blob: 37863878e4a0a005f9e1462cded7489bca80587e [file] [log] [blame]
# Copyright (c) Qualcomm Innovation Center, Inc.
# All rights reserved
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import json
import os
import random
import re
from multiprocessing.connection import Client
import numpy as np
import torch
from executorch.backends.qualcomm.quantizer.quantizer import QuantDtype
from executorch.examples.models.deeplab_v3 import DeepLabV3ResNet101Model
from executorch.examples.qualcomm.utils import (
build_executorch_binary,
make_output_dir,
parse_skip_delegation_node,
segmentation_metrics,
setup_common_args_and_variables,
SimpleADB,
)
def get_dataset(data_size, dataset_dir, download):
import numpy as np
from torchvision import datasets, transforms
input_size = (224, 224)
preprocess = transforms.Compose(
[
transforms.Resize(input_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
dataset = list(
datasets.VOCSegmentation(
root=os.path.join(dataset_dir, "voc_image"),
year="2012",
image_set="val",
transform=preprocess,
download=download,
)
)
# prepare input data
random.shuffle(dataset)
inputs, targets, input_list = [], [], ""
for index, data in enumerate(dataset):
if index >= data_size:
break
image, target = data
inputs.append((image.unsqueeze(0),))
targets.append(np.array(target.resize(input_size)))
input_list += f"input_{index}_0.raw\n"
return inputs, targets, input_list
def main(args):
skip_node_id_set, skip_node_op_set = parse_skip_delegation_node(args)
# ensure the working directory exist.
os.makedirs(args.artifact, exist_ok=True)
if not args.compile_only and args.device is None:
raise RuntimeError(
"device serial is required if not compile only. "
"Please specify a device serial by -s/--device argument."
)
data_num = 100
if args.compile_only:
inputs = [(torch.rand(1, 3, 224, 224),)]
else:
inputs, targets, input_list = get_dataset(
data_size=data_num, dataset_dir=args.artifact, download=args.download
)
pte_filename = "dl3_qnn_q8"
instance = DeepLabV3ResNet101Model()
build_executorch_binary(
instance.get_eager_model().eval(),
instance.get_example_inputs(),
args.model,
f"{args.artifact}/{pte_filename}",
inputs,
skip_node_id_set=skip_node_id_set,
skip_node_op_set=skip_node_op_set,
quant_dtype=QuantDtype.use_8a8w,
shared_buffer=args.shared_buffer,
)
if args.compile_only:
return
adb = SimpleADB(
qnn_sdk=os.getenv("QNN_SDK_ROOT"),
build_path=f"{args.build_folder}",
pte_path=f"{args.artifact}/{pte_filename}.pte",
workspace=f"/data/local/tmp/executorch/{pte_filename}",
device_id=args.device,
host_id=args.host,
soc_model=args.model,
shared_buffer=args.shared_buffer,
)
adb.push(inputs=inputs, input_list=input_list)
adb.execute()
# collect output data
output_data_folder = f"{args.artifact}/outputs"
make_output_dir(output_data_folder)
# remove the auxiliary output and data processing
classes = [
"Backround",
"Aeroplane",
"Bicycle",
"Bird",
"Boat",
"Bottle",
"Bus",
"Car",
"Cat",
"Chair",
"Cow",
"DiningTable",
"Dog",
"Horse",
"MotorBike",
"Person",
"PottedPlant",
"Sheep",
"Sofa",
"Train",
"TvMonitor",
]
def post_process():
for f in os.listdir(output_data_folder):
filename = os.path.join(output_data_folder, f)
if re.match(r"^output_[0-9]+_[1-9].raw$", f):
os.remove(filename)
else:
output = np.fromfile(filename, dtype=np.float32)
output_shape = [len(classes), 224, 224]
output = output.reshape(output_shape)
output.argmax(0).astype(np.uint8).tofile(filename)
adb.pull(output_path=args.artifact, callback=post_process)
# segmentation metrics
predictions = []
for i in range(data_num):
predictions.append(
np.fromfile(
os.path.join(output_data_folder, f"output_{i}_0.raw"), dtype=np.uint8
)
)
pa, mpa, miou, cls_iou = segmentation_metrics(predictions, targets, classes)
if args.ip and args.port != -1:
with Client((args.ip, args.port)) as conn:
conn.send(
json.dumps({"PA": float(pa), "MPA": float(mpa), "MIoU": float(miou)})
)
else:
print(f"PA : {pa}%")
print(f"MPA : {mpa}%")
print(f"MIoU : {miou}%")
print(f"CIoU : \n{json.dumps(cls_iou, indent=2)}")
if __name__ == "__main__":
parser = setup_common_args_and_variables()
parser.add_argument(
"-a",
"--artifact",
help="path for storing generated artifacts by this example. Default ./deeplab_v3",
default="./deeplab_v3",
type=str,
)
parser.add_argument(
"-d",
"--download",
help="If specified, download VOCSegmentation dataset by torchvision API",
action="store_true",
default=False,
)
args = parser.parse_args()
try:
main(args)
except Exception as e:
if args.ip and args.port != -1:
with Client((args.ip, args.port)) as conn:
conn.send(json.dumps({"Error": str(e)}))
else:
raise Exception(e)