| # Copyright (c) Meta Platforms, Inc. and affiliates. |
| # All rights reserved. |
| # |
| # This source code is licensed under the BSD-style license found in the |
| # LICENSE file in the root directory of this source tree. |
| |
| # pyre-strict |
| |
| import torch |
| |
| from executorch.exir.dialects._ops import ops as exir_ops |
| from executorch.exir.pass_base import ExportPass, PassResult |
| |
| |
| class FuseDequantLinearPass(ExportPass): |
| """ |
| Fuses weight dequantize_per_channel nodes with linear nodes into |
| weight_int8pack_mm nodes, for 8-bit weight-only quantization. |
| |
| Replaces dq(weight) -> linear(activation, dq) with weight_int8pack_mm |
| Replaces dq(weight) -> linear(activation, dq, bias) with weight_int8pack_mm -> add |
| """ |
| |
| def fuse_dequant_with_linear( |
| self, |
| graph_module: torch.fx.GraphModule, |
| dequant_node: torch.fx.Node, |
| linear_node: torch.fx.Node, |
| ) -> None: |
| activations = linear_node.args[0] |
| bias = None |
| if len(linear_node.args) > 2: |
| bias = linear_node.args[2] |
| quant_weight = dequant_node.args[0] |
| scale = dequant_node.args[1] |
| |
| with graph_module.graph.inserting_before(linear_node): |
| weight_int8pack_mm_node = graph_module.graph.create_node( |
| "call_function", |
| exir_ops.edge.aten._weight_int8pack_mm.default, |
| (activations, quant_weight, scale), |
| ) |
| if bias: |
| add_node = graph_module.graph.create_node( |
| "call_function", |
| exir_ops.edge.aten.add.Tensor, |
| (weight_int8pack_mm_node, bias), |
| ) |
| linear_node.replace_all_uses_with(add_node) |
| else: |
| linear_node.replace_all_uses_with(weight_int8pack_mm_node) |
| graph_module.graph.erase_node(linear_node) |
| graph_module.graph.erase_node(dequant_node) |
| |
| def is_node_target( |
| self, node: torch.fx.Node, target: torch._ops.OperatorBase |
| ) -> bool: |
| return node.op == "call_function" and node.target == target |
| |
| def call(self, graph_module: torch.fx.GraphModule) -> PassResult: |
| for node in graph_module.graph.nodes: |
| if self.is_node_target(node, exir_ops.edge.aten.linear.default): |
| weight_node = node.args[1] |
| if self.is_node_target( |
| weight_node, |
| exir_ops.edge.quantized_decomposed.dequantize_per_channel.default, |
| ): |
| # only fuse if weight tensor is int8 packed |
| quant_weight = weight_node.args[0] |
| if quant_weight.meta["val"].dtype != torch.int8: |
| continue |
| self.fuse_dequant_with_linear(graph_module, weight_node, node) |
| |
| graph_module.recompile() |
| graph_module = super().call(graph_module).graph_module |
| |
| return PassResult(graph_module, True) |