 			free(raw_node); | 
 | 			return -1; | 
 | 		} | 
 | 		offset = next_blkaddr; | 
 | 		/* should avoid recursive chain due to stale data */ | 
 | 		if (offset >= start_inode_pos || offset <= last_inode_pos) | 
 | 			break; | 
 | 	} while (1); | 
 |  | 
 | 	free(raw_node); | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static block_t alloc_next_free_block(int curseg_type) | 
 | { | 
 | 	block_t blkaddr; | 
 |  | 
 | 	blkaddr = get_sb(main_blkaddr) + | 
 | 			c.cur_seg[curseg_type] * c.blks_per_seg + | 
 | 			c.curseg_offset[curseg_type]; | 
 |  | 
 | 	c.curseg_offset[curseg_type]++; | 
 |  | 
 | 	return blkaddr; | 
 | } | 
 |  | 
 | void update_sit_journal(int curseg_type) | 
 | { | 
 | 	struct f2fs_journal *sit_jnl = &c.sit_jnl; | 
 | 	unsigned short vblocks; | 
 | 	int idx = curseg_type; | 
 |  | 
 | 	if (c.feature & F2FS_FEATURE_RO) { | 
 | 		if (curseg_type < NR_CURSEG_DATA_TYPE) | 
 | 			idx = CURSEG_RO_HOT_DATA; | 
 | 		else | 
 | 			idx = CURSEG_RO_HOT_NODE; | 
 | 	} | 
 |  | 
 | 	f2fs_set_bit(c.curseg_offset[curseg_type] - 1, | 
 | 		(char *)sit_jnl->sit_j.entries[idx].se.valid_map); | 
 |  | 
 | 	vblocks = le16_to_cpu(sit_jnl->sit_j.entries[idx].se.vblocks); | 
 | 	sit_jnl->sit_j.entries[idx].se.vblocks = cpu_to_le16(vblocks + 1); | 
 | } | 
 |  | 
 | void update_nat_journal(nid_t nid, block_t blkaddr) | 
 | { | 
 | 	struct f2fs_journal *nat_jnl = &c.nat_jnl; | 
 | 	unsigned short n_nats = le16_to_cpu(nat_jnl->n_nats); | 
 |  | 
 | 	nat_jnl->nat_j.entries[n_nats].nid = cpu_to_le32(nid); | 
 | 	nat_jnl->nat_j.entries[n_nats].ne.version = 0; | 
 | 	nat_jnl->nat_j.entries[n_nats].ne.ino = cpu_to_le32(nid); | 
 | 	nat_jnl->nat_j.entries[n_nats].ne.block_addr = cpu_to_le32(blkaddr); | 
 | 	nat_jnl->n_nats = cpu_to_le16(n_nats + 1); | 
 | } | 
 |  | 
 | void update_summary_entry(int curseg_type, nid_t nid, | 
 | 					unsigned short ofs_in_node) | 
 | { | 
 | 	struct f2fs_summary *sum; | 
 | 	unsigned int curofs = c.curseg_offset[curseg_type] - 1; | 
 |  | 
 | 	assert(curofs < MAX_CACHE_SUMS); | 
 |  | 
 | 	sum = c.sum[curseg_type] + curofs; | 
 | 	sum->nid = cpu_to_le32(nid); | 
 | 	sum->ofs_in_node = cpu_to_le16(ofs_in_node); | 
 | } | 
 |  | 
 | static void add_dentry(struct f2fs_dentry_block *dent_blk, unsigned int *didx, | 
 | 		const char *name, uint32_t ino, u8 type) | 
 | { | 
 | 	int len = strlen(name); | 
 | 	f2fs_hash_t hash; | 
 |  | 
 | 	if (name[0] == '.' && (len == 1 || (len == 2 && name[1] == '.'))) | 
 | 		hash = 0; | 
 | 	else | 
 | 		hash = f2fs_dentry_hash(0, 0, (unsigned char *)name, len); | 
 |  | 
 | 	F2FS_DENTRY_BLOCK_DENTRY(dent_blk, *didx).hash_code = cpu_to_le32(hash); | 
 | 	F2FS_DENTRY_BLOCK_DENTRY(dent_blk, *didx).ino = cpu_to_le32(ino); | 
 | 	F2FS_DENTRY_BLOCK_DENTRY(dent_blk, *didx).name_len = cpu_to_le16(len); | 
 | 	F2FS_DENTRY_BLOCK_DENTRY(dent_blk, *didx).file_type = type; | 
 |  | 
 | 	while (len > F2FS_SLOT_LEN) { | 
 | 		memcpy(F2FS_DENTRY_BLOCK_FILENAME(dent_blk, *didx), name, | 
 | 				F2FS_SLOT_LEN); | 
 | 		test_and_set_bit_le(*didx, dent_blk->dentry_bitmap); | 
 | 		len -= (int)F2FS_SLOT_LEN; | 
 | 		name += F2FS_SLOT_LEN; | 
 | 		(*didx)++; | 
 | 	} | 
 | 	memcpy(F2FS_DENTRY_BLOCK_FILENAME(dent_blk, *didx), name, len); | 
 | 	test_and_set_bit_le(*didx, dent_blk->dentry_bitmap); | 
 | 	(*didx)++; | 
 | } | 
 |  | 
 | static block_t f2fs_add_default_dentry_root(void) | 
 | { | 
 | 	struct f2fs_dentry_block *dent_blk = NULL; | 
 | 	block_t data_blkaddr; | 
 | 	unsigned int didx = 0; | 
 |  | 
 | 	dent_blk = calloc(F2FS_BLKSIZE, 1); | 
 | 	if(dent_blk == NULL) { | 
 | 		MSG(1, "\tError: Calloc Failed for dent_blk!!!\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	add_dentry(dent_blk, &didx, ".", | 
 | 			le32_to_cpu(sb->root_ino), F2FS_FT_DIR); | 
 | 	add_dentry(dent_blk, &didx, "..", | 
 | 			le32_to_cpu(sb->root_ino), F2FS_FT_DIR); | 
 |  | 
 | 	if (c.lpf_ino) | 
 | 		add_dentry(dent_blk, &didx, LPF, c.lpf_ino, F2FS_FT_DIR); | 
 |  | 
 | 	if (c.aliased_devices) { | 
 | 		int i, dev_off = 0; | 
 |  | 
 | 		for (i = 1; i < c.ndevs; i++) { | 
 | 			if (!device_is_aliased(i)) | 
 | 				continue; | 
 |  | 
 | 			add_dentry(dent_blk, &didx, c.devices[i].alias_filename, | 
 | 					c.first_alias_ino + dev_off, | 
 | 					F2FS_FT_REG_FILE); | 
 | 			dev_off++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	data_blkaddr = alloc_next_free_block(CURSEG_HOT_DATA); | 
 |  | 
 | 	DBG(1, "\tWriting default dentry root, at offset 0x%x\n", data_blkaddr); | 
 | 	if (dev_write_block(dent_blk, data_blkaddr, | 
 | 			    f2fs_io_type_to_rw_hint(CURSEG_HOT_DATA))) { | 
 | 		MSG(1, "\tError: While writing the dentry_blk to disk!!!\n"); | 
 | 		free(dent_blk); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	update_sit_journal(CURSEG_HOT_DATA); | 
 | 	update_summary_entry(CURSEG_HOT_DATA, le32_to_cpu(sb->root_ino), 0); | 
 |  | 
 | 	free(dent_blk); | 
 | 	return data_blkaddr; | 
 | } | 
 |  | 
 | static int f2fs_write_root_inode(void) | 
 | { | 
 | 	struct f2fs_node *raw_node = NULL; | 
 | 	block_t data_blkaddr; | 
 | 	block_t node_blkaddr; | 
 |  | 
 | 	raw_node = calloc(F2FS_BLKSIZE, 1); | 
 | 	if (raw_node == NULL) { | 
 | 		MSG(1, "\tError: Calloc Failed for raw_node!!!\n"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	f2fs_init_inode(sb, raw_node, le32_to_cpu(sb->root_ino), | 
 | 						mkfs_time, 0x41ed); | 
 |  | 
 | 	if (c.lpf_ino) | 
 | 		raw_node->i.i_links = cpu_to_le32(3); | 
 |  | 
 | 	data_blkaddr = f2fs_add_default_dentry_root(); | 
 | 	if (data_blkaddr == 0) { | 
 | 		MSG(1, "\tError: Failed to add default dentries for root!!!\n"); | 
 | 		free(raw_node); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	raw_node->i.i_addr[get_extra_isize(raw_node)] = | 
 | 				cpu_to_le32(data_blkaddr); | 
 |  | 
 | 	node_blkaddr = alloc_next_free_block(CURSEG_HOT_NODE); | 
 | 	F2FS_NODE_FOOTER(raw_node)->next_blkaddr = cpu_to_le32(node_blkaddr + 1); | 
 |  | 
 | 	DBG(1, "\tWriting root inode (hot node), offset 0x%x\n", node_blkaddr); | 
 | 	if (write_inode(raw_node, node_blkaddr, | 
 | 			f2fs_io_type_to_rw_hint(CURSEG_HOT_NODE)) < 0) { | 
 | 		MSG(1, "\tError: While writing the raw_node to disk!!!\n"); | 
 | 		free(raw_node); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	update_nat_journal(le32_to_cpu(sb->root_ino), node_blkaddr); | 
 | 	update_sit_journal(CURSEG_HOT_NODE); | 
 | 	update_summary_entry(CURSEG_HOT_NODE, le32_to_cpu(sb->root_ino), 0); | 
 |  | 
 | 	free(raw_node); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int f2fs_write_default_quota(int qtype, __le32 raw_id) | 
 | { | 
 | 	char *filebuf = calloc(F2FS_BLKSIZE, 2); | 
 | 	int file_magics[] = INITQMAGICS; | 
 | 	struct v2_disk_dqheader ddqheader; | 
 | 	struct v2_disk_dqinfo ddqinfo; | 
 | 	struct v2r1_disk_dqblk dqblk; | 
 | 	block_t blkaddr; | 
 | 	uint64_t icnt = 1, bcnt = 1; | 
 | 	int i; | 
 |  | 
 | 	if (filebuf == NULL) { | 
 | 		MSG(1, "\tError: Calloc Failed for filebuf!!!\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Write basic quota header */ | 
 | 	ddqheader.dqh_magic = cpu_to_le32(file_magics[qtype]); | 
 | 	/* only support QF_VFSV1 */ | 
 | 	ddqheader.dqh_version = cpu_to_le32(1); | 
 |  | 
 | 	memcpy(filebuf, &ddqheader, sizeof(ddqheader)); | 
 |  | 
 | 	/* Fill Initial quota file content */ | 
 | 	ddqinfo.dqi_bgrace = cpu_to_le32(MAX_DQ_TIME); | 
 | 	ddqinfo.dqi_igrace = cpu_to_le32(MAX_IQ_TIME); | 
 | 	ddqinfo.dqi_flags = cpu_to_le32(0); | 
 | 	ddqinfo.dqi_blocks = cpu_to_le32(QT_TREEOFF + 5); | 
 | 	ddqinfo.dqi_free_blk = cpu_to_le32(0); | 
 | 	ddqinfo.dqi_free_entry = cpu_to_le32(5); | 
 |  | 
 | 	memcpy(filebuf + V2_DQINFOOFF, &ddqinfo, sizeof(ddqinfo)); | 
 |  | 
 | 	filebuf[1024] = 2; | 
 | 	filebuf[2048] = 3; | 
 | 	filebuf[3072] = 4; | 
 | 	filebuf[4096] = 5; | 
 |  | 
 | 	filebuf[5120 + 8] = 1; | 
 |  | 
 | 	dqblk.dqb_id = raw_id; | 
 | 	dqblk.dqb_pad = cpu_to_le32(0); | 
 | 	dqblk.dqb_ihardlimit = cpu_to_le64(0); | 
 | 	dqblk.dqb_isoftlimit = cpu_to_le64(0); | 
 | 	if (c.lpf_ino) { | 
 | 		icnt++; | 
 | 		bcnt++; | 
 | 	} | 
 | 	if (c.aliased_devices) { | 
 | 		icnt += c.aliased_devices; | 
 | 		bcnt += c.aliased_segments * c.blks_per_seg; | 
 | 	} | 
 | 	dqblk.dqb_curinodes = cpu_to_le64(icnt); | 
 | 	dqblk.dqb_bhardlimit = cpu_to_le64(0); | 
 | 	dqblk.dqb_bsoftlimit = cpu_to_le64(0); | 
 | 	dqblk.dqb_curspace = cpu_to_le64(F2FS_BLKSIZE * bcnt); | 
 | 	dqblk.dqb_btime = cpu_to_le64(0); | 
 | 	dqblk.dqb_itime = cpu_to_le64(0); | 
 |  | 
 | 	memcpy(filebuf + 5136, &dqblk, sizeof(struct v2r1_disk_dqblk)); | 
 |  | 
 | 	/* Write quota blocks */ | 
 | 	for (i = 0; i < QUOTA_DATA; i++) { | 
 | 		blkaddr = alloc_next_free_block(CURSEG_HOT_DATA); | 
 |  | 
 | 		if (dev_write_block(filebuf + i * F2FS_BLKSIZE, blkaddr, | 
 | 				    f2fs_io_type_to_rw_hint(CURSEG_HOT_DATA))) { | 
 | 			MSG(1, "\tError: While writing the quota_blk to disk!!!\n"); | 
 | 			free(filebuf); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		update_sit_journal(CURSEG_HOT_DATA); | 
 | 		update_summary_entry(CURSEG_HOT_DATA, | 
 | 					le32_to_cpu(sb->qf_ino[qtype]), i); | 
 | 		DBG(1, "\tWriting quota data, at offset %08x (%d/%d)\n", | 
 | 						blkaddr, i + 1, QUOTA_DATA); | 
 |  | 
 | 	} | 
 |  | 
 | 	free(filebuf); | 
 | 	return blkaddr + 1 - QUOTA_DATA; | 
 | } | 
 |  | 
 | static int f2fs_write_qf_inode(int qtype) | 
 | { | 
 | 	struct f2fs_node *raw_node = NULL; | 
 | 	block_t data_blkaddr; | 
 | 	block_t node_blkaddr; | 
 | 	__le32 raw_id; | 
 | 	int i; | 
 |  | 
 | 	raw_node = calloc(F2FS_BLKSIZE, 1); | 
 | 	if (raw_node == NULL) { | 
 | 		MSG(1, "\tError: Calloc Failed for raw_node!!!\n"); | 
 | 		return -1; | 
 | 	} | 
 | 	f2fs_init_inode(sb, raw_node, | 
 | 			le32_to_cpu(sb->qf_ino[qtype]), mkfs_time, 0x8180); | 
 |  | 
 | 	raw_node->i.i_size = cpu_to_le64(1024 * 6); | 
 | 	raw_node->i.i_blocks = cpu_to_le64(1 + QUOTA_DATA); | 
 | 	raw_node->i.i_flags = cpu_to_le32(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); | 
 |  | 
 | 	node_blkaddr = alloc_next_free_block(CURSEG_HOT_NODE); | 
 | 	F2FS_NODE_FOOTER(raw_node)->next_blkaddr = cpu_to_le32(node_blkaddr + 1); | 
 |  | 
 | 	if (qtype == 0) | 
 | 		raw_id = raw_node->i.i_uid; | 
 | 	else if (qtype == 1) | 
 | 		raw_id = raw_node->i.i_gid; | 
 | 	else if (qtype == 2) | 
 | 		raw_id = raw_node->i.i_projid; | 
 | 	else | 
 | 		ASSERT(0); | 
 |  | 
 | 	/* write quota blocks */ | 
 | 	data_blkaddr = f2fs_write_default_quota(qtype, raw_id); | 
 | 	if (data_blkaddr == 0) { | 
 | 		free(raw_node); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < QUOTA_DATA; i++) | 
 | 		raw_node->i.i_addr[get_extra_isize(raw_node) + i] = | 
 | 					cpu_to_le32(data_blkaddr + i); | 
 |  | 
 | 	DBG(1, "\tWriting quota inode (hot node), offset 0x%x\n", node_blkaddr); | 
 | 	if (write_inode(raw_node, node_blkaddr, | 
 | 			f2fs_io_type_to_rw_hint(CURSEG_HOT_NODE)) < 0) { | 
 | 		MSG(1, "\tError: While writing the raw_node to disk!!!\n"); | 
 | 		free(raw_node); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	update_nat_journal(le32_to_cpu(sb->qf_ino[qtype]), node_blkaddr); | 
 | 	update_sit_journal(CURSEG_HOT_NODE); | 
 | 	update_summary_entry(CURSEG_HOT_NODE, le32_to_cpu(sb->qf_ino[qtype]), 0); | 
 |  | 
 | 	free(raw_node); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int f2fs_update_nat_default(void) | 
 | { | 
 | 	struct f2fs_nat_block *nat_blk = NULL; | 
 | 	uint64_t nat_seg_blk_offset = 0; | 
 |  | 
 | 	nat_blk = calloc(F2FS_BLKSIZE, 1); | 
 | 	if(nat_blk == NULL) { | 
 | 		MSG(1, "\tError: Calloc Failed for nat_blk!!!\n"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	/* update node nat */ | 
 | 	nat_blk->entries[get_sb(node_ino)].block_addr = cpu_to_le32(1); | 
 | 	nat_blk->entries[get_sb(node_ino)].ino = sb->node_ino; | 
 |  | 
 | 	/* update meta nat */ | 
 | 	nat_blk->entries[get_sb(meta_ino)].block_addr = cpu_to_le32(1); | 
 | 	nat_blk->entries[get_sb(meta_ino)].ino = sb->meta_ino; | 
 |  | 
 | 	nat_seg_blk_offset = get_sb(nat_blkaddr); | 
 |  | 
 | 	DBG(1, "\tWriting nat root, at offset 0x%08"PRIx64"\n", | 
 | 					nat_seg_blk_offset); | 
 | 	if (dev_write_block(nat_blk, nat_seg_blk_offset, WRITE_LIFE_NONE)) { | 
 | 		MSG(1, "\tError: While writing the nat_blk set0 to disk!\n"); | 
 | 		free(nat_blk); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	free(nat_blk); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static block_t f2fs_add_default_dentry_lpf(void) | 
 | { | 
 | 	struct f2fs_dentry_block *dent_blk; | 
 | 	block_t data_blkaddr; | 
 | 	unsigned int didx = 0; | 
 |  | 
 | 	dent_blk = calloc(F2FS_BLKSIZE, 1); | 
 | 	if (dent_blk == NULL) { | 
 | 		MSG(1, "\tError: Calloc Failed for dent_blk!!!\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	add_dentry(dent_blk, &didx, ".", c.lpf_ino, F2FS_FT_DIR); | 
 | 	add_dentry(dent_blk, &didx, "..", c.lpf_ino, F2FS_FT_DIR); | 
 |  | 
 | 	data_blkaddr = alloc_next_free_block(CURSEG_HOT_DATA); | 
 |  | 
 | 	DBG(1, "\tWriting default dentry lost+found, at offset 0x%x\n", | 
 | 							data_blkaddr); | 
 | 	if (dev_write_block(dent_blk, data_blkaddr, | 
 | 			    f2fs_io_type_to_rw_hint(CURSEG_HOT_DATA))) { | 
 | 		MSG(1, "\tError While writing the dentry_blk to disk!!!\n"); | 
 | 		free(dent_blk); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	update_sit_journal(CURSEG_HOT_DATA); | 
 | 	update_summary_entry(CURSEG_HOT_DATA, c.lpf_ino, 0); | 
 |  | 
 | 	free(dent_blk); | 
 | 	return data_blkaddr; | 
 | } | 
 |  | 
 | static int f2fs_write_lpf_inode(void) | 
 | { | 
 | 	struct f2fs_node *raw_node; | 
 | 	block_t data_blkaddr; | 
 | 	block_t node_blkaddr; | 
 | 	int err = 0; | 
 |  | 
 | 	ASSERT(c.lpf_ino); | 
 |  | 
 | 	raw_node = calloc(F2FS_BLKSIZE, 1); | 
 | 	if (raw_node == NULL) { | 
 | 		MSG(1, "\tError: Calloc Failed for raw_node!!!\n"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	f2fs_init_inode(sb, raw_node, c.lpf_ino, mkfs_time, 0x41c0); | 
 |  | 
 | 	raw_node->i.i_pino = sb->root_ino; | 
 | 	raw_node->i.i_namelen = cpu_to_le32(strlen(LPF)); | 
 | 	memcpy(raw_node->i.i_name, LPF, strlen(LPF)); | 
 |  | 
 | 	node_blkaddr = alloc_next_free_block(CURSEG_HOT_NODE); | 
 | 	F2FS_NODE_FOOTER(raw_node)->next_blkaddr = cpu_to_le32(node_blkaddr + 1); | 
 |  | 
 | 	data_blkaddr = f2fs_add_default_dentry_lpf(); | 
 | 	if (data_blkaddr == 0) { | 
 | 		MSG(1, "\tError: Failed to add default dentries for lost+found!!!\n"); | 
 | 		err = -1; | 
 | 		goto exit; | 
 | 	} | 
 | 	raw_node->i.i_addr[get_extra_isize(raw_node)] = cpu_to_le32(data_blkaddr); | 
 |  | 
 | 	DBG(1, "\tWriting lost+found inode (hot node), offset 0x%x\n", | 
 | 								node_blkaddr); | 
 | 	if (write_inode(raw_node, node_blkaddr, | 
 | 			f2fs_io_type_to_rw_hint(CURSEG_HOT_NODE)) < 0) { | 
 | 		MSG(1, "\tError: While writing the raw_node to disk!!!\n"); | 
 | 		err = -1; | 
 | 		goto exit; | 
 | 	} | 
 |  | 
 | 	update_nat_journal(c.lpf_ino, node_blkaddr); | 
 | 	update_sit_journal(CURSEG_HOT_NODE); | 
 | 	update_summary_entry(CURSEG_HOT_NODE, c.lpf_ino, 0); | 
 |  | 
 | exit: | 
 | 	free(raw_node); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void allocate_blocks_for_aliased_device(struct f2fs_node *raw_node, | 
 | 		unsigned int dev_num) | 
 | { | 
 | 	uint32_t start_segno = (c.devices[dev_num].start_blkaddr - | 
 | 			get_sb(main_blkaddr)) / c.blks_per_seg; | 
 | 	uint32_t end_segno = (c.devices[dev_num].end_blkaddr - | 
 | 			get_sb(main_blkaddr) + 1) / c.blks_per_seg; | 
 | 	uint32_t segno; | 
 | 	uint64_t blkcnt; | 
 | 	struct f2fs_sit_block *sit_blk = calloc(F2FS_BLKSIZE, 1); | 
 |  | 
 | 	ASSERT(sit_blk); | 
 |  | 
 | 	for (segno = start_segno; segno < end_segno; segno++) { | 
 | 		struct f2fs_sit_entry *sit; | 
 | 		uint64_t sit_blk_addr = get_sb(sit_blkaddr) + | 
 | 			(segno / SIT_ENTRY_PER_BLOCK); | 
 |  | 
 | 		ASSERT(dev_read_block(sit_blk, sit_blk_addr) >= 0); | 
 | 		sit = &sit_blk->entries[segno % SIT_ENTRY_PER_BLOCK]; | 
 | 		memset(&sit->valid_map, 0xFF, SIT_VBLOCK_MAP_SIZE); | 
 | 		sit->vblocks = cpu_to_le16((CURSEG_COLD_DATA << | 
 | 					SIT_VBLOCKS_SHIFT) | c.blks_per_seg); | 
 | 		sit->mtime = cpu_to_le64(mkfs_time); | 
 | 		ASSERT(dev_write_block(sit_blk, sit_blk_addr, | 
 | 			f2fs_io_type_to_rw_hint(CURSEG_COLD_DATA)) >= 0); | 
 | 	} | 
 |  | 
 | 	blkcnt = (end_segno - start_segno) * c.blks_per_seg; | 
 | 	raw_node->i.i_size = cpu_to_le64(blkcnt << get_sb(log_blocksize)); | 
 | 	raw_node->i.i_blocks = cpu_to_le64(blkcnt + 1); | 
 |  | 
 | 	raw_node->i.i_ext.fofs = cpu_to_le32(0); | 
 | 	raw_node->i.i_ext.blk_addr = | 
 | 		cpu_to_le32(c.devices[dev_num].start_blkaddr); | 
 | 	raw_node->i.i_ext.len = cpu_to_le32(blkcnt); | 
 |  | 
 | 	free(sit_blk); | 
 | } | 
 |  | 
 | static int f2fs_write_alias_inodes(void) | 
 | { | 
 | 	struct f2fs_node *raw_node; | 
 | 	block_t node_blkaddr; | 
 | 	int err = 0; | 
 | 	unsigned int i, dev_off = 0; | 
 |  | 
 | 	ASSERT(c.aliased_devices); | 
 |  | 
 | 	raw_node = calloc(F2FS_BLKSIZE, 1); | 
 | 	if (raw_node == NULL) { | 
 | 		MSG(1, "\tError: Calloc Failed for raw_node!!!\n"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	for (i = 1; i < c.ndevs; i++) { | 
 | 		const char *filename; | 
 | 		nid_t ino; | 
 |  | 
 | 		if (!device_is_aliased(i)) | 
 | 			continue; | 
 |  | 
 | 		ino = c.first_alias_ino + dev_off; | 
 | 		dev_off++; | 
 | 		f2fs_init_inode(sb, raw_node, ino, mkfs_time, 0x81c0); | 
 |  | 
 | 		raw_node->i.i_flags = cpu_to_le32(F2FS_IMMUTABLE_FL | | 
 | 				F2FS_DEVICE_ALIAS_FL); | 
 | 		raw_node->i.i_inline = F2FS_PIN_FILE; | 
 | 		raw_node->i.i_pino = sb->root_ino; | 
 | 		filename = c.devices[i].alias_filename; | 
 | 		raw_node->i.i_namelen = cpu_to_le32(strlen(filename)); | 
 | 		memcpy(raw_node->i.i_name, filename, strlen(filename)); | 
 |  | 
 | 		node_blkaddr = alloc_next_free_block(CURSEG_COLD_NODE); | 
 | 		F2FS_NODE_FOOTER(raw_node)->next_blkaddr = | 
 | 			cpu_to_le32(node_blkaddr + 1); | 
 |  | 
 | 		allocate_blocks_for_aliased_device(raw_node, i); | 
 |  | 
 | 		DBG(1, "\tWriting aliased device inode (cold node), " | 
 | 				"offset 0x%x\n", node_blkaddr); | 
 | 		if (write_inode(raw_node, node_blkaddr, | 
 | 			    f2fs_io_type_to_rw_hint(CURSEG_COLD_NODE)) < 0) { | 
 | 			MSG(1, "\tError: While writing the raw_node to " | 
 | 					"disk!!!\n"); | 
 | 			err = -1; | 
 | 			goto exit; | 
 | 		} | 
 |  | 
 | 		update_nat_journal(ino, node_blkaddr); | 
 | 		update_sit_journal(CURSEG_COLD_NODE); | 
 | 		update_summary_entry(CURSEG_COLD_NODE, ino, 0); | 
 | 	} | 
 |  | 
 | exit: | 
 | 	free(raw_node); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int f2fs_create_root_dir(void) | 
 | { | 
 | 	enum quota_type qtype; | 
 | 	int err = 0; | 
 |  | 
 | 	err = f2fs_write_root_inode(); | 
 | 	if (err < 0) { | 
 | 		MSG(1, "\tError: Failed to write root inode!!!\n"); | 
 | 		goto exit; | 
 | 	} | 
 |  | 
 | 	for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++)  { | 
 | 		if (!((1 << qtype) & c.quota_bits)) | 
 | 			continue; | 
 | 		err = f2fs_write_qf_inode(qtype); | 
 | 		if (err < 0) { | 
 | 			MSG(1, "\tError: Failed to write quota inode!!!\n"); | 
 | 			goto exit; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (c.feature & F2FS_FEATURE_LOST_FOUND) { | 
 | 		err = f2fs_write_lpf_inode(); | 
 | 		if (err < 0) { | 
 | 			MSG(1, "\tError: Failed to write lost+found inode!!!\n"); | 
 | 			goto exit; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (c.aliased_devices) { | 
 | 		err = f2fs_write_alias_inodes(); | 
 | 		if (err < 0) { | 
 | 			MSG(1, "\tError: Failed to write aliased device " | 
 | 				"inodes!!!\n"); | 
 | 			goto exit; | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifndef WITH_ANDROID | 
 | 	err = f2fs_discard_obsolete_dnode(); | 
 | 	if (err < 0) { | 
 | 		MSG(1, "\tError: Failed to discard obsolete dnode!!!\n"); | 
 | 		goto exit; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	err = f2fs_update_nat_default(); | 
 | 	if (err < 0) { | 
 | 		MSG(1, "\tError: Failed to update NAT for root!!!\n"); | 
 | 		goto exit; | 
 | 	} | 
 | exit: | 
 | 	if (err) | 
 | 		MSG(1, "\tError: Could not create the root directory!!!\n"); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | int f2fs_format_device(void) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	err= f2fs_prepare_super_block(); | 
 | 	if (err < 0) { | 
 | 		MSG(0, "\tError: Failed to prepare a super block!!!\n"); | 
 | 		goto exit; | 
 | 	} | 
 |  | 
 | 	if (c.trim) { | 
 | 		err = f2fs_trim_devices(); | 
 | 		if (err < 0) { | 
 | 			MSG(0, "\tError: Failed to trim whole device!!!\n"); | 
 | 			goto exit; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	err = f2fs_init_sit_area(); | 
 | 	if (err < 0) { | 
 | 		MSG(0, "\tError: Failed to initialise the SIT AREA!!!\n"); | 
 | 		goto exit; | 
 | 	} | 
 |  | 
 | 	err = f2fs_init_nat_area(); | 
 | 	if (err < 0) { | 
 | 		MSG(0, "\tError: Failed to initialise the NAT AREA!!!\n"); | 
 | 		goto exit; | 
 | 	} | 
 |  | 
 | 	err = f2fs_create_root_dir(); | 
 | 	if (err < 0) { | 
 | 		MSG(0, "\tError: Failed to create the root directory!!!\n"); | 
 | 		goto exit; | 
 | 	} | 
 |  | 
 | 	err = f2fs_write_check_point_pack(); | 
 | 	if (err < 0) { | 
 | 		MSG(0, "\tError: Failed to write the check point pack!!!\n"); | 
 | 		goto exit; | 
 | 	} | 
 |  | 
 | 	err = f2fs_write_super_block(); | 
 | 	if (err < 0) { | 
 | 		MSG(0, "\tError: Failed to write the super block!!!\n"); | 
 | 		goto exit; | 
 | 	} | 
 | exit: | 
 | 	if (err) | 
 | 		MSG(0, "\tError: Could not format the device!!!\n"); | 
 |  | 
 | 	return err; | 
 | } |