blob: 8aab9e7d1c2d2a1bebbfe4c5687d0d8cd89796d9 [file] [log] [blame]
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <executorch/kernels/test/FunctionHeaderWrapper.h> // Declares the operator
#include <executorch/kernels/test/TestUtil.h>
#include <executorch/kernels/test/supported_features.h>
#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h>
#include <gtest/gtest.h>
#include <cmath>
using namespace ::testing;
using exec_aten::Scalar;
using exec_aten::ScalarType;
using exec_aten::Tensor;
using torch::executor::testing::TensorFactory;
class OpDetachCopyOutTest : public OperatorTest {
protected:
Tensor& op_detach_copy_out(const Tensor& self, Tensor& out) {
return torch::executor::aten::detach_copy_outf(context_, self, out);
}
// Common testing for eq operator
template <ScalarType DTYPE>
void test_detach_copy_out() {
TensorFactory<DTYPE> tf;
const std::vector<int32_t> sizes = {2, 2};
Tensor in = tf.make(sizes, {1, 2, 3, 4});
Tensor out = tf.zeros(sizes);
// Valid input should give the expected output
op_detach_copy_out(in, out);
EXPECT_TENSOR_EQ(out, tf.make(sizes, {1, 2, 3, 4}));
}
template <>
void test_detach_copy_out<ScalarType::Bool>() {
TensorFactory<ScalarType::Bool> tf;
const std::vector<int32_t> sizes = {2, 2};
Tensor out = tf.zeros(sizes);
// Valid input should give the expected output
op_detach_copy_out(
tf.make(sizes, /*data=*/{true, false, true, false}), out);
EXPECT_TENSOR_EQ(out, tf.make(sizes, /*data=*/{true, false, true, false}));
}
template <>
void test_detach_copy_out<ScalarType::Float>() {
TensorFactory<ScalarType::Float> tf;
const std::vector<int32_t> sizes = {2, 2};
Tensor out = tf.zeros(sizes);
// Valid input should give the expected output
op_detach_copy_out(
tf.make(sizes, /*data=*/{3.14, INFINITY, -INFINITY, NAN}), out);
EXPECT_TENSOR_EQ(
out, tf.make(sizes, /*data=*/{3.14, INFINITY, -INFINITY, NAN}));
}
template <ScalarType DTYPE>
void test_detach_copy_out_invalid_shape() {
TensorFactory<DTYPE> tf;
const std::vector<int32_t> in_sizes = {2, 2};
const std::vector<int32_t> out_sizes = {4};
Tensor in = tf.ones(in_sizes);
Tensor out = tf.zeros(out_sizes);
ET_EXPECT_KERNEL_FAILURE(context_, op_detach_copy_out(in, out));
}
};
TEST_F(OpDetachCopyOutTest, AllScalarInputOutputSupport) {
#define TEST_ENTRY(ctype, dtype) test_detach_copy_out<ScalarType::dtype>();
ET_FORALL_REAL_TYPES_AND(Bool, TEST_ENTRY);
#undef TEST_ENTRY
}
// Mismatched shape tests.
TEST_F(OpDetachCopyOutTest, MismatchedShapesDies) {
if (torch::executor::testing::SupportedFeatures::get()->is_aten) {
GTEST_SKIP() << "ATen kernel can handle mismatched shapes";
}
#define TEST_ENTRY(ctype, dtype) \
test_detach_copy_out_invalid_shape<ScalarType::dtype>();
ET_FORALL_REAL_TYPES_AND(Bool, TEST_ENTRY);
#undef TEST_ENTRY
}
TEST_F(OpDetachCopyOutTest, MismatchedInputDtypesDies) {
TensorFactory<ScalarType::Byte> tf_byte;
TensorFactory<ScalarType::Char> tf_char;
const std::vector<int32_t> sizes = {2, 2};
Tensor in = tf_byte.ones(sizes);
Tensor out = tf_char.ones(sizes);
ET_EXPECT_KERNEL_FAILURE(context_, op_detach_copy_out(in, out));
}
TEST_F(OpDetachCopyOutTest, SimpleGeneratedCase) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{10, 10},
{1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0});
Tensor expected_result = tf.make(
{10, 10},
{1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0});
Tensor out = tf.zeros({10, 10});
Tensor ret = op_detach_copy_out(x, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpDetachCopyOutTest, DynamicShapeUpperBoundSameAsExpected) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{3, 2},
{0.18719732761383057,
0.03402292728424072,
0.944246232509613,
0.8801798820495605,
0.0012360215187072754,
0.5935860276222229});
Tensor expected_result = tf.make(
{3, 2},
{0.18719732761383057,
0.03402292728424072,
0.944246232509613,
0.8801798820495605,
0.0012360215187072754,
0.5935860276222229});
Tensor out =
tf.zeros({3, 2}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
Tensor ret = op_detach_copy_out(x, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpDetachCopyOutTest, DynamicShapeUpperBoundLargerThanExpected) {
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{3, 2},
{0.18719732761383057,
0.03402292728424072,
0.944246232509613,
0.8801798820495605,
0.0012360215187072754,
0.5935860276222229});
Tensor expected_result = tf.make(
{3, 2},
{0.18719732761383057,
0.03402292728424072,
0.944246232509613,
0.8801798820495605,
0.0012360215187072754,
0.5935860276222229});
Tensor out =
tf.zeros({10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND);
Tensor ret = op_detach_copy_out(x, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}
TEST_F(OpDetachCopyOutTest, DynamicShapeUnbound) {
GTEST_SKIP() << "Dynamic shape unbound not supported";
TensorFactory<ScalarType::Float> tf;
Tensor x = tf.make(
{3, 2},
{0.18719732761383057,
0.03402292728424072,
0.944246232509613,
0.8801798820495605,
0.0012360215187072754,
0.5935860276222229});
Tensor expected_result = tf.make(
{3, 2},
{0.18719732761383057,
0.03402292728424072,
0.944246232509613,
0.8801798820495605,
0.0012360215187072754,
0.5935860276222229});
Tensor out =
tf.zeros({1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND);
Tensor ret = op_detach_copy_out(x, out);
EXPECT_TENSOR_CLOSE(out, expected_result);
}