| /* |
| * Copyright (c) Meta Platforms, Inc. and affiliates. |
| * All rights reserved. |
| * |
| * This source code is licensed under the BSD-style license found in the |
| * LICENSE file in the root directory of this source tree. |
| */ |
| |
| #include <executorch/kernels/portable/cpu/vec_ops.h> |
| #include <executorch/runtime/kernel/kernel_includes.h> |
| |
| namespace torch { |
| namespace executor { |
| namespace native { |
| |
| using Tensor = exec_aten::Tensor; |
| |
| bool check_quantized_mixed_linear_args( |
| const Tensor& in, |
| const Tensor& weight, |
| const Tensor& weight_scales, |
| const optional<Tensor>& opt_weight_zero_points, |
| const optional<ScalarType> dtype, |
| Tensor& out) { |
| ET_LOG_AND_RETURN_IF_FALSE(tensor_is_rank(in, 2)); |
| ET_LOG_AND_RETURN_IF_FALSE(tensor_is_rank(weight, 2)); |
| ET_LOG_AND_RETURN_IF_FALSE( |
| tensor_is_rank(weight_scales, 1) || tensor_is_rank(weight_scales, 2)); |
| ET_LOG_AND_RETURN_IF_FALSE(tensor_is_rank(out, 2)); |
| |
| ET_LOG_AND_RETURN_IF_FALSE(tensors_have_same_size_at_dims(in, 1, weight, 1)); |
| ET_LOG_AND_RETURN_IF_FALSE( |
| tensors_have_same_size_at_dims(weight_scales, 0, weight, 0)); |
| ET_LOG_AND_RETURN_IF_FALSE(tensors_have_same_size_at_dims(in, 1, weight, 1)); |
| |
| ET_LOG_AND_RETURN_IF_FALSE(tensors_have_same_dtype(in, weight_scales)); |
| if (dtype.has_value()) { |
| ET_LOG_AND_RETURN_IF_FALSE(out.scalar_type() == dtype.value()); |
| ET_LOG_MSG_AND_RETURN_IF_FALSE( |
| dtype.value() == ScalarType::Float || dtype.value() == ScalarType::Half, |
| "dtype must be Float or Half"); |
| } |
| ET_LOG_MSG_AND_RETURN_IF_FALSE( |
| weight.scalar_type() == ScalarType::Char, "weight dtype must be int8"); |
| ET_LOG_MSG_AND_RETURN_IF_FALSE( |
| in.scalar_type() == ScalarType::Float || |
| in.scalar_type() == ScalarType::Half, |
| "input dtype must be Float or Half"); |
| |
| if (opt_weight_zero_points.has_value()) { |
| ET_LOG_AND_RETURN_IF_FALSE( |
| tensors_have_same_shape(opt_weight_zero_points.value(), weight_scales)); |
| ET_LOG_AND_RETURN_IF_FALSE( |
| tensors_have_same_dtype(opt_weight_zero_points.value(), in)); |
| } |
| |
| // Support for non-null zero points is not implemented yet. |
| ET_LOG_MSG_AND_RETURN_IF_FALSE( |
| !opt_weight_zero_points.has_value(), "zero points not supported yet."); |
| return true; |
| } |
| |
| Tensor& quantized_mixed_linear_out( |
| const Tensor& in, |
| const Tensor& weight, |
| const Tensor& weight_scales, |
| const optional<Tensor>& opt_weight_zero_points, |
| const optional<ScalarType> dtype, |
| Tensor& out) { |
| // TODO (gjcomer) Replace with ET_KERNEL_CHECK when context is available. |
| ET_CHECK(check_quantized_mixed_linear_args( |
| in, weight, weight_scales, opt_weight_zero_points, dtype, out)); |
| |
| ScalarType out_dtype = dtype.has_value() ? dtype.value() : out.scalar_type(); |
| |
| size_t output_ndim = 2; |
| exec_aten::SizesType output_sizes[kTensorDimensionLimit]; |
| output_sizes[0] = in.size(0); |
| output_sizes[1] = weight.size(0); |
| |
| // TODO (gjcomer) Replace with ET_KERNEL_CHECK when context is available. |
| ET_CHECK(resize_tensor(out, {output_sizes, output_ndim}) == Error::Ok); |
| |
| constexpr auto name = "quantized_decomposed::mixed_linear.out"; |
| |
| ET_SWITCH_TWO_TYPES(Float, Half, in.scalar_type(), ctx, name, CTYPE, [&]() { |
| ET_SWITCH_FLOAT_TYPES_AND(Half, out_dtype, ctx, name, CTYPE_OUT, [&]() { |
| size_t m = in.size(0); |
| size_t n = in.size(1); |
| size_t p = weight.size(0); |
| size_t g = n; |
| |
| if (weight_scales.dim() == 2) { |
| g = (n + weight_scales.size(1) - 1) / weight_scales.size(1); |
| }; |
| |
| // FIXME: this currently ignores dtype |
| vec_quantized_matmul_transb_int8< |
| CTYPE_OUT, // T *z |
| CTYPE>( // U *x, U *s |
| out.mutable_data_ptr<CTYPE_OUT>(), |
| in.const_data_ptr<CTYPE>(), |
| weight.const_data_ptr<int8_t>(), |
| weight_scales.const_data_ptr<CTYPE>(), |
| m, |
| n, |
| p, |
| g); |
| }); |
| }); |
| |
| return out; |
| } |
| |
| Tensor& quantized_mixed_linear_out( |
| RuntimeContext& ctx, |
| const Tensor& in, |
| const Tensor& weight, |
| const Tensor& weight_scales, |
| const optional<Tensor>& opt_weight_zero_points, |
| const optional<ScalarType> dtype, |
| Tensor& out) { |
| // TODO(mcandales): Remove the need for this wrapper |
| // TODO(mkg): add support for dtype |
| (void)ctx; |
| return quantized_mixed_linear_out( |
| in, weight, weight_scales, opt_weight_zero_points, dtype, out); |
| } |
| |
| } // namespace native |
| } // namespace executor |
| } // namespace torch |