blob: 2046e78e88627892276eb5aec4e190599de05815 [file] [log] [blame]
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
// @lint-ignore-every CLANGTIDY
// facebook-security-vulnerable-integer-sign-conversion
#include <executorch/backends/vulkan/runtime/graph/ComputeGraph.h>
#include <executorch/backends/vulkan/runtime/graph/ops/impl/Staging.h>
#include <executorch/backends/vulkan/runtime/graph/ops/utils/StagingUtils.h>
namespace vkcompute {
//
// VTensorPtr
//
#define VALUE_PTR_CLASS_IMPL(classname, ctype, type_name) \
classname::classname(ComputeGraph* const graph, const ValueRef idx) \
: graph_(graph), ptr_(&(graph_->values_.at(idx).to##type_name())) { \
graph_->values_in_use_++; \
} \
ctype* classname::operator->() const { \
return ptr_; \
} \
ctype& classname::operator*() const { \
return *ptr_; \
} \
classname::~classname() { \
graph_->values_in_use_--; \
}
VALUE_PTR_CLASS_IMPL(vTensorPtr, api::vTensor, Tensor)
VALUE_PTR_CLASS_IMPL(TensorRefPtr, TensorRef, TensorRef)
VALUE_PTR_CLASS_IMPL(StagingPtr, api::StorageBuffer, Staging)
VALUE_PTR_CLASS_IMPL(IntListPtr, std::vector<int64_t>, IntList)
VALUE_PTR_CLASS_IMPL(DoubleListPtr, std::vector<double>, DoubleList)
VALUE_PTR_CLASS_IMPL(BoolListPtr, std::vector<bool>, BoolList)
VALUE_PTR_CLASS_IMPL(ValueListPtr, std::vector<ValueRef>, ValueList)
#undef VALUE_PTR_CLASS_IMPL
//
// ComputeGraph
//
ComputeGraph::ComputeGraph(GraphConfig config)
: config_{config},
prepack_descriptor_counts_{},
execute_descriptor_counts_{},
context_{new api::Context(
vkapi::runtime()->default_adapter_i(),
config_.context_config)},
shared_objects_{},
values_{},
param_ubos_{},
prepack_nodes_{},
execute_nodes_{},
inputs_{},
outputs_{} {
// Ensure that descriptor counts are initialized to 0
prepack_descriptor_counts_.descriptor_pool_max_sets = 0;
prepack_descriptor_counts_.descriptor_uniform_buffer_count = 0;
prepack_descriptor_counts_.descriptor_storage_buffer_count = 0;
prepack_descriptor_counts_.descriptor_combined_sampler_count = 0;
prepack_descriptor_counts_.descriptor_storage_image_count = 0;
execute_descriptor_counts_.descriptor_pool_max_sets = 0;
execute_descriptor_counts_.descriptor_uniform_buffer_count = 0;
execute_descriptor_counts_.descriptor_storage_buffer_count = 0;
execute_descriptor_counts_.descriptor_combined_sampler_count = 0;
execute_descriptor_counts_.descriptor_storage_image_count = 0;
context_->set_cmd(/*reusable = */ true);
}
ComputeGraph::~ComputeGraph() {
values_.clear();
prepack_nodes_.clear();
execute_nodes_.clear();
context_->flush();
}
utils::StorageType ComputeGraph::suggested_storage_type() {
if (config_.enable_storage_type_override) {
return config_.storage_type_override;
}
return utils::kTexture3D;
}
utils::GPUMemoryLayout ComputeGraph::suggested_memory_layout(
const std::vector<int64_t>& sizes) {
if (config_.enable_memory_layout_override) {
return config_.memory_layout_override;
}
if (sizes.size() < 3) {
return utils::kWidthPacked;
}
// For 3 dimensional tensors that only have a channels dimension of 1, still
// prefer width packed.
if (utils::val_at(-3, sizes) == 1) {
return utils::kWidthPacked;
}
return utils::kChannelsPacked;
}
void ComputeGraph::check_no_active_value_ptrs() {
VK_CHECK_COND(
values_in_use_ == 0,
"Make sure that there are no pointers stored from the return values of "
"`ComputeGraph::get_*()` functions in scope before adding Values to the "
"graph. Modifying the graph's values may cause existing pointers to be "
"invalidated.");
}
std::vector<int64_t> ComputeGraph::sizes_of(const ValueRef idx) const {
const Value& val = values_.at(idx);
if (val.isTensor()) {
return val.toConstTensor().sizes();
} else if (val.isTensorRef()) {
return val.toConstTensorRef().sizes;
}
VK_THROW("Could not get sizes of value with type ", val.type());
}
vkapi::ScalarType ComputeGraph::dtype_of(const ValueRef idx) const {
const Value& val = values_.at(idx);
if (val.isTensor()) {
return val.toConstTensor().dtype();
} else if (val.isTensorRef()) {
return val.toConstTensorRef().dtype;
}
VK_THROW("Could not get dtype of value with type ", val.type());
}
ValueRef ComputeGraph::add_tensor(
const std::vector<int64_t>& sizes,
const vkapi::ScalarType dtype,
const utils::StorageType storage_type,
const utils::GPUMemoryLayout memory_layout,
const int64_t shared_object_idx) {
bool allocate_memory = shared_object_idx < 0;
ValueRef idx(static_cast<int>(values_.size()));
check_no_active_value_ptrs();
values_.emplace_back(api::vTensor(
context(), sizes, dtype, storage_type, memory_layout, allocate_memory));
if (!allocate_memory) {
get_shared_object(shared_object_idx).add_user(this, idx);
}
return idx;
}
ValueRef ComputeGraph::add_tensor(
const std::vector<int64_t>& sizes,
const vkapi::ScalarType dtype,
const utils::StorageType storage_type,
const int64_t shared_object_idx) {
return add_tensor(
sizes,
dtype,
storage_type,
suggested_memory_layout(sizes),
shared_object_idx);
}
ValueRef ComputeGraph::add_tensor(
const std::vector<int64_t>& sizes,
const vkapi::ScalarType dtype,
const utils::GPUMemoryLayout memory_layout,
const int64_t shared_object_idx) {
return add_tensor(
sizes, dtype, suggested_storage_type(), memory_layout, shared_object_idx);
}
ValueRef ComputeGraph::add_tensor_like(
const ValueRef idx,
const utils::StorageType storage_type,
const utils::GPUMemoryLayout memory_layout) {
return add_tensor(sizes_of(idx), dtype_of(idx), storage_type, memory_layout);
}
ValueRef ComputeGraph::add_tensor_like(
const ValueRef idx,
const utils::GPUMemoryLayout memory_layout) {
return add_tensor(sizes_of(idx), dtype_of(idx), memory_layout);
}
ValueRef ComputeGraph::add_tensor(
const std::vector<int64_t>& sizes,
const vkapi::ScalarType dtype,
const int64_t shared_object_idx) {
return add_tensor(
sizes, dtype, suggested_memory_layout(sizes), shared_object_idx);
}
ValueRef ComputeGraph::add_tensorref(
const std::vector<int64_t>& sizes,
const vkapi::ScalarType dtype,
const void* const data) {
ValueRef idx(static_cast<int>(values_.size()));
check_no_active_value_ptrs();
values_.emplace_back(TensorRef(sizes, dtype, data));
return idx;
}
ValueRef ComputeGraph::add_staging(
const vkapi::ScalarType dtype,
const size_t numel) {
ValueRef idx(static_cast<int>(values_.size()));
check_no_active_value_ptrs();
values_.emplace_back(api::StorageBuffer(context(), dtype, numel));
return idx;
}
ValueRef ComputeGraph::add_none() {
ValueRef idx(static_cast<int>(values_.size()));
check_no_active_value_ptrs();
values_.emplace_back();
return idx;
}
ValueRef ComputeGraph::add_value_list(std::vector<ValueRef>&& value) {
ValueRef idx(static_cast<int>(values_.size()));
check_no_active_value_ptrs();
values_.emplace_back(std::move(value));
return idx;
}
ValueRef ComputeGraph::add_string(std::string&& str) {
ValueRef idx(static_cast<int>(values_.size()));
check_no_active_value_ptrs();
values_.emplace_back(std::move(str));
return idx;
}
ValueRef ComputeGraph::set_input_tensor(
const ValueRef idx,
const bool use_staging) {
if (use_staging) {
vkapi::ScalarType dtype = get_tensor(idx)->dtype();
size_t gpu_numel = get_tensor(idx)->gpu_numel();
ValueRef staging_idx = add_staging(dtype, gpu_numel);
add_staging_to_tensor_node(*this, staging_idx, idx);
inputs_.push_back({idx, staging_idx});
return staging_idx;
}
inputs_.push_back({idx, kDummyValueRef});
return idx;
}
ValueRef ComputeGraph::set_output_tensor(
const ValueRef idx,
const bool use_staging) {
if (use_staging) {
vkapi::ScalarType dtype = get_tensor(idx)->dtype();
size_t gpu_numel = get_tensor(idx)->gpu_numel();
ValueRef staging_idx = add_staging(dtype, gpu_numel);
// We only run this when the tensor is non-empty. When the underlying
// tensor is empty (e.g. gpu_numel == 0), we do not allocate a VkImage to
// tensor, we will not be able to bind the node for execution.
if (gpu_numel > 0) {
add_tensor_to_staging_node(*this, idx, staging_idx);
}
outputs_.push_back({idx, staging_idx});
return staging_idx;
}
outputs_.push_back({idx, kDummyValueRef});
return idx;
}
SharedObject& ComputeGraph::get_shared_object(const int64_t idx) {
if (idx >= shared_objects_.size()) {
shared_objects_.resize(static_cast<size_t>(idx + 1));
}
return shared_objects_.at(idx);
}
void ComputeGraph::update_descriptor_counts(
const vkapi::ShaderInfo& shader_info,
bool execute) {
vkapi::DescriptorPoolConfig* config =
execute ? &execute_descriptor_counts_ : &prepack_descriptor_counts_;
config->descriptor_pool_max_sets += 1;
for (const VkDescriptorType arg_type : shader_info.kernel_layout) {
switch (arg_type) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
config->descriptor_uniform_buffer_count += 1;
break;
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
config->descriptor_storage_buffer_count += 1;
break;
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
config->descriptor_combined_sampler_count += 1;
break;
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
config->descriptor_storage_image_count += 1;
break;
default:
VK_THROW("Unsupported descriptor type!");
}
}
}
utils::uvec3 ComputeGraph::create_global_wg_size(const ValueRef idx) {
if (is_buffer_storage(idx)) {
return {uint32_t(texel_numel_of(idx)), 1u, 1u};
}
return image_extents_of(idx);
}
utils::uvec3 ComputeGraph::create_local_wg_size(const ValueRef idx) {
if (config_.enable_local_wg_size_override) {
return config_.local_wg_size_override;
}
if (is_buffer_storage(idx)) {
return {64u, 1u, 1u};
}
const utils::uvec3 image_extents = image_extents_of(idx);
utils::uvec3 local_group_size = {4, 4, 4};
if (image_extents.data[2u] == 1) {
if (image_extents.data[1u] == 1) {
local_group_size.data[0u] = 64;
local_group_size.data[1u] = 1;
local_group_size.data[2u] = 1;
} else if (image_extents.data[1u] < 8) {
local_group_size.data[0u] = 16;
local_group_size.data[1u] = 4;
local_group_size.data[2u] = 1;
} else {
local_group_size.data[0u] = 8;
local_group_size.data[1u] = 8;
local_group_size.data[2u] = 1;
}
}
return local_group_size;
}
void ComputeGraph::copy_into_staging(
const ValueRef idx,
const void* data,
const size_t numel) {
StagingPtr staging = get_staging(idx);
size_t nbytes = numel * vkapi::element_size(staging->dtype());
copy_ptr_to_staging(data, *staging, nbytes);
}
void ComputeGraph::copy_from_staging(
const ValueRef idx,
void* data,
const size_t numel) {
StagingPtr staging = get_staging(idx);
size_t nbytes = numel * vkapi::element_size(staging->dtype());
copy_staging_to_ptr(*staging, data, nbytes);
}
void ComputeGraph::prepare() {
#define MERGE_FIELD(field) \
static_cast<uint32_t>(std::ceil( \
std::max( \
execute_descriptor_counts_.field, \
prepack_descriptor_counts_.field) * \
config_.descriptor_pool_safety_factor))
uint32_t max_sets = MERGE_FIELD(descriptor_pool_max_sets);
vkapi::DescriptorPoolConfig config{
max_sets,
std::max(MERGE_FIELD(descriptor_uniform_buffer_count), max_sets),
std::max(MERGE_FIELD(descriptor_storage_buffer_count), max_sets),
std::max(MERGE_FIELD(descriptor_combined_sampler_count), max_sets),
std::max(MERGE_FIELD(descriptor_storage_image_count), max_sets),
1u,
};
if (!context_->descriptor_pool()) {
context_->descriptor_pool().init(config);
}
#undef MERGE_FIELD
if (config_.enable_querypool) {
context_->initialize_querypool();
}
}
void ComputeGraph::encode_prepack() {
for (std::unique_ptr<PrepackNode>& node : prepack_nodes_) {
node->encode(this);
}
}
void ComputeGraph::prepack() const {
// Submit and execute the command buffer
vkapi::VulkanFence fence = context_->fences().get_fence();
context_->submit_cmd_to_gpu(fence.get_submit_handle(), /*final_use = */ true);
fence.wait();
context_->flush();
}
void ComputeGraph::encode_execute() {
context_->flush();
context_->set_cmd(/*reusable = */ true);
context_->cmd_reset_querypool();
for (SharedObject& shared_object : shared_objects_) {
shared_object.allocate(this);
shared_object.bind_users(this);
}
for (std::unique_ptr<ExecuteNode>& node : execute_nodes_) {
node->encode(this);
}
}
void ComputeGraph::execute() const {
vkapi::VulkanFence fence = context_->fences().get_fence();
context_->submit_cmd_to_gpu(fence.get_submit_handle());
fence.wait();
}
void ComputeGraph::resize_input(
const int64_t idx,
const std::vector<int64_t>& new_sizes) {
IOValueRef io_val = inputs_.at(idx);
get_tensor(io_val.value)->virtual_resize(new_sizes);
}
void ComputeGraph::propagate_resize() {
for (std::unique_ptr<ExecuteNode>& node : execute_nodes_) {
node->trigger_resize(this);
}
}
} // namespace vkcompute