blob: e377c6d7e90322df07a12fa74913e44609332643 [file] [log] [blame]
# Copyright (c) Qualcomm Innovation Center, Inc.
# All rights reserved
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import json
import os
import sys
from multiprocessing.connection import Client
import numpy as np
import torch
from executorch.backends.qualcomm.quantizer.quantizer import QuantDtype
from executorch.examples.models.wav2letter import Wav2LetterModel
from executorch.examples.qualcomm.utils import (
build_executorch_binary,
make_output_dir,
parse_skip_delegation_node,
setup_common_args_and_variables,
SimpleADB,
)
class Conv2D(torch.nn.Module):
def __init__(self, stride, padding, weight, bias=None):
super().__init__()
use_bias = bias is not None
self.conv = torch.nn.Conv2d(
in_channels=weight.shape[1],
out_channels=weight.shape[0],
kernel_size=[weight.shape[2], 1],
stride=[*stride, 1],
padding=[*padding, 0],
bias=use_bias,
)
self.conv.weight = torch.nn.Parameter(weight.unsqueeze(-1))
if use_bias:
self.conv.bias = torch.nn.Parameter(bias)
def forward(self, x):
return self.conv(x)
def get_dataset(data_size, artifact_dir):
from torch.utils.data import DataLoader
from torchaudio.datasets import LIBRISPEECH
def collate_fun(batch):
waves, labels = [], []
for wave, _, text, *_ in batch:
waves.append(wave.squeeze(0))
labels.append(text)
# need padding here for static ouput shape
waves = torch.nn.utils.rnn.pad_sequence(waves, batch_first=True)
return waves, labels
dataset = LIBRISPEECH(artifact_dir, url="test-clean", download=True)
data_loader = DataLoader(
dataset=dataset,
batch_size=data_size,
shuffle=True,
collate_fn=lambda x: collate_fun(x),
)
# prepare input data
inputs, targets, input_list = [], [], ""
for wave, label in data_loader:
for index in range(data_size):
# reshape input tensor to NCHW
inputs.append((wave[index].reshape(1, 1, -1, 1),))
targets.append(label[index])
input_list += f"input_{index}_0.raw\n"
# here we only take first batch, i.e. 'data_size' tensors
break
return inputs, targets, input_list
def eval_metric(pred, target_str):
from torchmetrics.text import CharErrorRate, WordErrorRate
def parse(ids):
vocab = " abcdefghijklmnopqrstuvwxyz'*"
return ["".join([vocab[c] for c in id]).replace("*", "").upper() for id in ids]
pred_str = parse(
[
torch.unique_consecutive(pred[i, :, :].argmax(0))
for i in range(pred.shape[0])
]
)
wer, cer = WordErrorRate(), CharErrorRate()
return wer(pred_str, target_str), cer(pred_str, target_str)
def main(args):
skip_node_id_set, skip_node_op_set = parse_skip_delegation_node(args)
# ensure the working directory exist
os.makedirs(args.artifact, exist_ok=True)
if not args.compile_only and args.device is None:
raise RuntimeError(
"device serial is required if not compile only. "
"Please specify a device serial by -s/--device argument."
)
instance = Wav2LetterModel()
# target labels " abcdefghijklmnopqrstuvwxyz'*"
instance.vocab_size = 29
model = instance.get_eager_model().eval()
model.load_state_dict(torch.load(args.pretrained_weight, weights_only=True))
# convert conv1d to conv2d in nn.Module level will only introduce 2 permute
# nodes around input & output, which is more quantization friendly.
for i in range(len(model.acoustic_model)):
for j in range(len(model.acoustic_model[i])):
module = model.acoustic_model[i][j]
if isinstance(module, torch.nn.Conv1d):
model.acoustic_model[i][j] = Conv2D(
stride=module.stride,
padding=module.padding,
weight=module.weight,
bias=module.bias,
)
# retrieve dataset, will take some time to download
data_num = 100
inputs, targets, input_list = get_dataset(
data_size=data_num, artifact_dir=args.artifact
)
pte_filename = "w2l_qnn"
build_executorch_binary(
model,
inputs[0],
args.model,
f"{args.artifact}/{pte_filename}",
inputs,
skip_node_id_set=skip_node_id_set,
skip_node_op_set=skip_node_op_set,
quant_dtype=QuantDtype.use_8a8w,
shared_buffer=args.shared_buffer,
)
if args.compile_only:
sys.exit(0)
adb = SimpleADB(
qnn_sdk=os.getenv("QNN_SDK_ROOT"),
build_path=f"{args.build_folder}",
pte_path=f"{args.artifact}/{pte_filename}.pte",
workspace=f"/data/local/tmp/executorch/{pte_filename}",
device_id=args.device,
host_id=args.host,
soc_model=args.model,
shared_buffer=args.shared_buffer,
)
adb.push(inputs=inputs, input_list=input_list)
adb.execute()
# collect output data
output_data_folder = f"{args.artifact}/outputs"
make_output_dir(output_data_folder)
adb.pull(output_path=args.artifact)
predictions = []
for i in range(data_num):
predictions.append(
np.fromfile(
os.path.join(output_data_folder, f"output_{i}_0.raw"), dtype=np.float32
)
)
# evaluate metrics
wer, cer = 0, 0
for i, pred in enumerate(predictions):
pred = torch.from_numpy(pred).reshape(1, instance.vocab_size, -1)
wer_eval, cer_eval = eval_metric(pred, targets[i])
wer += wer_eval
cer += cer_eval
if args.ip and args.port != -1:
with Client((args.ip, args.port)) as conn:
conn.send(
json.dumps({"wer": wer.item() / data_num, "cer": cer.item() / data_num})
)
else:
print(f"wer: {wer / data_num}\ncer: {cer / data_num}")
if __name__ == "__main__":
parser = setup_common_args_and_variables()
parser.add_argument(
"-a",
"--artifact",
help="path for storing generated artifacts by this example. "
"Default ./wav2letter",
default="./wav2letter",
type=str,
)
parser.add_argument(
"-p",
"--pretrained_weight",
help=(
"Location of pretrained weight, please download via "
"https://github.com/nipponjo/wav2letter-ctc-pytorch/tree/main?tab=readme-ov-file#wav2letter-ctc-pytorch"
" for torchaudio.models.Wav2Letter version"
),
default=None,
type=str,
required=True,
)
args = parser.parse_args()
try:
main(args)
except Exception as e:
if args.ip and args.port != -1:
with Client((args.ip, args.port)) as conn:
conn.send(json.dumps({"Error": str(e)}))
else:
raise Exception(e)