blob: 1004126d045ddb207307cc1249f1e6f058e318f9 [file] [log] [blame]
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <executorch/kernels/quantized/NativeFunctions.h> // Declares the operator
#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_factory.h>
#include <executorch/runtime/core/exec_aten/testing_util/tensor_util.h>
#include <executorch/runtime/core/exec_aten/util/scalar_type_util.h>
#include <executorch/test/utils/DeathTest.h>
#include <gtest/gtest.h>
#include <limits>
using namespace ::testing;
using exec_aten::ArrayRef;
using exec_aten::optional;
using exec_aten::Scalar;
using exec_aten::ScalarType;
using exec_aten::Tensor;
using torch::executor::native::dequantize_per_channel_out;
using torch::executor::native::dequantize_per_tensor_out;
using torch::executor::native::dequantize_per_tensor_tensor_args_out;
using torch::executor::testing::TensorFactory;
/// A generic smoke test that works for any dtype that supports ones() and
/// zeros().
template <ScalarType DTYPE>
void test_dtype() {
TensorFactory<DTYPE> tf;
Tensor input = tf.full({3, 5}, 100);
double scale = 0.5;
int64_t zero_point = 30;
int64_t quant_min = 0;
int64_t quant_max = 255;
TensorFactory<ScalarType::Float> tfo;
Tensor out = tfo.zeros({3, 5});
// (100 - 30) * 0.5
Tensor expected = tfo.full({3, 5}, 35);
dequantize_per_tensor_out(
input,
scale,
zero_point,
quant_min,
quant_max,
DTYPE,
optional<ScalarType>(),
out);
EXPECT_TENSOR_EQ(out, expected);
}
TEST(OpDequantizeOutTest, AllDtypesSupported) {
test_dtype<ScalarType::Byte>();
}
TEST(OpDequantizeOutTest, NonWholeNumbers) {
TensorFactory<ScalarType::Byte> tf;
Tensor input = tf.full({3, 5}, 100);
double scale = 0.45;
int64_t zero_point = 30;
int64_t quant_min = 0;
int64_t quant_max = 255;
TensorFactory<ScalarType::Float> tfo;
Tensor out = tfo.zeros({3, 5});
// (100 - 30) * 0.5
Tensor expected = tfo.full({3, 5}, 31.5);
dequantize_per_tensor_out(
input,
scale,
zero_point,
quant_min,
quant_max,
ScalarType::Byte,
optional<ScalarType>(),
out);
EXPECT_TENSOR_EQ(out, expected);
}
TEST(OpDequantizeOutTest, TensorArgOverload) {
TensorFactory<ScalarType::Byte> tf_byte;
TensorFactory<ScalarType::Double> tf_double;
TensorFactory<ScalarType::Long> tf_long;
Tensor input = tf_byte.full({3, 5}, 100);
Tensor scale = tf_double.make({1}, {0.45});
Tensor zero_point = tf_long.make({1}, {30});
int64_t quant_min = 0;
int64_t quant_max = 255;
TensorFactory<ScalarType::Float> tfo;
Tensor out = tfo.zeros({3, 5});
// (100 - 30) * 0.5
Tensor expected = tfo.full({3, 5}, 31.5);
dequantize_per_tensor_tensor_args_out(
input,
scale,
zero_point,
quant_min,
quant_max,
ScalarType::Byte,
optional<ScalarType>(),
out);
EXPECT_TENSOR_EQ(out, expected);
}
TEST(OpDequantizeOutTest, DequantizePerChannel) {
TensorFactory<ScalarType::Byte> tf_byte;
TensorFactory<ScalarType::Double> tf_double;
TensorFactory<ScalarType::Long> tf_long;
Tensor input = tf_byte.full({3, 2}, 100);
Tensor scale = tf_double.make({2}, {0.5, 1});
Tensor zero_point = tf_long.make({2}, {30, 60});
int64_t quant_min = 0;
int64_t quant_max = 255;
TensorFactory<ScalarType::Float> tfo;
Tensor out = tfo.zeros({3, 2});
// (100 - 30) * 0.5
// (100 - 60) * 1
Tensor expected = tfo.make({3, 2}, {35, 40, 35, 40, 35, 40});
dequantize_per_channel_out(
input,
scale,
zero_point,
/*axis=*/1,
quant_min,
quant_max,
ScalarType::Byte,
optional<ScalarType>(),
out);
EXPECT_TENSOR_EQ(out, expected);
// Test with a different axis
out = tfo.zeros({3, 2});
scale = tf_double.make({3}, {0.5, 0.75, 1});
zero_point = tf_long.make({3}, {30, 50, 60});
// (100 - 30) * 0.5
// (100 - 50) * 0.75
// (100 - 60) * 1
expected = tfo.make({3, 2}, {35, 35, 37.5, 37.5, 40, 40});
dequantize_per_channel_out(
input,
scale,
zero_point,
/*axis=*/0,
quant_min,
quant_max,
ScalarType::Byte,
optional<ScalarType>(),
out);
EXPECT_TENSOR_EQ(out, expected);
}