blob: 19e915ebc03f37384c36584b786c078ac8b6984c [file] [log] [blame]
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <cstring>
#include <executorch/kernels/portable/cpu/util/kernel_ops_util.h>
#include <executorch/runtime/kernel/kernel_includes.h>
// A simple lookup table that looks up embeddings in a fixed dictionary and
// size.
// This module is often used to retrieve word embeddings using indices. The
// input to the module is a list of indices, and the embedding matrix, and the
// output is the corresponding word embeddings.
namespace torch {
namespace executor {
namespace native {
using Tensor = exec_aten::Tensor;
using ScalarType = exec_aten::ScalarType;
namespace {
template <typename CTYPE>
void embedding_kernel(
RuntimeContext& ctx,
const Tensor& weight,
const Tensor& indices,
Tensor& out) {
int64_t nbytes_per_entry = weight.size(1) * weight.element_size();
const char* w_data = weight.const_data_ptr<char>();
char* out_data = out.mutable_data_ptr<char>();
const CTYPE* indices_ptr = indices.const_data_ptr<CTYPE>();
ssize_t weight_height = weight.size(0);
for (int i = 0; i < indices.numel(); i++) {
// Ensure index is larger than 0 and smaller than weight.size(0)
ET_KERNEL_CHECK_MSG(
ctx,
indices_ptr[i] < weight_height,
InvalidArgument,
,
"indices_ptr[%d] %ld >= weight.size(0) %zd",
i,
static_cast<long>(indices_ptr[i]),
weight_height);
ET_KERNEL_CHECK_MSG(
ctx,
indices_ptr[i] >= 0,
InvalidArgument,
,
"indices_ptr[%d] %ld < 0",
i,
static_cast<long>(indices_ptr[i]));
if (w_data != nullptr) {
memcpy(
out_data,
w_data + nbytes_per_entry * indices_ptr[i],
nbytes_per_entry);
}
out_data += nbytes_per_entry;
}
}
} // namespace
// embedding.out(Tensor weight, Tensor indices, int padding_idx=-1, bool
// scale_grad_by_freq=False, bool sparse=False, *, Tensor(a!) out) -> Tensor(a!)
Tensor& embedding_out(
RuntimeContext& ctx,
const Tensor& weight,
const Tensor& indices,
int64_t padding_idx,
bool scale_grad_by_freq,
bool sparse,
Tensor& out) {
(void)ctx;
(void)padding_idx;
(void)scale_grad_by_freq;
(void)sparse;
ET_KERNEL_CHECK(
ctx, check_embedding_args(weight, indices, out), InvalidArgument, out);
ET_KERNEL_CHECK(
ctx,
resize_embedding_output(weight, indices, out) == Error::Ok,
InvalidArgument,
out);
ET_KERNEL_CHECK_MSG(
ctx,
out.size(out.dim() - 1) == weight.size(1),
InvalidArgument,
out,
"out.size(%zd) %zd != weight.size(1) %zd",
out.dim() - 1,
out.size(1),
weight.size(1));
ScalarType ix_type = indices.scalar_type();
ET_CHECK_MSG(
ix_type == ScalarType::Long || ix_type == ScalarType::Int,
"Expected indices tensor to have Long or Int scalar types");
ET_SWITCH_TWO_TYPES(
Long, Int, ix_type, ctx, "op_embedding.out", CTYPE, [&]() {
embedding_kernel<CTYPE>(ctx, weight, indices, out);
});
return out;
}
} // namespace native
} // namespace executor
} // namespace torch