| /* |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. |
| */ |
| |
| #include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator |
| #include <executorch/kernels/test/TestUtil.h> |
| #include <executorch/kernels/test/supported_features.h> |
| #include <executorch/runtime/core/exec_aten/exec_aten.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h> |
| #include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h> |
| #include <executorch/runtime/core/exec_aten/util/scalar_type_util.h> |
| |
| #include <gtest/gtest.h> |
| |
| using namespace ::testing; |
| using exec_aten::ArrayRef; |
| using exec_aten::ScalarType; |
| using exec_aten::Tensor; |
| using torch::executor::testing::SupportedFeatures; |
| using torch::executor::testing::TensorFactory; |
| |
| class OpLogSoftmaxOutTest : public OperatorTest { |
| protected: |
| Tensor& op_log_softmax_out( |
| const Tensor& self, |
| int64_t dim, |
| bool half_to_float, |
| Tensor& out) { |
| return torch::executor::aten::_log_softmax_outf( |
| context_, self, dim, half_to_float, out); |
| } |
| |
| // A generic smoke test that works for the supported dtypes. |
| template <class CTYPE, exec_aten::ScalarType DTYPE> |
| void test_dtype() { |
| TensorFactory<DTYPE> tf; |
| |
| // Input tensor with shape (2, 3) and values (0, 1, 2, 3, 4, 5). |
| // clang-format off |
| Tensor x = tf.make( |
| {2, 3}, |
| { |
| 0, 1, 2, |
| 3, 4, 5 |
| }); |
| // clang-format on |
| |
| Tensor out = tf.zeros({2, 3}); |
| |
| op_log_softmax_out(x, /*dim=*/1, /*half_to_float*/ false, out); |
| |
| // clang-format off |
| Tensor expected = tf.make( |
| {2, 3}, |
| { |
| -2.40761, -1.40761, -0.407606, |
| -2.40761, -1.40761, -0.407606 |
| }); |
| // clang-format on |
| |
| EXPECT_TENSOR_CLOSE(out, expected); |
| } |
| }; |
| |
| TEST_F(OpLogSoftmaxOutTest, Smoke) { |
| TensorFactory<ScalarType::Float> tff; |
| std::vector<int32_t> sizes = {1, 3}; |
| Tensor in = tff.make(sizes, {0, 1, 2}); |
| Tensor out = tff.zeros(sizes); |
| |
| Tensor ret = op_log_softmax_out(in, /*dim=*/1, /*half_to_float=*/false, out); |
| |
| // Should always return the provided out Tensor. |
| EXPECT_TENSOR_EQ(ret, out); |
| |
| // Expected tensor. |
| Tensor expected = tff.make({1, 3}, {-2.40761, -1.40761, -0.407606}); |
| |
| EXPECT_TENSOR_CLOSE(out, expected); |
| } |
| |
| TEST_F(OpLogSoftmaxOutTest, AllDtypesSupported) { |
| if (!SupportedFeatures::get()->op_log_softmax_dtype_double) { |
| GTEST_SKIP() << "This kernel does not support dtype double"; |
| } |
| |
| test_dtype<float, ScalarType::Float>(); |
| test_dtype<double, ScalarType::Double>(); |
| // TODO: Also add tests for half, complex, quantized, and other types. Easiest |
| // way to do that would be to make TensorFactory support zeros() and ones() |
| // for those types. |
| } |
| |
| TEST_F(OpLogSoftmaxOutTest, MismatchedDimensionsDies) { |
| if (SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen currently supports mismatched dimensions"; |
| } |
| |
| TensorFactory<ScalarType::Float> tff; |
| |
| // Input tensor with shape (1, 3) and values (0, 1, 2). |
| Tensor x = tff.make({1, 3}, {0, 1, 2}); |
| |
| // Output shape should be (1, 3) |
| Tensor out = tff.zeros({1, 3}); |
| |
| // Dim out of bounds |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, op_log_softmax_out(x, /*dim=*/3, /*half_to_float*/ false, out)); |
| } |
| |
| TEST_F(OpLogSoftmaxOutTest, MismatchedDimensionSizeDies) { |
| if (SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen currently supports mismatched dimension size"; |
| } |
| |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.ones({3, 4}); |
| |
| // wrong_out has incompatible dim |
| Tensor wrong_out = tf.zeros({2, 10, 4}); |
| |
| ET_EXPECT_KERNEL_FAILURE( |
| context_, |
| op_log_softmax_out(x, /*dim=*/1, /*half_to_float*/ false, wrong_out)); |
| } |
| |
| TEST_F(OpLogSoftmaxOutTest, TestWithLargeNumber) { |
| if (!SupportedFeatures::get()->op_log_softmax_dtype_double) { |
| GTEST_SKIP() << "This kernel does not support dtype double"; |
| } |
| |
| if (SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen does not support mixing float and double"; |
| } |
| |
| TensorFactory<ScalarType::Double> tf; |
| |
| // Input tensor with shape (1, 2) and values (-1e5, 1e5). |
| // clang-format off |
| Tensor x = tf.make( |
| {1, 2}, |
| { |
| -1e5, 1e5 |
| }); |
| // clang-format on |
| |
| Tensor out = tf.zeros({1, 2}); |
| |
| op_log_softmax_out(x, /*dim=*/1, /*half_to_float*/ false, out); |
| |
| // clang-format off |
| Tensor expected = tf.make( |
| {1, 2}, |
| { |
| -200000, 0 |
| }); |
| // clang-format on |
| |
| EXPECT_TENSOR_CLOSE(out, expected); |
| } |
| |
| TEST_F(OpLogSoftmaxOutTest, NegativeDim) { |
| if (!SupportedFeatures::get()->op_log_softmax_dtype_double) { |
| GTEST_SKIP() << "This kernel does not support dtype double"; |
| } |
| |
| if (SupportedFeatures::get()->is_aten) { |
| GTEST_SKIP() << "ATen does not support negative dim"; |
| } |
| |
| TensorFactory<ScalarType::Float> tf; |
| |
| // Input tensor with shape (2, 3) and values (0, 1, 2, 3, 4, 5). |
| // clang-format off |
| Tensor x = tf.make( |
| {2, 3}, |
| { |
| 0, 1, 2, |
| 3, 4, 5 |
| }); |
| // clang-format on |
| |
| Tensor out = tf.zeros({2, 3}); |
| Tensor out_negative_dim = tf.zeros({2, 3}); |
| |
| op_log_softmax_out(x, /*dim=*/1, /*half_to_float=*/false, out); |
| op_log_softmax_out(x, /*dim=*/-1, /*half_to_float=*/false, out_negative_dim); |
| |
| // clang-format off |
| Tensor expected = tf.make( |
| {2, 3}, |
| { |
| -2.40761, -1.40761, -0.407606, |
| -2.40761, -1.40761, -0.407606 |
| }); |
| // clang-format on |
| |
| EXPECT_TENSOR_CLOSE(out, expected); |
| EXPECT_TENSOR_CLOSE(out_negative_dim, expected); |
| |
| op_log_softmax_out(x, /*dim=*/0, /*half_to_float=*/false, out); |
| op_log_softmax_out(x, /*dim=*/-2, /*half_to_float=*/false, out_negative_dim); |
| |
| // clang-format off |
| expected = tf.make( |
| {2, 3}, |
| { |
| -3.04859, -3.04859, -3.04859, |
| -0.0485874, -0.0485874, -0.0485874 |
| }); |
| // clang-format on |
| |
| EXPECT_TENSOR_CLOSE(out, expected); |
| EXPECT_TENSOR_CLOSE(out_negative_dim, expected); |
| } |
| |
| #if !defined(USE_ATEN_LIB) |
| TEST_F(OpLogSoftmaxOutTest, UpperBoundOutTensor) { |
| TensorFactory<ScalarType::Float> tff; |
| |
| // Input tensor with shape (2, 3) and values (0, 1, 2, 3, 4, 5). |
| // clang-format off |
| Tensor x = tff.make( |
| {2, 3}, |
| { |
| 0, 1, 2, |
| 3, 4, 5 |
| }); |
| // clang-format on |
| |
| Tensor out = |
| tff.zeros({5, 9}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| |
| op_log_softmax_out(x, /*dim=*/1, /*half_to_float*/ false, out); |
| |
| // clang-format off |
| Tensor expected = tff.make( |
| {2, 3}, |
| { |
| -2.40761, -1.40761, -0.407606, |
| -2.40761, -1.40761, -0.407606 |
| }); |
| // clang-format on |
| |
| EXPECT_TENSOR_CLOSE(out, expected); |
| } |
| #endif |
| |
| TEST_F(OpLogSoftmaxOutTest, SimpleGeneratedCase) { |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {10, 10}, |
| {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, |
| 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}); |
| Tensor expected_result = tf.make( |
| {10, 10}, {-2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824, -2.3025851249694824, -2.3025851249694824, |
| -2.3025851249694824}); |
| |
| Tensor out = tf.zeros({10, 10}); |
| Tensor ret = op_log_softmax_out(x, 1, false, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |
| |
| TEST_F(OpLogSoftmaxOutTest, DynamicShapeUpperBoundSameAsExpected) { |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {3, 2}, |
| {0.754019558429718, |
| 0.8973914980888367, |
| 0.34469079971313477, |
| 0.40464818477630615, |
| 0.36159539222717285, |
| 0.1138353943824768}); |
| Tensor expected_result = tf.make( |
| {3, 2}, |
| {-0.7674003839492798, |
| -0.6240284442901611, |
| -0.7235751748085022, |
| -0.6636177897453308, |
| -0.576920747756958, |
| -0.824680745601654}); |
| |
| Tensor out = |
| tf.zeros({3, 2}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| Tensor ret = op_log_softmax_out(x, 1, false, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |
| |
| TEST_F(OpLogSoftmaxOutTest, DynamicShapeUpperBoundLargerThanExpected) { |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {3, 2}, |
| {0.754019558429718, |
| 0.8973914980888367, |
| 0.34469079971313477, |
| 0.40464818477630615, |
| 0.36159539222717285, |
| 0.1138353943824768}); |
| Tensor expected_result = tf.make( |
| {3, 2}, |
| {-0.7674003839492798, |
| -0.6240284442901611, |
| -0.7235751748085022, |
| -0.6636177897453308, |
| -0.576920747756958, |
| -0.824680745601654}); |
| |
| Tensor out = |
| tf.zeros({10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); |
| Tensor ret = op_log_softmax_out(x, 1, false, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |
| |
| TEST_F(OpLogSoftmaxOutTest, DynamicShapeUnbound) { |
| GTEST_SKIP() << "Dynamic shape not supported"; |
| TensorFactory<ScalarType::Float> tf; |
| |
| Tensor x = tf.make( |
| {3, 2}, |
| {0.754019558429718, |
| 0.8973914980888367, |
| 0.34469079971313477, |
| 0.40464818477630615, |
| 0.36159539222717285, |
| 0.1138353943824768}); |
| Tensor expected_result = tf.make( |
| {3, 2}, |
| {-0.7674003839492798, |
| -0.6240284442901611, |
| -0.7235751748085022, |
| -0.6636177897453308, |
| -0.576920747756958, |
| -0.824680745601654}); |
| |
| Tensor out = |
| tf.zeros({1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND); |
| Tensor ret = op_log_softmax_out(x, 1, false, out); |
| EXPECT_TENSOR_CLOSE(out, expected_result); |
| } |