blob: 279335f0ea3d20001e2854ea21c19b8df6ed7be9 [file] [log] [blame]
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator
#include <executorch/kernels/test/TestUtil.h>
#include <executorch/kernels/test/supported_features.h>
#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h>
#include <executorch/runtime/core/exec_aten/util/scalar_type_util.h>
#include <gtest/gtest.h>
#include <sys/types.h>
using namespace ::testing;
using exec_aten::ArrayRef;
using exec_aten::ScalarType;
using exec_aten::Tensor;
using torch::executor::testing::TensorFactory;
class OpIndexSelectOutTest : public OperatorTest {
protected:
Tensor& op_index_select_out(
const Tensor& self,
int64_t dim,
const Tensor& index,
Tensor& out) {
return torch::executor::aten::index_select_outf(
context_, self, dim, index, out);
}
template <class CTYPE, exec_aten::ScalarType DTYPE>
void test_dtype() {
TensorFactory<DTYPE> tf;
TensorFactory<ScalarType::Long> tfl;
// test index_select on dimension 0.
// clang-format off
Tensor x = tf.make(
{3, 2, 4},
{
// all ones below are from x,
// and all zeros are from y.
// [0, :, :]
1, 1, 1, 1, // [0, 0, :]
0, 0, 0, 0, // [0, 1, :]
// [1, :, :]
1, 1, 1, 1, // [1, 0, :]
0, 0, 0, 0, // [1, 1, :]
// [2, :, :]
1, 1, 1, 1, // [2, 0, :]
0, 0, 0, 0, // [2, 1, :]
});
// clang-format on
// Expected values for out_0 and ret_0 after the test are all ones(3, 4)
// based on the above rules. So here we set the default value of out_0 as
// zeros(3, 4) on purpose, to eliminate the influence to the final result
// from initial value. Same for out_1 and ret_1.
Tensor out_0 = tf.zeros({3, 1, 4});
Tensor out_1 = tf.ones({3, 1, 4});
Tensor index_0 = tfl.make({1}, {0});
Tensor index_1 = tfl.make({1}, {1});
Tensor ret_0 = op_index_select_out(x, /*dim=*/1, /*index=*/index_0, out_0);
Tensor ret_1 = op_index_select_out(x, /*dim=*/1, /*index=*/index_1, out_1);
EXPECT_TENSOR_EQ(ret_0, out_0);
EXPECT_TENSOR_EQ(ret_1, out_1);
EXPECT_TENSOR_EQ(ret_0, tf.ones({3, 1, 4}));
EXPECT_TENSOR_EQ(ret_1, tf.zeros({3, 1, 4}));
}
void test_dynamic_shape(
const std::vector<int32_t>& out_shape,
enum torch::executor::TensorShapeDynamism dynamism) {
/* %python
%rewrite(index_select_template) */
TensorFactory<ScalarType::Float> tf;
TensorFactory<ScalarType::Long> tf_index;
Tensor input = tf.make(
{2, 3, 4},
{0.49625658988952637, 0.7682217955589294, 0.08847743272781372,
0.13203048706054688, 0.30742281675338745, 0.6340786814689636,
0.4900934100151062, 0.8964447379112244, 0.455627977848053,
0.6323062777519226, 0.3488934636116028, 0.40171730518341064,
0.022325754165649414, 0.16885894536972046, 0.2938884496688843,
0.518521785736084, 0.6976675987243652, 0.800011396408081,
0.16102945804595947, 0.28226858377456665, 0.6816085577011108,
0.9151939749717712, 0.39709991216659546, 0.8741558790206909});
Tensor index = tf_index.make({2}, {0, 2});
Tensor expected = tf.make(
{2, 3, 2},
{0.49625658988952637,
0.08847743272781372,
0.30742281675338745,
0.4900934100151062,
0.455627977848053,
0.3488934636116028,
0.022325754165649414,
0.2938884496688843,
0.6976675987243652,
0.16102945804595947,
0.6816085577011108,
0.39709991216659546});
Tensor out = tf.zeros(out_shape, dynamism);
op_index_select_out(input, 2, index, out);
EXPECT_TENSOR_CLOSE(out, expected);
}
// Run the test by selecting Tensor x on given dim and all available indexes
// on that dimension
void run_test_cases(
const Tensor& x,
ssize_t dim,
const Tensor& index,
const Tensor& expected) {
// Generated out tensor sharing same size and dtype with expected tensor
TensorFactory<ScalarType::Double> tf;
const std::vector<int32_t> out_size(
expected.sizes().begin(), expected.sizes().end());
Tensor out = tf.ones(out_size);
Tensor ret = op_index_select_out(x, dim, index, out);
EXPECT_TENSOR_EQ(out, ret);
EXPECT_TENSOR_EQ(ret, expected);
}
};
TEST_F(OpIndexSelectOutTest, SelectFrontDimAllIndexes) {
TensorFactory<ScalarType::Double> tf;
TensorFactory<ScalarType::Long> tfl;
// clang-format off
Tensor x = tf.make(
{2, 3, 4},
{
// [0, :, :]
1., 2., 3., 4., // [0, 0, :]
5., 6., 7., 8., // [0, 1, :]
9., 10., 11., 12., // [0, 2, :]
// [1, :, :]
-1., -2., -3., -4., // [1, 0, :]
-5., -6., -7., -8., // [1, 1, :]
-9., -10., -11., -12., // [1, 2, :]
});
// clang-format on
// Try to select the tensor from the input at 0th dimension
const std::vector<int32_t> out_size = {1, 3, 4};
Tensor out = tf.zeros(out_size);
Tensor index = tfl.make({1}, {0});
// clang-format off
Tensor expected = tf.make(
out_size,
{
1., 2., 3., 4., // [0, 0, :]
5., 6., 7., 8., // [0, 1, :]
9., 10., 11., 12., // [0, 2, :]
}
);
// clang-format on
run_test_cases(x, /*dim=*/0, /*index=*/index, expected);
}
TEST_F(OpIndexSelectOutTest, SelectMiddleDimAllIndexes) {
TensorFactory<ScalarType::Double> tf;
TensorFactory<ScalarType::Long> tfl;
// clang-format off
Tensor x = tf.make(
{2, 3, 4},
{
// [0, :, :]
1., 2., 3., 4., // [0, 0, :]
5., 6., 7., 8., // [0, 1, :]
9., 10., 11., 12., // [0, 2, :]
// [1, :, :]
-1., -2., -3., -4., // [1, 0, :]
-5., -6., -7., -8., // [1, 1, :]
-9., -10., -11., -12., // [1, 2, :]
});
// clang-format on
// Try to select the tensor from the input at 1st dimension
const std::vector<int32_t> out_size = {2, 2, 4};
Tensor out = tf.zeros(out_size);
Tensor index = tfl.make({2}, {0, 2});
// clang-format off
Tensor expected = tf.make(
out_size,
{
1., 2., 3., 4., // [0, 0, :]
9., 10., 11., 12., // [0, 2, :]
-1., -2., -3., -4., // [1, 0, :]
-9., -10., -11., -12., // [1, 2, :]
}
);
// clang-format on
run_test_cases(x, /*dim=*/1, /*index=*/index, expected);
}
TEST_F(OpIndexSelectOutTest, SelectEndDimAllIndexes) {
TensorFactory<ScalarType::Double> tf;
TensorFactory<ScalarType::Long> tfl;
// clang-format off
Tensor x = tf.make(
{2, 3, 4},
{
// [0, :, :]
1., 2., 3., 4., // [0, 0, :]
5., 6., 7., 8., // [0, 1, :]
9., 10., 11., 12., // [0, 2, :]
// [1, :, :]
-1., -2., -3., -4., // [1, 0, :]
-5., -6., -7., -8., // [1, 1, :]
-9., -10., -11., -12., // [1, 2, :]
});
// clang-format on
// Try to select the tensor from the input at 0th dimension
const std::vector<int32_t> out_size = {2, 3, 2};
Tensor out = tf.zeros(out_size);
Tensor index = tfl.make({2}, {0, 2});
// clang-format off
Tensor expected = tf.make(
out_size,
{
// [0, :, :]
1., 3.,
5., 7.,
9., 11.,
// [1, :, :]
-1., -3.,
-5., -7.,
-9., -11.,
}
);
// clang-format on
run_test_cases(x, /*dim=*/2, /*index=*/index, expected);
}
/// A generic smoke test that works for any dtype that supports ones() and
/// zeros().
TEST_F(OpIndexSelectOutTest, AllDtypesSupported) {
#define TEST_ENTRY(ctype, dtype) test_dtype<ctype, ScalarType::dtype>();
ET_FORALL_REAL_TYPES_AND(Bool, TEST_ENTRY);
#undef TEST_ENTRY
// TODO: Also add tests for half, complex, quantized, and other types. Easiest
// way to do that would be to make TensorFactory support zeros() and ones()
// for those types.
}
//////////////////////////////////////////////////////////////////////////////
// The following tests focus on empty-size tensor and empty tensor.
// Here we first define the term:
// empty-size tensor: size is [] but do have data (e.g.tensor(5))
// empty tensor: size is not [] and the size of at least one
// dim is zero, and does not have data in it (e.g ones(1,0,2,3))
// In this test we are gonnna find if our select function support non-empty
// tensor input and empty-size tensor output.
TEST_F(OpIndexSelectOutTest, NonEmptyInputEmptyOutputWithMismatchDimDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel can handle out with mismatched dimensions";
}
TensorFactory<ScalarType::Int> tf;
TensorFactory<ScalarType::Long> tfl;
Tensor x = tf.make({10}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9});
Tensor index = tfl.make({1}, {5});
// Make an empty-size out tensor and demonstrate that it has data.
Tensor out = tf.make({}, {0});
EXPECT_EQ(out.numel(), 1);
// pass the empty-size tensor to the function,
Tensor expect = tf.make({}, {5});
ET_EXPECT_KERNEL_FAILURE(
context_, op_index_select_out(x, /*dim=*/0, /*index=*/index, out));
}
// This test focuses on the support for empty tensor (dim() > 0) input and empty
// tensor output
TEST_F(OpIndexSelectOutTest, EmptyInputEmptyOutputWithMatchingDimSupported) {
TensorFactory<ScalarType::Int> tf;
TensorFactory<ScalarType::Long> tfl;
Tensor index = tfl.make({1}, {3});
// Using empty tensors as input.
Tensor x = tf.make({3, 0, 10, 3}, {});
EXPECT_EQ(x.numel(), 0);
// Output whose shape is appropriate for selecting along dim(2)
Tensor out = tf.make({3, 0, 1, 3}, {});
EXPECT_EQ(out.numel(), 0);
Tensor ret = op_index_select_out(x, /*dim=*/2, /*index=*/index, out);
EXPECT_EQ(ret.numel(), 0);
// Success if it doesn't assert on the weird-shaped empty input and the
// ret is still a empty array
}
///////////////////////////////////////////////////////////////////////
TEST_F(OpIndexSelectOutTest, DimOutOfBoundDies) {
TensorFactory<ScalarType::Int> tf;
TensorFactory<ScalarType::Long> tfl;
Tensor x = tf.ones({1, 1, 1});
Tensor out = tf.zeros({1, 1, 1});
Tensor index = tfl.make({1}, {0});
// Some invalid dim values.
const std::vector<int32_t> invalid_dims = {3, 4, 5, -4, -5, -6};
for (ssize_t dim : invalid_dims) {
ET_EXPECT_KERNEL_FAILURE(
context_, op_index_select_out(x, dim, /*index=*/index, out));
}
}
TEST_F(OpIndexSelectOutTest, MismatchedDtypesDies) {
TensorFactory<ScalarType::Int> tf_int;
TensorFactory<ScalarType::Float> tf_float;
TensorFactory<ScalarType::Long> tf_long;
Tensor x = tf_int.zeros({1, 2, 2});
// Size is compatible to the output, but a mismatched dtype.
Tensor out = tf_float.ones({1, 2, 2});
Tensor index = tf_long.make({1}, {0});
ET_EXPECT_KERNEL_FAILURE(
context_, op_index_select_out(x, /*dim=*/0, /*index=*/index, out));
}
TEST_F(OpIndexSelectOutTest, OutMatchNumelLackDimAtEndDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel can handle out with mismatched dimensions";
}
TensorFactory<ScalarType::Int> tf;
TensorFactory<ScalarType::Long> tfl;
Tensor x = tf.zeros({1, 2, 2, 1});
Tensor index = tfl.make({1}, {0});
// Out shares the same dtype and numel as the expected output, but a
// mixmatched size (out.dim() should always equal to x.dim())
Tensor out = tf.ones({1, 2, 2});
ET_EXPECT_KERNEL_FAILURE(
context_, op_index_select_out(x, /*dim=*/0, /*index=*/index, out));
}
TEST_F(OpIndexSelectOutTest, OutMatchNumelExtraDimAtFrontDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel can handle out with mismatched dimensions";
}
TensorFactory<ScalarType::Int> tf;
TensorFactory<ScalarType::Long> tfl;
Tensor x = tf.zeros({2, 2});
Tensor index = tfl.make({1}, {0});
// Out shares the same dtype as the expected output, but a
// mismatched size
Tensor out = tf.ones({1, 1, 2});
ET_EXPECT_KERNEL_FAILURE(
context_, op_index_select_out(x, /*dim=*/0, /*index=*/index, out));
}
TEST_F(OpIndexSelectOutTest, OutSizeMismatchDimDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel can handle out with mismatched dimensions";
}
TensorFactory<ScalarType::Int> tf;
TensorFactory<ScalarType::Long> tfl;
Tensor x = tf.zeros({2, 4, 7, 5});
Tensor index = tfl.make({1}, {3});
// Should be {2, 4, 1, 5} to match the x when calling index_select() with
// dim 2.
Tensor out = tf.zeros({2, 4, 7});
ET_EXPECT_KERNEL_FAILURE(
context_, op_index_select_out(x, /*dim=*/2, /*index=*/index, out));
}
TEST_F(OpIndexSelectOutTest, IndexWithInvalidDtypeDies) {
TensorFactory<ScalarType::Int> tf;
TensorFactory<ScalarType::Float> tff;
Tensor x = tf.zeros({2, 4, 7, 5});
Tensor index = tff.make({1}, {3});
Tensor out = tf.zeros({2, 1, 7, 5});
ET_EXPECT_KERNEL_FAILURE(
context_, op_index_select_out(x, /*dim=*/1, /*index=*/index, out));
}
TEST_F(OpIndexSelectOutTest, IndexWithInvalidDimDies) {
TensorFactory<ScalarType::Int> tf;
TensorFactory<ScalarType::Long> tfl;
Tensor x = tf.zeros({2, 4, 7, 5});
// 2-D Tensor, will error out
Tensor index = tfl.make({1, 1}, {3});
Tensor out = tf.zeros({2, 1, 7, 5});
ET_EXPECT_KERNEL_FAILURE(
context_, op_index_select_out(x, /*dim=*/1, /*index=*/index, out));
}
#if !defined(USE_ATEN_LIB)
TEST_F(OpIndexSelectOutTest, UpperBoundOutTensor) {
TensorFactory<ScalarType::Double> tf;
TensorFactory<ScalarType::Long> tfl;
// clang-format off
Tensor x = tf.make(
{2, 3, 4},
{
// [0, :, :]
1., 2., 3., 4., // [0, 0, :]
5., 6., 7., 8., // [0, 1, :]
9., 10., 11., 12., // [0, 2, :]
// [1, :, :]
-1., -2., -3., -4., // [1, 0, :]
-5., -6., -7., -8., // [1, 1, :]
-9., -10., -11., -12., // [1, 2, :]
});
// clang-format on
// Try to select the tensor from the input at 0th dimension
const std::vector<int32_t> out_size = {1, 3, 4};
Tensor out =
tf.zeros({2, 3, 4}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
Tensor index = tfl.make({1}, {0});
// clang-format off
Tensor expected = tf.make(
out_size,
{
1., 2., 3., 4., // [0, 0, :]
5., 6., 7., 8., // [0, 1, :]
9., 10., 11., 12., // [0, 2, :]
}
);
// clang-format on
Tensor ret = op_index_select_out(x, 0, index, out);
EXPECT_TENSOR_EQ(out, ret);
EXPECT_TENSOR_EQ(ret, expected);
}
#endif
/* %python
import torch
torch.manual_seed(0)
input = torch.rand(2, 3, 4)
index = torch.tensor([0, 2])
dim = 2
expected = torch.index_select(input, dim, index)
index_select_template = f"""
{declare_tensor_factory("ScalarType::Float", "tf")}
{declare_tensor_factory("ScalarType::Long", "tf_index")}
{declare_tensor_make_t("input", "tf")}
{declare_tensor_make_t("index", "tf_index")}
{declare_tensor_make_t("expected", "tf")}
{declare_tensor_zeros("out_shape, dynamism", "tf", "out")}
op_index_select_out(input, $dim$, index, out);
EXPECT_TENSOR_CLOSE(out, expected);""" */
TEST_F(OpIndexSelectOutTest, DynamicShapeUpperBoundSameAsExpected) {
test_dynamic_shape(
{2, 3, 2}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
}
TEST_F(OpIndexSelectOutTest, DynamicShapeUpperBoundLargerThanExpected) {
if (!torch::executor::testing::SupportedFeatures::get()->output_resize) {
GTEST_SKIP() << "Dynamic shape not supported";
}
test_dynamic_shape(
{10, 10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
}
TEST_F(OpIndexSelectOutTest, DynamicShapeUnbound) {
if (!torch::executor::testing::SupportedFeatures::get()->output_resize) {
GTEST_SKIP() << "Dynamic shape not supported";
}
test_dynamic_shape(
{1, 1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND);
}